2018届北师大版(理) 不等式 单元测试

合集下载

北师大版八年级数学单元测试卷含答案

北师大版八年级数学单元测试卷含答案
(1)写出常数k可能给定的值;
(2)针对其中一个给定的k值,写出因式分解的过程.
参考答案
1、x3+3x–1;2、b(a+2)(a–2);3、10m,5m;4、9960;5、±20;6、3m+4n;7、xn+1;8、3;
9、C;10、B;11、D;12、C;13、D;
14、–2(x–y)(a–b);15、(a+2b)2(a–2b)2;16、(3n–m)2;17、x(x+1)2(x–1)2;
200+0.85(x-200)=(0.85x+30)元;
(2)当0.8x+60=0.85x+30时,解得x=600,
∴当顾客购物600元时,到两家超市购物所付费用相同;
当0.8x+60>0.85x+30时,解得x<600,而x>300,
∴300<x<600,即顾客购物超过300元且不满600元时,到乙超市更优惠;
A.x>1 B.x<1 C.x>2 D.x<2
三、解答题
1.解下列不等式(组),并把它们的解集在数轴上表示出来:
(1)
(2)
(3)
(4)
2.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).
(A)800 m(B)8000 m
(C)32250 cm(D)3225 m
12.下面两个三角形一定相似的是()
(A)两个等腰三角形(B)两个直角三角形
(C)两个钝角三角形(D)两个等边三角形

《不等式》单元测试卷(含详解答案)

《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。

)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。

北师大版八下数学不等式练习题2套

北师大版八下数学不等式练习题2套

八下练习题1一.选择题1.如果a >b ,下列各式中不正确...的是 A .2a >2b B .-2a <-2b C .a -3>b -3 D . a 1<b1 2.使不等式3x -7<5-x 成立的最大整数x 为( )A 、0B 、1C 、2D 、33.已知x >y ,下列不等式一定成立的是( )A. x -6<y -6B. -ax <-ay C .-2x >-2y D .2x+a >2y+a4.下列说法正确的是( )A. 由a >b 得-3a >-3b B .由a >b 得2c a >2c b C .由a >b 得ac 2>bc 2 D.由21->1- 得2a ->a - 5.下列说法中正确的是( )A .x =1是不等式3x +4>0的解 B.不等式-2x >0的解集为x >0C.若x +a >1,则x <1D.若ax <1,则x <1a6.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC=BDB .∠CAB=∠DBAC .∠C=∠D D .BC=AD7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA8.已知a > b,则下列各式成立的是( )A. ac > bcB. ac 2> bc 2C. a+c > b+cD. a 2> b 29.不等式2(x –2)≤x –2的非负整数解的个数为( )A 、1B 、2C 、3D 、410.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A 、1<a ≤7B 、a ≤7C 、 a <1或a ≥7D 、a =711.到三角形三个顶点距离相等的点是三角形( )A .三条角平分线的交点B .三条高线所在直线的交点C .三边的垂直平分线的交点D .三条中线的交点12.下列命题的逆命题是真命题的是( )A.两个锐角分别相等的直角三角形全等B.如果00==b a 且,则0=abC.角平分线上的点到角两边的距离相等D.对顶角相等 13.已知c b a 、、是△ABC 的三边,且满足0)(24222222=++-+c c b a b a )(,那么△ABC 的形状是( ) A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形 二.填空题14.函数y=,自变量x的取值范围是__________.15.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为 .16.已知等腰三角形的一边长为5cm,另一边长为9cm,则它的周长为 .17.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD= .18.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为.19.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.20.不等式35)1(3-≥+xx的正整数解是______________.21.若不等式ax-1>2x+1的解集是x<-2,则a的值是________.22.如果不等式2x-m<0只有三个正整数解,则m的取值范围是.23.如图,在△ABC中,若AB=AC,BC =4cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长是14cm,则AB的长等于 cm.24.如图,点P是AOB∠的角平分线上一点,过点P作PC OA∥交OB于点C.若604AOB OC∠==,,则点P到OA的距离PD等于.25.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕顶点O逆时针旋转到△AOB处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.26.如图是矩形纸片ABCD.AB=8cm,BC=20cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为cm.三.解答题ADB CE第11题O CADP第12题27.求不等式21362x x x --≥+的最大整数解.28.解不等式:x -)14(21-x ≤2 , 把解集表示在数轴上,并求出它所有整数解的积.29.如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)30.如图,在△ABC 中,AB=AC ,作AD ⊥AB 交BC 的延长线于点D ,作AE ∥BD ,CE ⊥AC ,且AE ,CE 相交于点E ,求证:AD=CE .31.如图,已知△ABC 为等边三角形,D 为BC 延长线上的一点,CE 平分∠ACD ,CE=BD ,求证:△ADE 为等边三角形.32.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润不低于26%,那么售价至少定为每千克多少元?八下练习题2E DC B A 一.选择题1.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11 (B)8 (C)7 (D)54.已知bm am >,则下面结论中正确的是( )A.b a >B.b a <C.a b m m> D.2am ≥2bm 5.点P (x-1,x+1)不可能在 ( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 6.若2)3(a -=3-a ,则a 与3的大小关系是( )A.a <3B.a ≤3C.a >3D.a ≥37.如上图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的31,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm ,若铁钉总长度为6cm ,则a 的取值范围是( )A .a >1354B .1354<a ≤29C .a <29D .1354≤a <29 二.填空题8.等腰三角形的两边长分别是3和7,则其周长为______.9.若x 是非负数,则5231x -≤-的解集是______. 10.如果a 2x >a 2y (a ≠0).那么x ______y .11.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.12.如果不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .13.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集是______.14.设a ,b 是常数,不等式a x +b 1>0的解集为x <51,则关于x 的不等式bx -a >0的解集是______. 15.我们学习过很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)16.如图,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若B C E ∆ 的周长为50,则底边BC 的长为_________.17.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为 ,DE 的长为 .18.如图,在Rt ABC 中,∠ACB =90°,∠B =30°,BC =3.点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将B ∠沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为 .三.解答题 2(2x -3)<5(x -1). 10-3(x +6)≤1. 3[x -2(x -7)]≤4x第10题22531-->+x x 612131-≥--+y y y 21362x x x --≥+20.如图,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.21.如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.22.已知:如图,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE=AD ,△CDE 是等边三角形.求证:△ABC 是等边三角形.23.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上? 图23。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

北师大版八年级数学(下册)第二单元测试

北师大版八年级数学(下册)第二单元测试

北师大版八年级数学下册单元测试集锦第一章一元一次不等式(组) 一.选择题(每小题3分,共30分) 1.已知b a <,下列不等式中错误的是( )A .z b z a +<+B .c b c a ->-C .b a 22<D .b a 44->-2.若0<k ,则下列不等式中不能成立的是( )A .45-<-k kB .k k 56>C .k k ->-13D .96k k ->- 3.不等式53>-x 的解集是( ) A .35-<x B .35->x C .15-<x D .15>-x 4.不等式3312-≥-x x 的正整数解的个数是( )A .1个B .2个C .3个D .4个5.若3<a,则不等式a x a -3)3(<-的解集是( ) A .1>x B .1<x C .1->x D .1-<x6.下列说法①0=x 是012<-x 的解②31=x 不是013>-x 的解③012<+-x 的解集是2>x ④⎩⎨⎧>>21x x 的解集是1>x ,其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.如图,用不等式表示数轴上所示的解集,正确的是( )A .-<x .31≤<-x8.若不等式组⎩⎨⎧<<-a x x 312的解集是x<a ,则a 的取值围是( ) A .2<a B .2≤aC .2≥aD .无法确定 9.已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值围是( )A .2>xB .2<xC .2->xD . 2-<x10.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本( )本A .7B .6C .5D .4二.填空题11.用适当的符号表示:m 的2倍与n 的差是非负数: ;12.不等式538->-x x 的最大整数解是: ;13.若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号); 14.已知长度为xcm cm cm 3,5,4的三条线段可围成一个三角形,那么x 的取值围是: ;15.已知方程121-=+x kx 的根是正数,则k 的取值围是: ;16.某种商品进价150元,标价200元,但销量较小。

北师大版高二数学必修5不等式单元测试卷

高二(2)部数学不等式单元测试卷班级____姓名_____一.选择题:(每小题5分,共60分)1.下列命题中,错误的是( ).(A) a b b a <⇔> (B) c a c b a >⇒>>(C) bd ac d c b a >⇒>>, (D) d b c a d c b a +>+⇒>>,2. 不等式0)1)(1(>-+x x 的解集是( ).(A) }10|{<≤x x (B) {}1,0-≠<x x x (C) {}11<<-x x (D) {}1,1-≠<x x x3、若R c b a ∈,,,且b a >,则下列不等式一定成立的是( ) A .c b c a -≥+ B .bc ac > C .02>-ba c D .0)(2≥-cb a 4、函数)12lg(21)(-+-=x x x f 的定义域为( ) A .),21(+∞ B .)2,21( C .)1,21(D .)2,(-∞ 5、已知01<<-a ,则 ( ) A .a a a 2212.0>⎪⎭⎫ ⎝⎛> B .aa a ⎪⎭⎫ ⎝⎛>>212.02 C .a a a 22.021>>⎪⎭⎫ ⎝⎛ D .a a a 2.0212>⎪⎭⎫ ⎝⎛> 6、不等式21≥-x x 的解集为 ( ) A .)0,1[- B .),1[∞+- C .]1,(--∞ D .),0(]1,(∞+--∞7、已知正数x 、y 满足811x y+=,则2x y +的最小值是 ( ) A.18 B.16 C .8 D .108、下列命题中正确的是 ( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .当0>x ,21≥+xx C .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大9、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数 32z x y =+的最大值的变化范围是 ( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]10.不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 11.下列结论正确的是( ).(A )当ab b a b a 2≥+是正数时,, (B )当ba ab b a 11,0,<>>时 (C )当ab b a R b a ≥+∈222时,, (D )以上都正确12. 已知0<a ,01<<-b ,那么( ).(A)2ab ab a >> (B)a ab ab >>2 (C)2ab a ab >> (D)a ab ab >>2二.填空题:(每小题4分,共16分) 13.的解集为不等式03x 1-2x >+ . 14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 。

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。

北师大版五年级数学第一、二单元测试题题(两套)

2018北师大版五年级数学第一单元测试题(一)90分钟100分一、填空(20分)1.根据34×6=20.4.写出两道除法算式:()()2.就是16÷0.25时,先把被除数和除数的小数点同时向()移动()位,再按照整数除法的方法进行计算。

3.53×()=254.4 44.8÷()=324. 2.03×0,456的积是()位小数,积比第一个因数()。

(大“或小”)5.4.23×1.743的积保留整数是(),保留两位行驶是()。

6.138÷18的商可以记作(),它是一个()小数,保留三位小数约是()。

7 .26÷11的商用循环小数表示是(),精确到百分位是()。

8.一个小数的小数点向右移动一位,说得数比原数多24.66,原数是()。

9.根据商不变的规律填下面各数。

X k B 1 . c o m3.7成0.25=()÷2.5 0.28÷0.6=()÷60.154÷1.5=()÷15 0.3÷0.002=()÷2二、选择题。

(将正确答案的序号填在括号里)(7分)1. 42分=()小时A.0.42 B。

4.2 C 0.7 D。

0.072.与3.22÷1.4的得数相同的算式是()A.322÷14 B。

322÷144 C。

3220÷14 D。

32。

2÷1.43.循环小时0.203203.。

的小数部分第54位是()A .0 B.2 C.3 D.无法确定4.估一估,下面算式中结果大于1 的是()新课标第一网A.。

0.88÷12 B。

0.88÷1 C。

1÷0.88 D。

0.88×15.被除数和除数都不是小数,商()小数A.一定是B。

可能是C。

不可能是D。

无法确定6.两个数相除,商是0.32,把被除数和除数同时扩大10倍,商是()A.0.32 B。

北师大八年级数学下册《一元一次不等式与一次函数》单元测试题

初中数学试卷《一元一次不等式与一次函数》单元测试题一、选择题(每小题4分,共10小题,满分40分)1.直线y=-x+m与y=nx+4n(n=0)交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解是()A.-1 B.-5 C.-4 D.-3第1题图第2题图第3题图2.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<23.如图,直线y=kx+b交坐标轴于A(-3,0),B(0,5)两点,则不等式-kx+b<0的解集为()A.x>-3 B.x<-3 C.x>3 D.x<34.若函数y=kx-b的图象如图所示,则关于x的不等式k(x-3)-b>0的解集为()A、x<2B、x>2C、x<5D、x>5第4题图第5题图第6题图5.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A、x≤-2B、x≥-2C、x<-2D、x>-26.如图,直线y=kx+b经过A(1,2),B(-2,-1)两点,则不等式12x<kx+b<2的解集为()A.12<x<2 B.12<x<1 C.-2<x<1 D.-12<x<17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.38.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A、-1≤k<0B、1≤k≤3C、k≥1D、k≥3第7题图第8题图第9题图9.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A、x>0B、0<x<1C、1<x<2D、x>210.如图,直线y=-x+m与y=x+3的交点的横坐标为-2,则关于x的不等式-x+m>x+3>0的取值范围为()A、x>-2B、x<-2C、-3<x<-2D、-3<x<-1第10题图第11题图第12题图二、填空题(每小题4分,共8小题,满分32分)11.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.12.如图,函数y=-2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x>0的解集为.13.如图,直线y=x+b与y=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是.16.函数y1=-5x+12,y2=12x+1,使y1<y2成立的x的最小整数值是17.已知不等式-x+5>3x-3的解析集是x<2,则直线y=-x+5与y=3x-3的交点坐标是第13题图第14题图第15题图18.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是三、解答题(共4小题,满分48分)19.某电信运营商有两种手机卡,A类卡收费标准如下:无月租,每通话1分钟交费0.6元;B类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)分别写出A、B两类卡每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)一个用户这个月预交话费120元,按A、B两类卡收费标准分别可以通话多长时间?(3)若每月平均通话时间为100分钟,你选择哪类卡?(4)根据一个月的通话时间,你认为选择哪项业务更实惠?20.某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.21.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.22.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;② ;③ ;④ ;(2)如果点C 的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 .(7分)y y=k 1x+b 1 A C B Ox y=kx+b (第21题) 一次函数与方程的关系 一次函数与不等式的关系 (1)一次函数的解析式就是一个二元一次方程 (2)点B 的横坐标是方程①的解; (3)点C 的坐标()x y ,中的x y ,的值是方程组②的解. (1)函数y kx b =+的函数值y 大于0时,自变量x 的取值范围就是不等式③的解集; (2)函数y kx b =+的函数值y 小于0时,自变量x 的取值范围就是不等式④的解集.答案与解析一、选择题1.D.解:∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,∴关于x的不等式-x+m>nx+4n的解集为x<-2,∵y=nx+4n=0时,x=-4,∴nx+4n>0的解集是x>-4,∴-x+m>nx+4n>0的解集是-4<x<-2,∴关于x的不等式-x+m>nx+4n>0的整数解为-3,故选:D.2.C. 解:由图象可知,当x<1直线y1落在直线y2的下方时,使y1<y2的x的取值范围是:x<1.故选C.3. A.解:观察图象可知,当x>-3时,直线y=kx+b落在x轴的上方,即不等式kx+b>0的解集为x>-3,∵-kx-b<0∴kx+b>0,∴-kx-b<0解集为x>-3.故选:A.4.C.解∵一次函数y=kx-b经过点(2,0),∴2k-b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x-3)-b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选C.5. A.解:当x≤-2时,直线l1:y1=k1x+b1都在直线l2:y2=k2x的上方,即y1≥y2.故选A.6.C.解:根据图形可得,不等式12x<kx+b<2的解集为-2<x<1.故选C.7. D.解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.8.C.解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=-3k,∵-3≤a<0,∴-3≤-3k<0,解得:k≥1.故选C.9. C解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C10.【答案】C.【解析】∵直线y=-x+m与y=x+3的交点的横坐标为-2,∴关于x的不等式-x+m>x+3的解集为x<-2,∵y=x+3=0时,x=-3,∴x+3>0的解集是x>-3,∴-x+m>x+3>0的解集是-3<x<-2,故选C.二、填空题.11.【答案】x<1.【解析】根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,-2);即当x<1时,函数值y的范围是y<0.12.【答案】x>-32.【解析】∵函数y=-2x经过点A(m,3),∴-2m=3,解得:m=-32,则关于x的不等式kx+b+2x>0可以变形为kx+b>-2x,由图象得:kx+b>-2x的解集为x>-32.13.【答案】x>-1.【解析】当x>-1,函数y=x+b的图象在函数y=kx-1图象的上方,所以关于x的不等式x+b>kx-1的解集为x>-1.考点:一次函数与一元一次不等式14.【答案】x>32.∴2m=3,解得:m=32,∴A(32,3),∴不等式2x>ax+4的解集为x>32.15.【答案】①②③.【解析】∵一次函数的图象在一、二、四象限,∴y随x的增大而减小,故①正确;∴一此函数与y轴的交点在y轴正半轴,∴b>0,故②正确;∵由函数图象可知,当>2时,函数图象在y轴的负半轴,故y<0,故③正确.故填①②③.16.【答案】y1=-5x+12,y2=12x+1,【解析】解不等式-5x+12<12x+1,得x>-111.所以使y1<y2的最小整数是0.17.【答案】(2,3).【解析】已知不等式-x+5>3x-3的解集是x<2,则当x=2时,-x+5=3x-3;即当x=2时,函数y=-x+5与y=3x-3的函数值相等;因而直线y=-x+5与y=3x-3的交点坐标是:(2,3).18.【答案】x>-2.【解析】∵函数y=2x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式2x+b>ax-3的解集是x>-2.三、解答题.19.解:(1)y A=0.6x,y B=15+0.3x.(2)120=0.6x x=200; 120=15+0.3x x=350 可见选择B卡的通话时间长些.(3)当x=100时,y A=0.6×100=60,y B=15+0.3×100=45可见选B卡好.(4)y A=y B,0.6x=15+0.3x,x=50,当通话时间为50时 A,B卡都可以,当通话<50时,应选择A卡,当通话>50时,选择B卡.20. (1)y甲=x+500,y乙=2x;(2)当y甲>y乙时,即x+500>2x,则x<500,当y甲=y乙时,即x+500=2x,则x=500,当y甲<y乙时,即x+500<2x,则x>500,合算,当印制学生手册数量等于500本时选择两厂费用都一样.21.(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得 5323123141x y x y +=+=⎧⎨⎩, 解得3027x y ==⎧⎨⎩, 答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x ≤20时,y=30x ;当x >20时,y=20×30+(x-20)×30×0.7=21x+180;(3)设购进玩具a 件(a >20),则乙种玩具消费27a 元;当27a=21a+180,则a=30所以当购进玩具正好30件,选择购其中一种即可;当27a >21a+180,则a >30所以当购进玩具超过30件,选择购甲种玩具省钱;当27a <21a+180,则a <30所以当购进玩具少于30件,多于20件,选择购乙种玩具省钱.22. 解:(1)①kx+b=0.②11y kx b y k x b =+=+⎧⎨⎩.③kx+b >0.④kx+b <0; (2)x ≤1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学E 单元 不等式E1 不等式的概念与性质10.H6、E1[2015·重庆卷] 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)10.A [解析] 由题意得A (a ,0),不妨取Bc ,b 2a ,Cc ,-b 2a ,由双曲线的对称性知D在x 轴上,设D (x 0,0),由BD ⊥AC 得b 2a -0c -x 0·b 2a a -c =-1,解得c -x 0=b 4a 2(c -a ),由题可知c -x 0=b 4a 2(c -a )<a +a 2+b 2=a +c ,所以b 4a 2<c 2-a 2=b 2⇒b 2a 2<1⇒0<b a <1.因为双曲线渐近线的斜率为±ba,所以渐近线斜率的取值范围是(-1,0)∪(0,1).22.D3、E1、E7[2015·重庆卷] 在数列{a n }中,a 1=3,a n +1a n +λa n +1+μa 2n =0(n ∈N +). (1)若λ=0,μ=-2,求数列{a n }的通项公式;(2)若λ=1k 0(k 0∈N +,k 0≥2),μ=-1,证明:2+13k 0+1<ak 0+1<2+12k 0+1.22.解:(1)由λ=0,μ=-2,有a n +1a n =2a 2n (n ∈N +).若存在某个n 0∈N +,使得an 0=0,则由上述递推公式易得an 0-1=0.重复上述过程可得a 1=0,与a 1=3矛盾,所以对任意n ∈N +,a n ≠0.从而an +1=2a n (n ∈N +),即{a n }是一个公比q =2的等比数列.故a n =a 1q n -1=3×2n -1.(2)证明:因为λ=1k 0,μ=-1,所以数列{a n }的递推关系式即为a n +1a n +1k 0a n +1-a 2n =0,变形为a n +1a n +1k 0=a 2n (n ∈N +). 由上式及a 1=3>0,归纳可得 3=a 1>a 2>...>a n >a n +1> 0因为a n +1=a 2na n +1k 0=a 2n-1k 20+1k 20a n +1k 0=a n -1k 0+1k 0·1k 0a n +1,所以ak 0+1=a 1+(a 2-a 1)+…+(ak 0+1-ak 0)=a 1-k 0·1k 0+1k 0·1k 0a 1+1+1k 0a 2+1+…+1k 0ak 0+1>2+1k 0·13k 0+1+13k 0+1+…+13k 0+1k个=2+13k 0+1.另一方面,由上已证的不等式知a 1>a 2>…>ak 0>ak 0+1>2,得ak 0+1=a 1-k 0·1k 0+1k 0·1k 0a 1+1+1k 0a 2+1+…+1k 0ak 0+1<2+1k 0·12k 0+1+12k 0+1+…+12k 0+1k 0个=2+12k 0+1. 综上,2+13k 0+1<ak 0+1<2+12k 0+1.E2 绝对值不等式的解法 4.A2、E2、E3[2015·天津卷] 设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.A [解析] 由|x -2|<1,解得1<x <3;由x 2+x -2>0,解得x >1或x <-2.由1<x <3可以推出x >1或x <-2,反之,不成立,所以“|x -2|<1”是“x 2+x -2>0 ”的充分不必要条件.故选A.E3 一元二次不等式的解法 7.E3[2015·江苏卷] 不等式2x 2-x <4的解集为________.7.{x |-1<x <2}(或(-1,2)) [解析] 因为2x 2-x <4=22,所以x 2-x <2,解得-1<x <2,故不等式的解集为(-1,2).4.A2、E2、E3[2015·天津卷] 设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.A [解析] 由|x -2|<1,解得1<x <3;由x 2+x -2>0,解得x >1或x <-2.由1<x <3可以推出x >1或x <-2,反之,不成立,所以“|x -2|<1”是“x 2+x -2>0 ”的充分不必要条件.故选A.E4 简单的一元高次不等式的解法 E5 简单的线性规划问题6.E5[2015·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4 B.235C .6 D.3156.B [解析] 画出约束条件表示的可行域如图所示,易知目标函数在点A 处取得最小值,A 点的坐标为⎝⎛⎭⎫1,45,所以z min =3+2×45=235. 20.K6、K8、K5、E5[2015·湖北卷] 某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.20.解:(1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.① 目标函数z =1000x +1200y.(1)(2)(3)当W =12时,①表示的平面区域如图(1),三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).将z =1000x +1200y 变形为y =-56x +z1200,当x =2.4,y =4.8时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =2.4×1000+4.8×1200=8160.当W =15时,①表示的平面区域如图(2),三个顶点分别为A (0,0),B (3,6),C (7.5,0).将z =1000x +1200y 变形为y =-56x +z1200,当x =3,y =6时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =3×1000+6×1200=10 200.当W =18时,①表示的平面区域如图(3),四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).将z =1000x +1200y 变形为y =-56x +z1200,当x =6,y =4时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =6×1000+4×1200=10 800. 故最大获利Z 的分布列为因此,E (Z )=8160×0.3+10 200×0.5+10 800×0.2=9708.(2)由(1)知,一天最大获利超过10 000元的概率P 1=P (Z >10 000)=0.5+0.2=0.7, 由二项分布,3天中至少有1天最大获利超过10 000元的概率为 P =1-(1-P 1)3=1-0.33=0.973.14.E5[2015·全国卷Ⅱ] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.14.32[解析] 画出可行域如图中阴影部分所示,目标函数可化为y =-x +z ,所以直线z =x +y 过点B ⎝⎛⎭⎫1,12时,z 取得最大值32. 15.E5[2015·全国卷Ⅰ] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.15.3 [解析] yx的几何意义为点(x ,y )与坐标原点连线的斜率.画出可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得C (1,3), 由题易知可行域上的C 点与坐标原点连线的斜率最大,且最大值为3. 2.E5[2015·北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0, 则z =x +2y 的最大值为( )A .0B .1 C.32D .22.D [解析] 画出可行域,如图中阴影部分所示.目标函数z =x +2y 可变为y =-12x+12z ,当函数y =-12x +12z 过点C (0,1)时,z 取得最大值2.5.E5[2015·福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A .-52B .-2C .-32D .25.A [解析] 可行域如图所示,当直线y =2x -z 过点A ⎝⎛⎭⎫-1,12时,z 取得最小值,且z min =-52.4.E5[2015·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为( )A .-7B .-1C .1D .24.A [解析] 画出可行域,平移直线y =3x -z ,在直线x +y =-1与y =1的交点A (-2,1)处z 取最小值,故z min =3×(-2)-1=-7.6.E5[2015·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-36.B [解析] 可行域如图所示,当a >0时,直线y =-ax +z 的斜率为负,目标函数在点A (1,1)或B (2,0)处取得最大值.当在A 处取得最大值时,⎩⎪⎨⎪⎧-1<-a <0,a +1=4,不等式组无解;当在B 处取得最大值时,⎩⎪⎨⎪⎧-a <-1,2a =4,解得a =2. 当a <0时,目标函数只能在点A (1,1)处取得最大值4,此时a =3(舍去).故a 的值为2. 10.E5[2015·陕西卷] 某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元 D .18万元10.D [解析] 设该企业每天生产甲种产品x 吨、乙种产品y 吨,则x ,y 需满足约束条件⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0, 利润z =3x +4y .约束条件表示的平面区域是以(0,0),(4,0),(2,3),(0,4)为顶点的四边形及其内部,把各点坐标代入目标函数检验可知,目标函数在点(2,3)处取得最大值3×2+4×3=18,即该企业每天的最大利润为18万元.2.E5[2015·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .402.C [解析] 画出约束条件表示的可行域如图所示,目标函数可变形为y =-16x +16z .当直线y =-16x +16z 经过点A (0,3)时,z 取得最大值,z max =0+6×3=18.14.E5[2015·浙江卷] 若实数x x +y -2|+|6-x -3y |的最小值是________.14.3 [解析] 当x ,y 满足x 2+y 2≤1时,6-x -3y >0.由⎩⎪⎨⎪⎧2x +y -2=0,x 2+y 2=1 ⇒5x 2-8x +3=0⇒x =35或x =1,直线2x +y -2=0把单位圆分成如图所示的两部分.①当(x ,y )在阴影部分内时,2x +y -2≥0,则原式=2x +y -2+6-x -3y =x -2y +4,由线性规划可知,经过A ⎝⎛⎭⎫35,45时,原式取得最小值3.②当(x ,y )在另一部分内时,2x +y -2≤0,则原式=-2x -y +2+6-x -3y =-3x -4y+8,由线性规划可知,经过A ⎝⎛⎭⎫35,45时,原式取得最小值3.综上,原式的最小值为3.E6 2a b+ 9.B7、E6[2015·陕西卷] 设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q9.B [解析] r =12(f (a )+f (b ))=12ln(ab )=ln ab =p .因为b >a >0,所以a +b 2>ab ,又函数f (x )在(0,+∞)上单调递增,所以q >p =r ,故选B.14.J3,E6[2014·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小9.B12,E6[2015·四川卷] 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( ) A .16 B .18 C .25 D.8129.B [解析] (1)当m =2时,f (x )=(n -8)x +1, 则0≤n <8,所以0≤mn <16.(2)m >2时,抛物线的对称轴为x =-n -8m -2.根据题意得-n -8m -2≥2,即2m +n ≤12,所以2m ·n ≤2m +n2≤6, 所以mn ≤18(当且仅当m =3,n =6时取等号). (3)当m <2时,由题意得-n -8m -2≤12,即2n +m ≤18,所以2m ·n ≤2m +n2≤9,所以mn ≤812,由2n +m =18,且2n =m ,得m =9(舍去).要使得mn 取得最大值,应有2n +m =18(m <2,n >8), 所以mn =(18-2n )n <(18-2×8)×8=16. 综上所述,mn 的最大值为18. 14.F4、E6[2015·天津卷] 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC=60°.动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.14.2918 [解析] 根据题意,可知DC =1,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+19λAB →·DC →+λBC →·AD →+19BC →·DC →=1+29λ+λ2-118≥1+219-118=2918,当且仅当λ=23时,等号成立.E7 不等式的证明方法22.B3、M3、E7[2015·湖北卷] 已知数列{a n }的各项均为正数,b n =n ⎝⎛⎭⎫1+1n na n (n ∈N +),e 为自然对数的底数.(1)求函数f (x )=1+x -e x的单调区间,并比较⎝⎛⎭⎫1+1n n与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b n a 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n ,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .22.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x . 当f ′(x )>0,即x <0时,f (x )单调递增;当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x . 令x =1n ,得1+1n <e 1n ,即⎝⎛⎭⎫1+1n n <e.①(2)b 1a 1=1×⎝⎛⎭⎫1+111=1+1=2; b 1b 2a 1a 2=b 1a 1·b 2a 2=2×2×⎝⎛⎭⎫1+122=(2+1)2=32;b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32×3×⎝⎛⎭⎫1+133=(3+1)3=43.由此推测:b 1b 2…b na 1a 2…a n=(n +1)n .②下面用数学归纳法证明②.(i)当n =1时,左边=右边=2,②成立. (ii)假设当n =k 时,②成立,即b 1b 2…b ka 1a 2…a k =(k +1)k .当n =k +1时,b k +1=(k +1)⎝⎛⎭⎫1+1k +1k +1a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)·⎝⎛⎭⎫1+1k +1k +1=(k +2)k +1.所以当n =k +1时,②也成立.根据(i)(ii),可知②对一切正整数n 都成立. (3)证明:由c n 的定义,②,算术-几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+…+(a 1a 2…a n )1n=(b 1)112+(b 1b 2)123+(b 1b 2b 3)134+…+(b 1b 2…b n )1nn +1≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n (n +1) =b 1⎣⎡⎦⎤11×2+12×3+…+1n (n +1)+b 2⎣⎡12×3+⎦⎤13×4+…+1n (n +1)+…+b n ·1n (n +1)=b 1⎝⎛⎭⎫1-1n +1+b 2⎝⎛⎭⎫12-1n +1+…+b n ⎝⎛⎭⎫1n -1n +1<b 11+b 22+…+b nn =⎝⎛⎭⎫1+111a 1+⎝⎛⎭⎫1+122a 2+…+⎝⎛⎭⎫1+1n na n <e a 1+e a 2+…+e a n =e S n ,即T n <e S n .18.B3、B5、E7[2015·浙江卷] 已知函数f (x )=x 2+ax +b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[-1,1]上的最大值.(1)证明:当|a |≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a |+|b |的最大值.18.解:(1)证明:由f (x )=⎝⎛⎭⎫x +a 22+b -a 24,得f (x )的图像的对称轴为直线x =-a 2. 由|a |≥2,得⎪⎪⎪⎪-a 2≥1,故f (x )在[-1,1]上单调,所以M (a ,b )=max{|f (1)|,|f (-1)|}. 当a ≥2时,由f (1)-f (-1)=2a ≥4,得max{f (1),-f (-1)}≥2,即M (a ,b )≥2.当a ≤-2时,由f (-1)-f (1)=-2a ≥4,得max{f (-1),-f (1)}≥2,即M (a ,b )≥2.综上,当|a |≥2时,M (a ,b )≥2.(2)由M (a ,b )≤2得,|1+a +b |=|f (1)|≤2,|1-a +b |=|f (-1)|≤2,故|a +b |≤3,|a -b |≤3,由|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,得 |a |+|b |≤3.当a =2,b =-1时,|a |+|b |=3,且|x 2+2x -1|在[-1,1]上的最大值为2,即M (2,-1)=2.所以|a |+|b |的最大值为3.22.D3、E1、E7[2015·重庆卷] 在数列{a n }中,a 1=3,a n +1a n +λa n +1+μa 2n =0(n ∈N +).(1)若λ=0,μ=-2,求数列{a n }的通项公式;(2)若λ=1k 0(k 0∈N +,k 0≥2),μ=-1,证明:2+13k 0+1<ak 0+1<2+12k 0+1. 22.解:(1)由λ=0,μ=-2,有a n +1a n =2a 2n (n ∈N +).若存在某个n 0∈N +,使得an 0=0,则由上述递推公式易得an 0-1=0.重复上述过程可得a 1=0,与a 1=3矛盾,所以对任意n ∈N +,a n ≠0.从而an +1=2a n (n ∈N +),即{a n }是一个公比q =2的等比数列.故a n =a 1q n -1=3×2n -1.(2)证明:因为λ=1k 0,μ=-1,所以数列{a n }的递推关系式即为 a n +1a n +1k 0a n +1-a 2n =0,变形为a n +1a n +1k 0=a 2n (n ∈N +). 由上式及a 1=3>0,归纳可得3=a 1>a 2>...>a n >a n +1> 0因为a n +1=a 2n a n +1k 0=a 2n -1k 20+1k 20a n +1k 0=a n -1k 0+1k 0·1k 0a n +1,所以 ak 0+1=a 1+(a 2-a 1)+…+(ak 0+1-ak 0)=a 1-k 0·1k 0+1k 0·1k 0a 1+1+1k 0a 2+1+…+1k 0ak 0+1>2+1k 0·13k 0+1+13k 0+1+…+13k 0+1k 0个=2+13k 0+1. 另一方面,由上已证的不等式知a 1>a 2>…>ak 0>ak 0+1>2,得ak 0+1=a 1-k 0·1k 0+1k 0·1k 0a 1+1+1k 0a 2+1+…+1k 0ak 0+1<2+1k 0·12k 0+1+12k 0+1+…+12k 0+1k 0个=2+12k 0+1. 综上,2+13k 0+1<ak 0+1<2+12k 0+1.E8 不等式的综合应用E9 单元综合8.[2015·大同质量检测] 若一元二次不等式ax 2+2x +b >0(a >b )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-1a ,则a 2+b 2a -b的最小值是( ) A .2 2 B. 2C .2D .18.A [解析] 由一元二次不等式ax 2+2x +b >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-1a ,得⎩⎪⎨⎪⎧Δ=4-4ab =0且a >0,a ×1a 2-2a+b =0,所以ab =1且a >0.又已知a >b ,所以a 2+b 2a -b =(a -b )2+2ab a -b =(a -b )+2a -b ≥22,当且仅当a -b =2a -b 时取等号.所以a 2+b 2a -b的最小值是2 2. 3.[2015·浙江五校联考] 设a ,b 是实数,则“a >b >1”是“a +1a >b +1b”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.A [解析] 因为a +1a -⎝⎛⎭⎫b +1b =()a -b ()ab -1ab ,所以若a >b >1,则a +1a -⎝⎛⎭⎫b +1b =()a -b ()ab -1ab >0,故充分性成立;当a =12,b =23时,显然不等式a +1a >b +1b成立,但a >b >1不成立,所以必要性不成立.故选A.5.[2015·南昌调研] 若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为( ) A .16B .25C .36D .495.A [解析] 因为a >0,b >0,1a +1b =1,所以a +b =ab ,则4a -1+16b -1=4(b -1)+16(a -1)(a -1)(b -1)=4b +16a -20ab -(a +b )+1=4b +16a -20.又4b +16a =4(b +4a )1a +1b =20+4b a +4a b ≥20+4×2×b a ·4a b =36,当且仅当b a =4a b 且1a+1b =1,即a =32,b =3时取等号,所以4a -1+16b -1≥36-20=16. 9.[2015·浙江重点中学协作体适应性测试] 已知点P (x ,y ) 满足条件⎩⎪⎨⎪⎧x ≥0,y ≤x ,2x +y +k ≤0(k 为常数),若z =x +3y 的最大值为8,则k =________.9.-6 [解析] 画出x ,y联立⎩⎪⎨⎪⎧y =x ,2x +y +k =0,得⎩⎨⎧x =-k 3,y =-k 3,即A ⎝⎛⎭⎫-k 3,k 3. 因此,目标函数z 在点A 处取得最大值,所以-k 3+3×⎝⎛⎭⎫-k 3=8,所以k =-6. 12.[2015·嘉兴桐乡第一中学调研] 已知存在实数x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0,x 2+(y -1)2=R 2(R >0), 则R 的最小值是________.12.2 [解析] 根据约束条件⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0作出可行域如图中阴影部分所示.由题知图中阴影部分与以(0,1)为圆心、R 为半径的圆有交点,当圆与图中阴影部分相切时R 最小,由图易知,R 的最小值为2.。

相关文档
最新文档