如何确定水池侧壁的计算高度
关于矩形钢筋混凝土水池计算的总结

关于矩形钢筋混凝土水池计算的总结梁永涛摘要:水池是污水处理工程中常见的用人工材料修建、具有防渗作用的水处理设施。
结合某污水处理厂储泥池的设计工作,对矩形钢筋混凝土水池的设计计算进行总结。
关键词:矩形钢筋混凝土水池计算总结水池是污水处理工程中常见的用人工材料修建、具有防渗作用的水处理设施。
根据其地形和土质条件可以修建在地上或地下,即分为开敝式和封闭式两大类;按形状特点又可分为圆形和矩形两种;因建筑材料不同可分为:砖池、浆砌石池、钢筋混凝土池等。
因此,在实际工程的设计中,应充分对所设计水池的环境及结构特点进行分析,完成该水池的设计工作。
本文结合某污水厂储泥池的设计过程对矩形水池的计算进行总结一、水池结构的设计假定1、使用材料的假定在水工构筑物的设计工程中,应首先确定该水池的结构类型,该储泥池为半地下式敞口矩形水池,因此,建议采用钢筋混凝土材料。
根据《给排水工程构筑物结构设计规范》GB50069-2002第3节的规定:3.0.1、贮水或水处理构筑物、地下构筑物的混凝土强度等级不应低于C25;3.0.3、钢筋混凝土构筑物的抗渗,宜以混凝土本身的密实性满足抗渗要求。
构筑物混凝土的抗渗等级要求应按表3.0.3采用;3.0.6、最冷月平均气温低于-3℃的地区,外露的钢筋混凝土构筑物的混凝土应具有良好的抗冻性能,并应按表3.0.6的要求采用。
混凝土的抗冻等级应进行试验确定。
表3.0.3 混凝土抗渗等级Si的规定表3.0.6 混凝土抗冻等级Fi的规定因此,该储泥池采用C30混凝土,抗渗标号S6,抗冻标号F150;钢筋采用HPB235(Ⅰ级)及HRB335(Ⅱ级)。
2、计算尺寸假定该储泥池为半地下式敞口水池,池外地面距池內底2700mm,储泥池净尺寸4000mm×5200mm×4800mm(长×宽×高),池顶设悬臂式走道板,走道板厚度120mm,地下水位远低于池底板。
因该池工艺设计有防水套管,结合设计经验,暂定池壁厚度300mm,底板厚度350mm。
如何确定水池侧壁的计算高度

如何确定水池侧壁的计算高度(上海佳构软件科技有限公司,2015/11)问题:当水池底板很厚时,如何确定水池侧壁高度?分析:考虑侧壁、底板节点处的应力分布及变形情况,以及计算水头高度对底板产生的应力的影响。
佳构公司经过分析,认为水池侧壁的计算高度,即水池侧壁起算点在底板厚度的具体位置,与底板厚度无关,而与侧壁厚度相关。
佳构公司建议采取如下方法:)(5.0t b th H >+=(1))(5.0t b bh H ≤+=(2)其中,h 为侧壁净高,t 为侧壁厚度,b 为底板厚度。
图A 水池适用公式(1),图B 水池适用公式(2)。
图A,公式(1)图B,公式(2)加载:在施加水池侧壁荷载时,计算侧壁高度H 所增加的0.5b 、或0.5t 高度范围内,不施加水压。
在佳构STRAT 软件的操作中,可以将侧壁超元在对0.5b (或0.5t )高度处拆分开,这样可以侧壁上下两部分区别加载。
算例:通过如下算例对比来分析水池侧壁的计算高度对于侧壁的受力状态的影响。
如下图计算模型所示,平面尺寸为6m*3m 的水池,底板厚度b=0.5m ,侧壁厚度t=0.3m,水池侧壁净高为h=4m ,水头高度0h =3米,根据水池侧壁起算点在底板厚度的具体位置,分如下情况讨论:1)模型I :水池侧壁起算点取在底板中线b/2位置,此时侧壁高度取H=4+0.25=4.25m 。
同时,距底板b/2=0.25m 处不加水压。
2)模型II :根据佳构侧壁建议取值,水池侧壁起算点取距底板t/2位置,此时侧壁高度H=4+0.15=4.15m 。
同时,距底板t/2=0.15m 处不加水压。
3)模型III :水池侧壁起算点取在底板顶部位置,此时侧壁计算高度取水池侧壁净高,即H=h=4m 。
计算模型整体模型加载侧壁加载底部0.5b(或0.5t)底部0.5b(或0.5t)不加水压不加水压对三个计算模型进行基础协同计算,在内水压的工况下,水池侧壁受力状态如下图:整体模型侧壁内力侧壁内力切面侧壁内力切面模型I侧壁内力模型II侧壁内力模型III侧壁内力从图中可得,在水压作用下,水池侧壁计算高度不同,对侧壁产生的应力也不相同。
如何确定水池侧壁的计算高度[1]
![如何确定水池侧壁的计算高度[1]](https://img.taocdn.com/s3/m/9192f74b804d2b160b4ec0ca.png)
(上海佳构软件科技有限公司,2015/11)
问 分
题:
当水池底板很厚时,如何确定水池侧壁高度?
析:
考虑侧壁、底板节点处的应力分布及变形情况,以及计算水头高度对底板产生的应力的影响。
佳构公司经过分析,认为水池侧壁的计算高度,即水池侧壁起算点在底板厚度的具体位置,与底板 厚度无关,而与侧壁厚度相关。 佳构公司建议采取如下方法:
H h 0.5t H h 0.5b
其中,h 为侧壁净高,t 为侧壁厚度,b 为底板厚度。 图 A 水池适用公式(1),图 B 水池适用公式(2)。
(b t ) (b t )
(1) (2)
图 A,公式(1)
图 B,公式(2)
加
载:
在施加水池侧壁荷载时,计算侧壁高度 H 所增加的 0.5b、或 0.5t 高度范围内,不施加水压。 在佳构 STRAT 软件的操作中,可以将侧壁超元在对 0.5b(或 0.5t)高度处拆分开,这样可以侧
2
1
计算模型
整体模型加载 底部 0.5b(或 0.5t) 不加水压
侧壁加载 底部 0.5b(或 0.5t) 不加水压
对三个计算模型进行基础协同计算,在内水压的工况下,水池侧壁受力状态如下图:
整体模型侧壁内力
侧壁内力切面
侧壁内力切面
模型 I 侧壁内力
模型 II 侧壁内力
模型 III 壁计算高度不同,对侧壁产生的应力也不相同。模型 I 中 水池侧壁压力最大值达到 25.6849;模型 II 中,水池侧壁压力最大值达到 21.7967;模型 III 中, 水池侧壁压力最大值达到 22.4782。 从算例可见,对于水池结构,侧壁的计算高度的选取重关重要。
水池侧墙及抗浮计算EXCLE自动计算公式

0.0033 0.55
203.5 mm 15.46861595 mm 砼受压区高度符合要求
737.3373603 mm2
2.2.2 选钢筋
第一排钢筋的直径 第一排钢筋的根数 第一排钢筋间的净距 第一排钢筋的总面积 第二排钢筋的直径 第二排钢筋的根数 第二排钢筋间的净距 第二排钢筋的总面积 实配钢筋的总面积 实配钢筋/计算钢筋 受弯构件纵向受拉钢筋的实际配筋率 受弯构件纵向受拉钢筋允许的最小配筋率
14 mm
10
86 mm 1539.3791 mm2
0 mm
0
无第二排钢筋
mm 0 mm2 1539.3791.384844775 %
0.2145 %
结论
满足最小配筋率的要求
2.2.3 裂缝计算
受拉区纵向钢筋的等效直径 有效受拉砼截面面积 按有效受拉砼截面面积计算的纵向受拉钢筋配筋率 裂缝间纵向受拉钢筋应变不均匀系数 构件受力特征系数 设计值/标准值 按何载效应的标准组合计算的弯矩值 按何载效应的标准组合计算的钢筋砼构件纵向受拉钢筋的应 力 钢筋的弹性模量 按何载效应的标准组合计算的最大裂缝宽度 最大裂缝宽度限值
受拉区纵向钢筋的等效直径 有效受拉砼截面面积
h0=
fc= ft= ftk= α 1=
fy= ES= β 1= ε cu= ζ b= xb=
x=
As=
370 mm 30
14.3 N/mm2 1.43 N/mm2 2.01 N/mm2
1 HRB335
300 N/mm2 200000 N/mm2
0.8 0.0033
水池: 单向板侧墙(顶部简支,三面固结)
1 内力计算
水池侧壁的计算长度 水池侧壁的计算高度 水池地下最高水位距设计地面的距离 水池的侧壁厚度 地下水位以上土的重度 据地质报告填土的内摩察角 水池侧壁配筋计算时取用的土的有效浮容重度 水池侧壁配筋计算时侧压力设计值的荷载分项系数 水池附近的地面荷载 水池上附土荷载 水池侧壁高宽比
室外水池计算

浙江中烟动力中心计算书室外水池抗浮水位:-0.80m地下室底板顶标高:-6.00m底板厚600mm,顶板厚300mm。
静止土压力作用系数K0=1-sinθ(内摩擦角θ=250)=0.58地面活荷载取10kN/㎡一、外墙计算i 外墙土、水压力作用时计算得标准组合M BK=190kN.mM ck=90 kN.m基本组合M B=262kN.mM c=123kN.m带入MorGain计算:1、外墙外侧根部①配筋计算(M B=262kN.m, 500mm厚,a=50mm)1.1 基本资料1.1.1 工程名称:工程一1.1.2 混凝土强度等级:C30 fc = 14.33N/mm ft = 1.43N/mm1.1.3 钢筋强度设计值 fy = 300N/mm Es = 200000N/mm1.1.4 由弯矩设计值 M 求配筋面积 As,弯矩 M = 262kN·m1.1.5 截面尺寸 b×h = 1000*500mm ho = h - as = 500-50 = 450mm1.2 计算结果:1.2.1 相对界限受压区高度ξbξb =β1 / [1 + fy / (Es * εcu)] = 0.8/[1+300/(200000*0.0033)] = 0.5501.2.2 受压区高度 x = ho - [ho ^ 2 - 2 * M / (α1 * fc * b)] ^ 0.5= 450-[450^2-2*262000000/(1*14.33*1000)]^0.5= 43mm1.2.3 相对受压区高度ξ = x / ho = 43/450 = 0.095 ≤ξb = 0.5501.2.4 纵向受拉钢筋 As =α1 * fc * b * x / fy = 1*14.33*1000*43/300= 2037mm1.2.5 配筋率ρ = As / (b * ho) = 2037/(1000*450) = 0.45%最小配筋率ρmin = Max{0.20%, 0.45ft/fy} = Max{0.20%, 0.21%} =0.21%②裂缝计算(M BK=190kN.m,φ18/20@100, As=2843mm2)轴力:25x0.5x5.2+15=80kN/m(顶板15kN/m)1.1 基本资料1.1.1 工程名称:工程一1.1.2 矩形截面偏心受压构件构件受力特征系数αcr = 2.1截面尺寸 b×h = 1000×500mm 受压构件计算长度 lo = 4900mm1.1.3 纵筋根数、直径:第 1 种:5Φ16 第 2 种:5Φ20受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) =18.2mm带肋钢筋的相对粘结特性系数υ = 11.1.4 受拉纵筋面积 As = 2576mm 钢筋弹性模量 Es = 200000N/mm1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 50mm纵向受拉钢筋合力点至截面近边的距离 as =60mm ho = 440mm1.1.6 混凝土抗拉强度标准值 ftk = 2.01N/mm1.1.7 按荷载效应的标准组合计算的轴向力值 Nk = 65kN按荷载效应的标准组合计算的弯距值 Mk = 190kN·m轴向力对截面重心的偏心矩 eo = Mk / Nk = 190000000/65000 =2923mm1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2002),以下简称混凝土规范1.2 最大裂缝宽度验算1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4)对矩形截面的偏心受压构件:Ate = 0.5 * b * h = 0.5*1000*500 =250000mmρte = As / Ate = 2576/250000 = 0.01031.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力σsk,按下列公式计算:偏心受压:σsk = Nk * (e - z) / (As * z) (混凝土规范 8.1.3-4)1.2.2.1 使用阶段的轴向压力偏心距增大系数ηs,当 lo / h = 4900/500 = 9.8 ≤ 14 时,取ηs = 1.01.2.2.2 截面重心到纵向受拉钢筋合力点的距离 ysys = 0.5 * b * h ^ 2 / (b * h) - as = 0.5*1000*500^2/(1000*500)-60= 190mm1.2.2.3 轴向压力作用点至纵向受拉钢筋合力点的距离 e,按混凝土规范式8.1.3-6计算:e =ηs * eo + ys = 1*2923+190 = 3113mm1.2.2.4 受压翼缘面积与腹板有效面积的比值γf',对于矩形截面,γf' = 01.2.2.5 纵向受拉钢筋合力点至截面受压区合力点的距离 z,按混凝土规范式 8.1.3-5计算:z = [0.87 - 0.12 * (1 - γf') * (ho / e) ^ 2] * ho= [0.87-0.12*(1-0)*(440/3113)^2]*440 = 382mm1.2.2.6 σsk = Nk * (e - z) / (As * z) = 65000*(3113-382)/2576/382= 181N/mm1.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.01/(0.0103*181) =0.3991.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算:ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es= 2.1*0.399*181*(1.9*50+0.08*18.2/0.0103)/200000 =0.179mm2、外墙内侧中部①配筋计算(M c=123 kN.m,500mm厚,a=50mm)1.1 基本资料1.1.1 工程名称:工程一1.1.2 混凝土强度等级:C30 fc = 14.33N/mm ft = 1.43N/mm11.1.3 钢筋强度设计值 fy = 300N/mm Es = 200000N/mm1.1.4 由弯矩设计值 M 求配筋面积 As,弯矩 M = 123kN·m1.1.5 截面尺寸 b×h = 1000*500mm ho = h - as = 500-50 = 450mm1.2 计算结果:1.2.1 相对界限受压区高度ξbξb =β1 / [1 + fy / (Es * εcu)] = 0.8/[1+300/(200000*0.0033)] = 0.550 1.2.2 受压区高度 x = ho - [ho ^ 2 - 2 * M / (α1 * fc * b)] ^ 0.5= 450-[450^2-2*123000000/(1*14.33*1000)]^0.5 = 19mm1.2.3 相对受压区高度ξ = x / ho = 19/450 = 0.043 ≤ξb = 0.550 1.2.4 纵向受拉钢筋 As =α1 * fc * b * x / fy = 1*14.33*1000*19/300 =931mm1.2.5 配筋率ρ = As / (b * ho) = 931/(1000*450) = 0.21% 最小配筋率ρmin = Max{0.20%, 0.45ft/fy} = Max{0.20%, 0.21%} =0.21%As,min = b * h * ρmin = 1075mm②裂缝计算(M CK=90kN.m,φ12@100, As=1131mm2)轴力:25x0.5x2.6=32.5kN/m1.1 基本资料1.1.1 工程名称:工程一1.1.2 矩形截面偏心受压构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 受压构件计算长度 lo = 4900mm1.1.3 纵筋根数、直径:第 1 种:10Φ12受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) =12mm带肋钢筋的相对粘结特性系数υ = 11.1.4 受拉纵筋面积 As = 1131mm 钢筋弹性模量 Es = 200000N/mm1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 50mm 纵向受拉钢筋合力点至截面近边的距离 as =56mm ho = 444mm1.1.6 混凝土抗拉强度标准值 ftk = 2.01N/mm1.1.7 按荷载效应的标准组合计算的轴向力值 Nk = 33kN按荷载效应的标准组合计算的弯距值 Mk = 90kN·m轴向力对截面重心的偏心矩 eo = Mk / Nk = 90000000/33000 = 2727mm 1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2002),以下简称混凝土规范1.2 最大裂缝宽度验算1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4)对矩形截面的偏心受压构件:Ate = 0.5 * b * h = 0.5*1000*500 =250000mmρte = As / Ate = 1131/250000 = 0.00452在最大裂缝宽度计算中,当ρte < 0.01 时,取ρte = 0.011.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力σsk,按下列公式计算:偏心受压:σsk = Nk * (e - z) / (As * z) (混凝土规范 8.1.3-4) 1.2.2.1 使用阶段的轴向压力偏心距增大系数ηs,当 lo / h = 4900/500 = 9.8 ≤ 14 时,取ηs = 1.01.2.2.2 截面重心到纵向受拉钢筋合力点的距离 ysys = 0.5 * b * h ^ 2 / (b * h) - as = 0.5*1000*500^2/(1000*500)-56 = 194mm1.2.2.3 轴向压力作用点至纵向受拉钢筋合力点的距离 e,按混凝土规范式8.1.3-6计算:e =ηs * eo + ys = 1*2727+194 = 2921mm1.2.2.4 受压翼缘面积与腹板有效面积的比值γf',对于矩形截面,γf' = 0 1.2.2.5 纵向受拉钢筋合力点至截面受压区合力点的距离 z,按混凝土规范式 8.1.3-5计算:z = [0.87 - 0.12 * (1 - γf') * (ho / e) ^ 2] * ho= [0.87-0.12*(1-0)*(444/2921)^2]*444 = 385mm1.2.2.6 σsk = Nk * (e - z) / (As * z) = 33000*(2921-385)/1131/385= 192N/mm1.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.01/(0.01*192) =0.4221.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算:ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es= 2.1*0.422*192*(1.9*50+0.08*12/0.01)/200000 = 0.162mmii 内墙水压力作用时计算得标准组合M BK=73kN.mM ck=30kN.m基本组合M B=102kN.mM c=42kN.m1、外墙内侧根部①配筋计算(M B=102kN.m, 500mm厚,a=50mm)1.1 基本资料1.1.1 工程名称:工程一1.1.2 混凝土强度等级:C30 fc = 14.33N/mm ft = 1.43N/mm 1.1.3 钢筋强度设计值 fy = 300N/mm Es = 200000N/mm1.1.4 由弯矩设计值 M 求配筋面积 As,弯矩 M = 102kN·m1.1.5 截面尺寸 b×h = 1000*500mm ho = h - as = 500-50 = 450mm1.2 计算结果:1.2.1 相对界限受压区高度ξbξb =β1 / [1 + fy / (Es * εcu)] = 0.8/[1+300/(200000*0.0033)] = 0.550 1.2.2 受压区高度 x = ho - [ho ^ 2 - 2 * M / (α1 * fc * b)] ^ 0.5= 450-[450^2-2*102000000/(1*14.33*1000)]^0.5 = 16mm1.2.3 相对受压区高度ξ = x / ho = 16/450 = 0.036 ≤ξb = 0.550 1.2.4 纵向受拉钢筋 As =α1 * fc * b * x / fy = 1*14.33*1000*16/300 =769mm1.2.5 配筋率ρ = As / (b * ho) = 769/(1000*450) = 0.17% 最小配筋率ρmin = Max{0.20%, 0.45ft/fy} = Max{0.20%, 0.21%} =0.21%As,min = b * h * ρmin = 1075mm②裂缝计算(M BK=73kN.m,φ12@100, As=1131mm2)231.1 基本资料1.1.1 工程名称:工程一1.1.2 矩形截面受弯构件 构件受力特征系数 αcr = 2.1 截面尺寸 b ×h = 1000×500mm 1.1.3 纵筋根数、直径:第 1 种:10Φ12受拉区纵向钢筋的等效直径 deq = ∑(ni * di^2) / ∑(ni * υ * di) = 12mm带肋钢筋的相对粘结特性系数 υ = 11.1.4 受拉纵筋面积 As = 1131mm 钢筋弹性模量 Es = 200000N/mm1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 50mm 纵向受拉钢筋合力点至截面近边的距离 as =56mm ho = 444mm 1.1.6 混凝土抗拉强度标准值 ftk = 2.01N/mm1.1.7 按荷载效应的标准组合计算的弯距值 Mk = 73kN ·m 1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2002),以下简称 混凝土规范1.2 最大裂缝宽度验算1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率 ρte ,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4)对矩形截面的受弯构件:Ate = 0.5 * b * h = 0.5*1000*500 = 250000mmρte = As / Ate = 1131/250000 = 0.00452在最大裂缝宽度计算中,当 ρte < 0.01 时,取 ρte = 0.01 1.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力 σsk ,按下列公式计算:受弯:σsk = Mk / (0.87 * ho * As) (混凝土规范 8.1.3-3) σsk = 73000000/(0.87*444*1131) = 167N/mm1.2.3 裂缝间纵向受拉钢筋应变不均匀系数 ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.01/(0.01*167) = 0.321.2.4 最大裂缝宽度 ωmax ,按混凝土规范式 8.1.2-1 计算: ωmax = αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es= 2.1*0.32*167*(1.9*50+0.08*12/0.01)/200000 = 0.107mm 1.2.5 受弯构件表面处的最大裂缝宽度 ωs,max ,可近似按下列公式计算: ωs,max = (h - x) / (ho - x) * ωmax 当 z = 0.87 * ho 时,x = 0.26 * hoωs,max = (h - x) / (ho - x) * ωmax = (500-115)/(444-115)*0.107 = 0.125mm二、内墙计算i 内墙水压力作用时计算得标准组合 M BK =73kN.mM ck =30 kN.m基本组合 M B =102kN.mM c =42 kN.m①配筋计算(M B =102kN.m, 400mm 厚, a =50mm )1.1 基本资料1.1.1 工程名称:工程一1.1.2 混凝土强度等级:C30 fc = 14.33N/mm ft = 1.43N/mm 1.1.3 钢筋强度设计值 fy = 300N/mm Es = 200000N/mm 1.1.4 由弯矩设计值 M 求配筋面积 As ,弯矩 M = 102kN ·m1.1.5 截面尺寸 b ×h = 1000*400mm ho = h - as = 400-50 = 350mm1.2 计算结果:1.2.1 相对界限受压区高度 ξbξb = β1 / [1 + fy / (Es * εcu)] = 0.8/[1+300/(200000*0.0033)] = 0.550 1.2.2 受压区高度 x = ho - [ho ^ 2 - 2 * M / (α1 * fc * b)] ^ 0.5 = 350-[350^2-2*102000000/(1*14.33*1000)]^0.5 = 21mm1.2.3 相对受压区高度 ξ = x / ho = 21/350 = 0.06 ≤ ξb = 0.550 1.2.4 纵向受拉钢筋 As = α1 * fc * b * x / fy = 1*14.33*1000*21/300 = 1001mm1.2.5 配筋率 ρ = As / (b * ho) = 1001/(1000*350) = 0.29% 最小配筋率 ρmin = Max{0.20%, 0.45ft/fy} = Max{0.20%, 0.21%} = 0.21%②裂缝计算(M BK =73kN.m , φ12@100, As =1131mm 2)轴力:25x0.4x5.2=52kN/m1.1 基本资料1.1.1 工程名称:工程一1.1.2 矩形截面偏心受压构件 构件受力特征系数 αcr = 2.1 截面尺寸 b ×h = 1000×400mm 受压构件计算长度 lo = 4900mm 1.1.3 纵筋根数、直径:第 1 种:10Φ12受拉区纵向钢筋的等效直径 deq = ∑(ni * di^2) / ∑(ni * υ * di) = 12mm带肋钢筋的相对粘结特性系数 υ = 11.1.4 受拉纵筋面积 As = 1131mm 钢筋弹性模量 Es = 200000N/mm1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 50mm 纵向受拉钢筋合力点至截面近边的距离 as =56mm ho = 344mm 1.1.6 混凝土抗拉强度标准值 ftk = 2.01N/mm 1.1.7 按荷载效应的标准组合计算的轴向力值 Nk = 52kN 按荷载效应的标准组合计算的弯距值 Mk = 73kN ·m轴向力对截面重心的偏心矩 eo = Mk / Nk = 73000000/52000 = 1404mm 1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2002),以下简称 混凝土规范 1.2 最大裂缝宽度验算1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率 ρte ,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4)对矩形截面的偏心受压构件:Ate = 0.5 * b * h = 0.5*1000*400 = 200000mmρte = As / Ate = 1131/200000 = 0.00565在最大裂缝宽度计算中,当 ρte < 0.01 时,取 ρte = 0.01 1.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力 σsk ,按下列公式计算:偏心受压:σsk = Nk * (e - z) / (As * z) (混凝土规范 8.1.3-4) 1.2.2.1 使用阶段的轴向压力偏心距增大系数ηs,当 lo / h = 4900/400 = 12.25 ≤ 14 时,取ηs = 1.01.2.2.2 截面重心到纵向受拉钢筋合力点的距离 ysys = 0.5 * b * h ^ 2 / (b * h) - as = 0.5*1000*400^2/(1000*400)-56 = 144mm1.2.2.3 轴向压力作用点至纵向受拉钢筋合力点的距离 e,按混凝土规范式8.1.3-6计算:e =ηs * eo + ys = 1*1404+144 = 1548mm1.2.2.4 受压翼缘面积与腹板有效面积的比值γf',对于矩形截面,γf' = 0 1.2.2.5 纵向受拉钢筋合力点至截面受压区合力点的距离 z,按混凝土规范式 8.1.3-5计算:z = [0.87 - 0.12 * (1 - γf') * (ho / e) ^ 2] * ho= [0.87-0.12*(1-0)*(344/1548)^2]*344 = 297mm1.2.2.6 σsk = Nk * (e - z) / (As * z) = 52000*(1548-297)/1131/297 = 193N/mm1.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.01/(0.01*193) =0.4261.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算:ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es= 2.1*0.426*193*(1.9*50+0.08*12/0.01)/200000 = 0.165mm 三、总体抗浮验算根据《给水排水工程钢筋混凝土水池结构设计规程》抗浮抗力系数不应小于 1.05。
五年级确定泳池的长、宽、高操作及计算过程

五年级确定泳池的长、宽、高操作及计算过程
【原创版】
目录
1.确定泳池的长、宽、高的重要性
2.泳池长、宽、高的测量方法
3.泳池长、宽、高的计算过程
4.泳池长、宽、高的确定对泳池使用的影响
正文
1.确定泳池的长、宽、高的重要性
泳池的长、宽、高是建造泳池的基础数据,它们直接影响到泳池的大小、形状以及使用效果。
准确的测量和计算,可以保证泳池的建造质量和使用舒适度。
2.泳池长、宽、高的测量方法
泳池的长、宽、高的测量方法通常使用卷尺或者测距仪进行。
测量时,需要选择几个基准点,然后从基准点开始,测量到泳池的对应边,得出泳池的长和宽。
泳池的高则需要测量泳池底部到水面的深度。
3.泳池长、宽、高的计算过程
泳池的长、宽、高的计算过程相对简单。
泳池的长和宽,就是测量得出的泳池对应边的长度。
泳池的高,则是泳池底部到水面的深度。
4.泳池长、宽、高的确定对泳池使用的影响
泳池的长、宽、高的确定,直接影响到泳池的大小和形状,进而影响到泳池的使用效果。
如果泳池的长、宽、高确定不准确,可能会导致泳池无法满足使用需求,甚至可能存在安全隐患。
第1页共1页。
结构优化设计-- 水池

壁厚
H/20 H/25 H/25 H/30 HB/12 HB/15 HB/10 HB/12 HB/15 HB/18 HB/12 HB/15 HB/12
自由
>2
地上水 矩形
池
有板或梁
≤2
HB/10 HB/15
自由
≤2
HB/12
注 1) 壁厚按 50 mm 的倍数取值,水池较深时应采用变厚度形式,壁厚在任何情
压重抗浮是通过在池内、池顶或池底外挑墙趾上压重来抗浮。池内压重即增加 G 抗浮, 一般需将池体落深,在池内填筑压重混凝土或浆砌块石等其他材料来达到抗浮的目的。此法 增加了池壁高度和基坑深度,但一般不会增加池底所受的不均匀地基反力,故对底板的内力 影响较小。池顶压重即增加 G,常用于埋地式或半埋地式水池,如自来水厂的清水池、吸水 井和一些污水处理构筑物等。采用此法,可充分利用池顶覆土种植绿化或作为活动场地,但 池顶压重会大大增加池顶板和底板的荷载,使顶、底板的结构厚度和配筋都相应增加。外挑 墙趾上压重即增加 G,这样做不需增加基坑深度,但一般均需将底板外挑较大范围,以增 加基坑面积,并且可能对相邻的建筑物、构筑物或管线等造成一定的影响,另外会增加池底 所受的不均匀地基反力,使池底板的内力增大。此法可直接利用外挑墙趾上的回填土或填筑 毛石等自重较大的材料抗浮。若直接利用回填土,考虑到回填土的不均匀性及填挖的不确定 性,一般应乘 0.8,0.9 的折减系数。此法常用于一般中小型水池的抗浮,但不宜用在平面 尺寸较大的水池,对需考虑局部抗浮的水池也不适用。 b 池底配重抗浮
钢筋混凝土构筑物构件的最大裂缝宽度限度值 表 6-4
6.6 水池保护层厚度如何选取? 答 : 水 池 保 护 层 厚 度 选 取 可 参 考 “ 石 油 化 工 钢 筋 混 凝 土 水 池 结 构 设 计 规 范 ”( SHT 3132-2002 ),如表 6-5 所示。
水池侧墙计算书

SQ-XX水池侧墙计算书(墙底按固端、墙顶按简支考虑)一、受力计算:1、构件基本尺寸及计算参数:1)墙体高度:H=4.68m,2)水深:b=3.3m,3)水的重度:γw=10KN/m34)水压力分项系数取 γ=1.22、墙底标高处的水压力:q s= γw · b =33.0KN/m23、侧墙截面弯距计算:1)M Bk=-q· b2 · [4-3b/H+3b2/(5H2)]/24s=-32.7KN·m2)强度计算时,B点弯矩设计值:M B=γ · M Bk=-39.2KN·m3)强度计算时,C点正弯矩设计值偏于安全的取B点的负弯距设计值的一半:M C=-M B /2=19.6KN·m二、墙底配筋计算:1、构件基本尺寸及计算参数:1)墙体厚度:h=300mm2)墙体计算长度:l=1000mm3)墙体砼强度等级:C304)墙体纵筋强度等级:HRB3355)墙外侧筋边距离:a s=50mm6)墙内侧筋边距离:a's =30mm7)应力强度比系数:α1=1.08)受压区高度系数:β1=0.82、根据基本尺寸及参数,可推算出其它尺寸及参数如下:1)混凝土轴心抗压强度设计值:f c=14.3N/mm22)混凝土弹性模量:E c=####N/mm23)钢筋抗拉、抗压强度设计值:f y=f y' =300N/mm22000004)钢筋弹性模量:E s=N/mm25)截面有效高度:h0= h - a s =250mm6)相对界限受压区高度:ξb=β1/[1+f y/(E s·εcu)]=####7)钢筋弹性模量与混凝土弹性模量的比值:αE=E s/E c=####3、配筋计算:1)假定墙内侧受压钢筋为Φ10@150,则 A's=524mm22)受压钢筋所承担的弯距:M' =f y' · A's · (h0-a's)=34.6KN·m3)单筋截面所承担的弯距:M1=|M B| - M'=4.67KN·m4)受压区高度:x=h0 - [h02 - 2 · M1/(α1 · f c · l)]0.5=1.3mm≤ξb· h0 =138mm满足要求5)根据《混规》7.2.1条及7.2.5条可知:若x< 2·a's,则A s=|M B| / [f y · (h0 - a's)] ;若x≥ 2·a's,则A s=(α1 · f c · l · x+A's· f y' ) / f y;现x= 1.3mm<2·a's =60mm故A s=|-39.2|×1000000/[300×(250 - 30)]=594mm2墙底外侧受拉钢筋实配Φ14@100,则实配钢筋面积 A s=1539mm2三、墙底裂缝宽度验算:1、基本计算参数:1)按受弯构件考虑,构件受力特征系数:αcr =2.12)钢筋的相对粘结特性系数:υ=1.03)最外层纵向受拉钢筋外边缘至受拉区底边的距离:c=30mm4)按前面计算结果,裂缝计算时,B点弯矩标准值:M Bk=-32.7KN·m5)混凝土轴心抗拉强度标准值:f tk=2.01N/mm26)最大裂缝宽度限值:ωlim=0.2mm2、裂缝宽度验算:1)受拉区纵向钢筋的等效直径:d eq=∑(ni · di2) /∑(ni · υ · di)=14mm2)按有效受拉面积计算的受拉钢筋配筋率:ρte=As /(0.5 · l · h)=0.01,3)受拉钢筋的等效应力:σsk=|M Bk| /(0.87 · h0 · As)=97.6N/mm24)受拉钢筋应变不均匀系数:ψ=1.1-0.65 · f tk/(ρte · σsk)=0.205)最大裂缝宽度:ωmax=αcr · ψ · σsk · (1.9 · c+0.08 · d eq/ρte)/E s=####mm≤ ωlim =0.2mm满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H h 0.5t H h 0.5b
其中,h 为侧壁净高,t 为侧壁厚度,b 为底板厚度。 图 A 水池适用公式(1),图 B 水池适用公式(2)。
(b t ) (b t )
(1) (2)
图 A,公式(1)
图 B,公式(2)
加
载:
在施加水池侧壁荷载时,计算侧壁高度 H 所增加的 0.5b、或 0.5t 高度范围内,不施加水压。 在佳构 STRAT 软件的操作中,可以将侧壁超元在对 0.5b(或 0.5t)高度处拆分开,这样可以侧
如何确定水池侧壁的计算高度
(上海佳构软件科技有限公司,2015/11)
问 分
题:
当水池底板很厚时,如何确定水池侧壁高度?
析:
考虑侧壁、底板节点处的应力分布及变形情况,以及计算水头高度对底板产生的应力的影响。
ห้องสมุดไป่ตู้
佳构公司经过分析,认为水池侧壁的计算高度,即水池侧壁起算点在底板厚度的具体位置,与底板 厚度无关,而与侧壁厚度相关。 佳构公司建议采取如下方法:
2
壁上下两部分区别加载。
算
例:
通过如下算例对比来分析水池侧壁的计算高度对于侧壁的受力状态的影响。 如下图计算模型所示,平面尺寸为 6m*3m 的水池,底板厚度 b=0.5m,侧壁厚度 t=0.3m,水池侧
壁净高为 h=4m,水头高度 h0 =3 米,根据水池侧壁起算点在底板厚度的具体位置,分如下情况讨论: 1) 2) 3) 模型 I:水池侧壁起算点取在底板中线 b/2 位置,此时侧壁高度取 H=4+0.25=4.25m。同时,距 底板 b/2=0.25m 处不加水压。 模型 II:根据佳构侧壁建议取值,水池侧壁起算点取距底板 t/2 位置,此时侧壁高度 H=4+0.15=4.15m。同时,距底板 t/2=0.15m 处不加水压。 模型 III:水池侧壁起算点取在底板顶部位置,此时侧壁计算高度取水池侧壁净高,即 H=h=4m。
1
计算模型
整体模型加载 底部 0.5b(或 0.5t) 不加水压
侧壁加载 底部 0.5b(或 0.5t) 不加水压
对三个计算模型进行基础协同计算,在内水压的工况下,水池侧壁受力状态如下图:
整体模型侧壁内力
侧壁内力切面
侧壁内力切面
模型 I 侧壁内力
模型 II 侧壁内力
模型 III 侧壁内力
从图中可得,在水压作用下,水池侧壁计算高度不同,对侧壁产生的应力也不相同。模型 I 中 水池侧壁压力最大值达到 25.6849;模型 II 中,水池侧壁压力最大值达到 21.7967;模型 III 中, 水池侧壁压力最大值达到 22.4782。 从算例可见,对于水池结构,侧壁的计算高度的选取重关重要。