2020高考数学二轮复习寒假作业二十二小题限时保分练__长沙一模试题节选注意命题点分布文
2020年湖南省长沙市高考数学一模试卷(文科)含答案解析

2020年湖南省长沙市高考数学一模试卷(文科)一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣12.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱 B.圆锥 C.棱锥 D.棱柱4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+16.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数的单调递增区间是()A.B. C.D.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣211.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.912.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为_______.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2020=_______.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.20.已知椭圆C1: +=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.2020年湖南省长沙市高考数学一模试卷(文科)参考答案与试题解析一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣1【考点】复数的基本概念.【分析】直接由复数的基本概念得答案.【解答】解:∵复数3﹣i,∴复数3﹣i的虚部是:﹣1.故选:D.2.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]【考点】并集及其运算.【分析】先化简集合A,B,再根据并集的定义即可求出.【解答】解:集合A={x|x+2>0}=(﹣2,+∞),B={y|y=sinx,x∈R}=[﹣1,1],则A∪B=(﹣2,+∞),故选:A.3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱 B.圆锥 C.棱锥 D.棱柱【考点】由三视图求面积、体积.【分析】由于圆锥的三视图中一定不会出现正方形,即可得出结论.【解答】解:圆锥的三视图中一定不会出现正方形,∴该空间几何体不可能是圆锥.故选:B.4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的平行的条件以及两角和的余弦公式即可判断.【解答】解:向量=(cosα,sinβ),=(sinα,cosβ),若∥,∴cosαcosβ﹣sinαsinβ=0,即cos(α+β)=0,∴α+β=kπ+,k∈Z,对于A:α+β=0,不符合,对于B,α+β=π,不符合,对于C:α+β=﹣,符合,对于D,α+β=,不符合,故选:C.5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+1【考点】数列的概念及简单表示法.【分析】令n=1,2,3,4分别代入验证:即可得出答案.【解答】解:令n=1,2,3,4分别代入验证:可知C:a3=﹣2,因此不成立.故选:C.6.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)【考点】函数的值.【分析】由f(x+1)=﹣f(x),得到函数的周期是2,根据分段函数的表达式结合函数的周期性进行求解即可.【解答】解:由f(x+1)=﹣f(x),得f(x+2)=﹣f(x+1)=f(x),则函数的周期是2,则f(2.5)=f(2+0.5)=f(0.5)=﹣1,f(f(2.5))=f(﹣1)=f(﹣1+2)=f(1)=﹣1f(f(1.5))=f(f(2﹣0.5))=f(f(﹣0.5))=f(1)=﹣1,f(2)=f(0)=1,即列函数值为1的f(2),故选:D.7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响【考点】独立性检验的应用.【分析】根据观测值K2,对照数表,即可得出正确的结论.【解答】解:因为7.879<K2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响.故选:A.8.函数的单调递增区间是()A.B. C.D.【考点】复合三角函数的单调性.【分析】由2kπ﹣≤+≤2kπ+(k∈Z)与x∈[﹣2π,2π]即可求得答案.【解答】解:y=sin(+)的单调递增区间由2kπ﹣≤+≤2kπ+(k∈Z)得:4kπ﹣≤x≤4kπ+(k∈Z),∵x∈[﹣2π,2π],∴﹣≤x≤.即y=sin(+)的单调递增区间为[﹣,].故选A.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y【考点】直线与圆的位置关系.【分析】设动点P(x,y),由已知得|x+1|=﹣1,由此能求出点P的轨迹方程.【解答】解:设动点P(x,y),∵动点P到直线x=﹣1的距离等于它到圆:(x﹣2)2+y2=1的点的最小距离,∴|x+1|=﹣1,化简得:6x﹣2+2|x+1|=y2,当x≥﹣1时,y2=8x,当x<﹣1时,y2=4x﹣4<﹣8,不合题意.∴点P的轨迹方程为:y2=8x.故选:A.10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣2【考点】简单线性规划;对数函数的图象与性质.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:由题意得,作出不等式组对应的平面区域如图:设z=x﹣y,由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z 最大,最大为z max=2﹣0=2当直线经过点A(0,2)时,此时直线y=x﹣z截距最大,z最小.此时z min=0﹣2=﹣2.故选:D.11.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.9【考点】程序框图.【分析】模拟执行程序,可得此程序框图的功能是计算并输出S=+的值,结合选项,只有当S的值为0.7时,n不是正整数,由此得解.【解答】解:模拟执行程序,可得此程序框图执行的是输入一个正整数n,求+的值S,并输出S,由于S=+=1+…+﹣=1﹣=,令S=0.7,解得n=,不是正整数,而n分别输入2,3,8时,可分别输出0.75,0.8,0.9.故选:A.12.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)【考点】命题的真假判断与应用.【分析】根据全称命题和特称命题的定义进行判断即可.【解答】解:设h(x)=f(x)﹣g(x),则h(x)=e x﹣x﹣1,则h′(x)=e x﹣1,当x<0时,h′(x)<0,h(x)单调递减,当x>0时,h′(x)>0,则h(x)单调递增,即当x=0时,函数h(x)取得极小值同时也是最小值h(0)=0,即h(x)≥0,即∀x∈R,f(x)>g(x)不一定成立,故A是假命题,故选:A二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为.【考点】空间两点间的距离公式.【分析】根据两点间的距离公式,进行计算即可.【解答】解:空间直角坐标系中,点A(1,0,1),B(﹣1,1,2),所以线段AB的长度为|AB|==.故答案为:.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2020=2020.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d.∵S3=2a3,S5=15,∴d=2(a1+2d),d=15,解得a1=d=1.则a2020=1+×1=2020.故答案为:2020.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.【考点】正弦定理.【分析】利用正弦定理得出a,b,c和外接圆半径R的关系,根据周长列出方程解出R.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为4.【考点】双曲线的简单性质.【分析】根据向量数量积的定义结合双曲线的性质进行求解即可.【解答】解:由向量数量积的定义知•即向量在向量上的投影||模长的乘积,故求|•|的最小值,即求在x轴上的投影的绝对值的最小值,由双曲线的图象可知|•|的最小值为4,故答案为:4三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.【考点】三角函数中的恒等变换应用;弧度制的应用;三角函数的最值.【分析】(1)由面积公式即可得到S与θ的函数关系.(2)对三角函数化简,由θ的范围,得到S的最大值.【解答】解:(1)∵S=S△OPC+S△OQC=OP•0Csin∠POC+OQ•OCsin∠QOC=2sinθ+2sin(﹣θ)(θ∈(0,))(2)由(1)知,S=2sinθ+2sin(﹣θ)=sinθ+cosθ=2sin(θ+)∵θ∈(0,),∴θ+∈(,)∴当θ+=,即θ=时,S最大,为2.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由茎叶图可得样本中空气质量优良的天数,可得概率,用总天数乘以概率可得;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,列举可得总的基本事件共15个,其中空气质量等级恰好不同有9个,由概率公式可得的.【解答】解:(1)由茎叶图可发现样本中空气质量优的天数为1,空气质量为良的天数为3,故空气质量优良的概率为=,故利用该样本估计该地本月空气质量优良的天数为30×=12;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,则从中随机抽取2天的所有可能结果为:(a,b)(a,c)(a,d)(a,A)(A,α)(b,c)(b,d)(b,A)(b,α)(c,d)(c,A)(c,α)(d,A)(d,α)(A,α)共15个,其中空气质量等级恰好不同有(a,A)(A,α)(b,A)(b,α)(c,A)(c,α)(d,A)(d,α)(A,α)共9个,该两天的空气质量等级恰好不同的概率P==19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)由平面BDEF⊥平面ABCD得FB⊥平面ABCD,故FB⊥AB,又AB⊥BC,于是AB⊥平面FBCG,即AB为棱锥A﹣FCG的高;(2)建立空间坐标系,分别求出平面AEF和平面EFG的法向量,证明他们的法向量垂直即可.【解答】解:(1)∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,FB⊥BD,FB ⊂平面BDEF,∴FB⊥平面ABCD,∵AB⊂平面ABCD,∴AB⊥FB,又AB⊥BC,∴AB⊥平面BCGF,===.∴V A﹣FGC(2)以B为原点,AB,BC,BF为坐标轴建立空间直角坐标系,如图:则A(﹣2,0,0),E(﹣2,2,2),F(0,0,2),G(0,2,1),∴=(0,2,2),=(2,﹣2,0),=(0,2,﹣1).设平面AEF的法向量为=(x,y,z),平面EFG的法向量为=(a,b,c),则,,即,,令z=1得=(﹣1,﹣1,1),令c=1得=(,,1).∴=﹣=0.∴,∴平面AEF⊥平面EFG.20.已知椭圆C1: +=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由a>b,可设顶点(a,0)到直线y=x的距离为,又顶点(0,b)到直线y=x的距离为,运用点到直线的距离公式,计算可得a=2,b=1,进而得到椭圆方程;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,设A(x1,y1),B(x2,y2),运用韦达定理和判别式大于0,以及直径所对的圆周角为直角,由向量垂直的条件:数量积为0,化简整理,可得t,进而得到所求直线l的方程.【解答】解:(1)由a>b,可设顶点(a,0)到直线y=x的距离为,可得=,即a=2,又顶点(0,b)到直线y=x的距离为,可得=,即b=1,则椭圆方程为+y2=1;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,可得5x2+8tx+4t2﹣4=0,设A(x1,y1),B(x2,y2),即有△=64t2﹣20(4t2﹣4)>0,解得﹣<t<,且t≠0,x1+x2=﹣,x1x2=,y1y2=(x1+t)(x2+t)=x1x2+t2+t(x1+x2)=+t2﹣=,以AB为直径的圆恰好过坐标原点,可得OA⊥OB,即有•=0,即x1x2+y1y2=0,即为+=0,解得t=±,满足﹣<t<,且t≠0,则直线l的方程为y=x±.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出导数,由题意可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,求出右边函数的值域,即可得到a的范围;(2)不存在直线l与f(x)的图象有两个不同的切点.假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,运用导数和函数的解析式,化简整理,即可得到矛盾.【解答】解:(1)函数f(x)=x2+的导数为f′(x)=2x﹣=,由f(x)在(0,+∞)上单调递增,可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,由2x3在(0,+∞)上递增,可得2x3的值域为(0,+∞),则a≤0,即有a的取值范围为(﹣∞,0];(2)不存在直线l与f(x)的图象有两个不同的切点.证明:假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,由f′(x1)=f′(x2),可得2x1﹣=2x2﹣,即有2(x1﹣x2)=a•,显然x1+x2≠0,x1﹣x2≠0,即有a=﹣,而﹣f′(x1)=﹣2x1+=x1+x2﹣﹣2x1+=x2﹣x1+﹣=﹣≠0,即f′(x1)=f′(x2)≠,故不存在直线l与f(x)的图象有两个不同的切点.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.【考点】与圆有关的比例线段;弦切角.【分析】(1)证明:直线AC平分∠DAB,只要证明∠DAC=∠BAC,利用平行线的性质及等弧对等角即可;(2)作DE⊥AB交AC于E,证明:△ADE∽△ACD,即可证明CD2=AE•AC.【解答】证明:(1)∵CD∥AB,∴∠DCA=∠BAC,∵=,∴∠DAC=∠DCA,∴∠DAC=∠BAC,∴直线AC平分∠DAB;(2)∵DE⊥AB,∴∠ADE+∠DAB=90°,∵AB为直径,∴∠DBA+∠DAB=90°,∴∠ADE=∠ABD,∵∠ABD=∠DCA,∴∠ADE=∠ACD,∴△ADE∽△ACD,∴AD2=AE•AC,∵AD=DC,∴CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程可得直角坐标方程.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).分别代入C1的极坐标方程即可得出.【解答】解:(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程ρ2﹣4ρcosθ+3=0,θ∈[0,2π],可得:x2+y2﹣4x+3=0,配方为:(x﹣2)2+y2=1.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).将代入C1可得:ρ2﹣2ρ+3=0,解得ρ=.将代入C1可得:ρ2+2ρ+3=0,解得ρ=﹣,舍去.故C1与C2的公共点的极坐标为.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.【考点】绝对值三角不等式.【分析】(1)利用和的余弦、正弦公式,结合三角不等式,即可证明结论;(2)由(1)可得|cos[α+(β+γ]=|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,即可证明结论.【解答】证明:(1)|cos(α+β)|=|cosαcosβ﹣sinαsinβ|≤|cosαcosβ|+|sinαsinβ|≤|cosα|+|sinβ|;|sin(α+β)|=|sinαcosβ﹣cosαsinβ|≤|sinαcosβ|+|cosαsinβ|≤|cosα|+|cosβ|.(2)由(1)可得|cos[α+(β+γ)]≤|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,∵α+β+γ=0,∴|cos[α+β+γ]=1∴|cosα|+|cosβ|+|cosγ|≥1.2020年9月12日。
【数学】湖南省长沙市2020届高三统一模拟考试文科数学试卷有答案

+3= 0
②,
解得 x1 =1, x2 = 4 ,∴ BF = 5 ,故选 D。
12.A
解析:由已知Q x2 > x1 > 0,∴ x2 − x1 > 0 ,
∴
x1
ln
x2 x2
− −
x2 x1
ln
x1
<
2 等价于
x1
ln
x2
−
x2
ln
x1
<
2( x2
−
x1 )
,
即 x1 ln x2 + 2x1 < x2 ln x1 + 2x2 ,
(Ⅱ)设菱形 BB1C1C 的边长为 x ,由四边形 BB1C1C 是菱形,∠B1BC = 600 ,得 ΔB1BC
是等边三角形,则 B1C = x ,由(1)知 AO ⊥ B1C ,又 O 是 B1C 的中点, ∠B1 AC = 60Ο .
∴ΔAB1C 是等边三角形,则 AC = AB1 = B1C = x ,
i =1 n
xi zi − nxz
xi2
−
2
nx
=
47.64 − 6 × 4.5 × 2 139 − 6 × 4.52
= − 6.36 17.5
≈ −0.36 ,
i =1
∧
^
∴a = z − b x = 2 + 0.36 × 4.5 = 3.62 ,
^
∴z 关于 x 的线性回归方程是 z = −0.36x + 3.62 ,
在 RtΔACO 中, AO = AC2 − CO2 = 3 x , 2
∴VA− BCC1
=
1 3 SΔBCC1 AO
2020届高考数学大二轮刷题首选卷理数文档第一部分 考点三 复数

复数考点三一、选择题在复平2i,则复数z)已知i是虚数单位,复数i·z=1-(2019·1.湖南衡阳三模)(面内对应的点位于.第二象限BA.第一象限.第四象限DC.第三象限C答案1-2i,i·解析∵复数z=,-i,∴-i·i·z=-i(1-2i)z=-2C. 位于第三象限.故选,-1)则复数z在复平面内对应的点(-2i2+) =5月三模)设复数z 满足i,则|z|=((2019·2.山东潍坊z5 .A.1 B5 3 .D.CB答案i2+i2+2i2,故选=5,∴+=解析∵=i,∴z=+1=1=1-2i|z|4=1+2 iiziB.1z+) 则下列说法正确的是)3.(2019·安徽芜湖5月模拟设复数z满足=i,(z1i 的虚部为-.为纯虚数z BzA.2211-D.z-C.z=i ||=222D答案11121-+z=-,的虚部为-z,||,i-=-z,z1z解析∵+=i∴∴z=复数222221D.,故选i2,z1=i|z|满足设复数)全国卷Ⅰ.4(2019·z-,)y,(在复平面内对应的点为x)(则.22221 1)=+y1 B.(A.(x+1)x+y-=22221y+1)=D.x.x+(y-1)1 =+(CC答案i. y=解析由已知条件,可得zx+-i|=1,y-∵|zi|=1,∴|x+i22C. =1.∴x 故选+(y-1)2i|+|1) 5.复数z)的共轭复数是=((i为虚数单位i1+i3-i+3 .A.B225555iD-.C.+i 2222C答案?i15?-|1+2i|55555-故+,∴z=i.=由题意,得解析z===i-22222i+11+iC.选a+i(a∈zi6.已知为虚数单位,若复数=R)的实部与虚部互为相反数,1-2i)则a=(B5 .-A.-151D.-C.-33D答案a?1+2i?2a+5aaa解析z=+i=+i=+i,∵复数z=+i(a∈R)552i?1-2i??1+1-2i?2i1-的实部与虚部互为相反数,2a+55a∴-=,解得a=-.故选D.3557.若复数z,z在复平面内的对应点关于虚轴对称,且z=2+i,i为虚数单112位,则zz=()21A.-5 B.5i-4.-Di+4.-C.答案A解析因为z=2+i在复平面内的对应点(2,1)关于虚轴(y轴)的对称点为(-12-4=-5.z=i故选A.2,1),因此z=-2+i,z2212(a∈R)在复平面内对应的点在虚轴上,则|za+i)|=() 8.若复数z=(A.1 B.3D.2 .4CC答案222,在复平面内对应的点在虚轴上,知a0-1z=(a+i)=a=-1+2ai由解析C.,故|z|=2,故选即a=±1,所以z=±2i 二、填空题表示.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z9z ________,则复数z.的共轭复数是复数2i-1答案-i2+ii-2i2+z解析复=i,其共轭复数为-i.2i-2i2i1-11-2019i-110.(2019·湖北部分重点中学联考)=________.i-1答案i201932?+i+i-i?1-i1112i解析=====i.2?+ii?1-1-??i1-i1-1i ix=cosx+isinx(i11.欧拉公式:e为虚数单位),由瑞士数学家欧拉发明,它建πi22立了三角函数与指数函数的关系,根据欧拉公式,(e)=________.答案-1πiππ2??i2x22isin+cos??=-)(ex+cose解析由=xisin得=i1.=22??.a=-1+bi,其中a,b12.已知是实数,则复数a-bi在复平面内对应的i -1点位于第________象限.答案二a=-1+bi,得a=(-1+bi)(1-i)解析由=(b-1)+(b+1)i,∴i1-,=0b+1??在复平面内对应的点的坐+ii=-2b=-1,∴复数a-b即a=-2,,-1a=b? 2,1),位于第二象限.标为(-三、解答题,试4i,-2+,C分别表示0,3+2i13.如图,平行四边形OABC,顶点O,A 求:Array→→表示的复数;BC(1)AO表示的复数,→表示的复数.(2)对角线CA→→,解=-OA(1)∵AO→表示的复数为-3-2i,∴AO→→→表示的复数为-3-2i. ,∴BC∵=AOBC→→→,(2)-OC∵=OACA→表示的复数为(3+2i)-(-2+4i)=5-2i. ∴CA51214.已知z=cosα+isinα,z=cosβ-isinβ,且z-z=+i,求cos(α+β)21121313的值.解∵z=cosα+isinα,z=cosβ-isinβ,21512∴z-z=(cosα-cosβ)+i(sin α+sinβ)=+i.211313.5?①,α-cosβ=cos?13?∴12??②β=.sinα+sin1322,得2-2cos(α+β由①)+②=1.1∴cos(α+β)=.2一、选择题1.(2019·安徽合肥第三次教学质量检测)已知i是虚数单位,复数z满足z+z·i =3+i,则复数z的共轭复数为()A.1+2i B.1-2ii-2+i 2.DC.C答案2i41333+i+i?+i??-i?-zi.2====z3·i=+i可化为=-∴z,∵z解析z+2?i-1??i+1?i+1i+1-C.i2的共轭复数为z=+,故选,若向量,的坐标分别为Z已知点四川双流中学一模.2(2019·)Z,(1,0)(0,1)21→)对应的点位于,则复数zz(对应复数ZZ21B.第二象限A.第一象限.第四象限D C.第三象限B答案→z因为点解析Z=Z,所以(0,1),的坐标分别为Z,(1,0)Z(1,1),即复数-2112B.对应点位于第二象限,故选在复平面)(2019·.3山东栖霞高考模拟已知复数为虚数单位-+a(z=i)(1i)(i))上,则实数x2y内对应的点在直线=a(的值为1 AB.0 .-1 D.-1 .C3D答案.解析因为z=(a+i)(1-i)=a+1+(1-a)i,对应的点为(a+1,1-a),因为点1在直线y=2x上,所以1-a=2(a+1),解得a=-.故选D.3z34-z是其共轭复数,若=a+i,+4.(2019·河南十所名校测试七)设复数z =55-zi,则实数a=()A.4 B.3D.C.2 1C答案34a43a4z3??--??a++=+,则i+=ai,∴解析∵z=a+iiz=a-i,又,∴555555??-z2.=在a+(1+i)(i)a为实数为虚数单位,z(2019·5.北京昌平二模)已知复数=-1)(复平面内对应的点位于第二象限,则复数z的虚部可以是11i .Bi A.-2211 .C.-D22D答案,-1<0a??,故选0<a<1i+(i)(1=-因为解析z1+a+=a-1)a,所以即,>0a?D.6.设有下面四个命题:1 ∈z R;,则∈满足p:若复数z R1z2R z R z∈,则∈;满足:若复数pz2-,z:若复数pz;=,则∈zz满足R zz2212311-. z R z:若复数p∈,则∈R4) (其中的真命题为,p,ppA.p.B4131.p.CD ,,ppp4232.B答案对.R)i(a,b∈b,∈R),z=a+b设z=a+bi(a,b∈R),z=a+bi(a解析2121122112iba-11为真命p R,所以bi=a∈,则b=0?z=a+于p,若∈R,即=∈R2211zbb+ia+a2222时,0b≠a=0,∈R,则ab=,即(a+bi)0.=aab+2i-b当题.对于p,若z∈R2=bi)bi)(a+zz∈R,即(a+R z=a+bi=bi,所以p为假命题.对于p,若∈/21132221-i-bi==az,即a+b=+ab)i∈R,则ab+ab0.而za(a-bb)+(ab221112112211221221为假命题.对,所以pb=-b/ a=a,=-,bb.因为ab+ab=0??a=a3112222111212-为真命题,故p∈R,所以a-bi=bi∈R,则b=0?az=于p,若z∈R,即a+44选B. .下面四个命题中,7 ;a,bb∈R)的实部、虚部分别是①复数z=a+bi(a,对应的点构成一条直线;,则z=|z -2i|z②复数满足|z+1|2222 z|z|a|;=a=,可类比得到复数z的性质a③由向量的性质|202021. i+i=+…+④i为虚数单位,则1+i) (正确命题的个数是B.0 1 A.3.2 .DCD答案a)的实部为a,虚部为b,故正确;②设z=解析①复数z=a+bi(a,b∈R,i(aa+bb2i|计算得2a+4-3=0,故正确;③设z=z)+bi(a,b∈R,由|z+1|=|-2020222=+不成立,故错误;④1i+i1+…+z R b∈),当b≠0时,||i=z,故正确.zP与M.已知复平面内,定点与复数m=1+2i(i为虚数单位)对应,动点8)m|=2的点P的轨迹方程为(y=x+i对应,那么满足|z-22224 =2)+(+(y-2)y =2 -1)x.B(-xA.(-1)22224 +C.(x1)(+y+2)=2 =2)+y(+1)+x(.DB答案,|.-,-(mz由题意,解析知在复平面内,-对应的点为x1y2)则由z=2|-m2222B.,故选4=2)-y(+1)-x(,即2=?2-y?+?1-x?得.二、填空题--其中i)4(z(2019·广东韶关4月模拟)已知=z是z的共轭复数,且满足(1+9.________.=|z|)i是虚数单位,则22答案?-i4?14---222=2i,∴|z|=|2z|+解析由(1+i)zz=4,得,===2-?1-i1+??i?1+i2.2=的虚Im(z)表示复数z.(2019·天津北辰模拟)用Re(z)表示复数z的实部,用10--)z)+,其中Im(z是复数z的共轭复数,则Re(z部,若已知复数z满足z(1-i)=7+3i________.=3-答案10i+?43i+?7+3i??1+i7-,则5i2-==2+5i,∴z=解析由题意得,z==2?ii?1-i??11-+3.5=-+Im(z)=2-Re(z)2=bc+bx+c=0-11.若2i是关于x的实系数方程x的一个复数根,则________.20-答案2-3+2b+c-i)+b(2-i)+c=0,即2解析把复数根-i代入方程中,得(2,b=-43+2b+c=0,????20. bc(4+b)i=0,所以解得=-故,5+4b=0,c=??|z|z|+|21zz@z=(等式右边为普通运算).若复数12.定义复数的一种新运算212-.z的最小值为+y满足xy=________22,则z@,i+=xyi,为虚数单位,且实数x2答案-|+|z|z||2|z-22. +x=yz=解析@zz==||22-2,4+?2-x? z,所以=+由于xy22z@=2-2. z2=x故时,z@取最小值三、解答题.-10|. +3|13.设虚数z满足|2z+15|z=的值;z|(1)计算|az 若不存在,说明理由.(2)是否存在实数a,使+∈R?若存在,求出a的值;za-R且b≠0),则,z=a-bia解(1)设z=a+bi(,b∈-∵|2z+15|10|=3|,z+i|+2bi|,=3|(a +10)-b∴|(2a+15)2222+=b3?a+10?,∴?2a+15?2+?b?22223. b5=75,∴|z|=a∴a=+b+az. a,使+∈R(2)假设存在实数za d≠0),,c+di(cd∈R且设z=?c-dic+dia?dcaza ++i+则有=+=22azaaadc+d+icdadacc??-??R=++,i∈2222ad+cadc+??add ,-∴=022adc +22±c,+a∵d≠0,∴=d2253.=±53由(1)知c ,∴+da=2+mx+n=0,mz+1为关于x的方程x,n14.(2019·辽宁省鞍山一中一模)设∈R的虚根,i为虚数单位.(1)当z=-1+i时,求m,n的值;(2)若n=1,在复平面上,设复数z所对应的点为P,复数2+4i所对应的点为Q,试求|PQ|的取值范围.解(1)因为z=-1+i,所以z+1=i,,=0m?2?=0,易得i则+mi+n1.n=?(2)设z=a+bi(a,b∈R),2,0=1+i)b+1+a(m+i)b+1+a(则.22①0,1a+1?+=+?a+1?-bm???于是②,b?+mb=02?a+1?22,其=+b1+2(a1),代入①得,(a+1)m因为b不恒为零,所以由②得=-4i+P是圆上任意一点.又复数2-几何意义是以(1,0)为圆心,1为半径的圆,即22+1=6,4|PQ|的最小值为4.?+?PQ,所以对应的点为Q||的最大值为21+所以|PQ|的取值范围是[4,6].。
2020年湖南省长沙市长郡中学高考数学模拟试卷(理科)(二)

(1)求购买该商品的 位顾客中,恰有 位选择分 期付款的概率;
设函数 在 内可导,且 = ,则 =________.
已知向量 , 满足: , , ,则向量 , 的夹角为________.
甲罐中有 个红球, 个白球和 个黑球,乙罐中有 个红球, 个白球和 个黑球.先从甲罐中随机取出一球放入乙罐,分别以 , 和 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________.
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)
在 中,内角 , , 所对应的边分别为 , , ,若满足 = .
(1)求角 的大小;
(2)若 ,且 ,求边长 .
如图,在四棱锥 中,底面 是平行四边形, , , , .
(1)求证:平面 平面 ;
(2)若 ,试判断棱 上是否存在与点 , 不重合的点 ,使得直线 与平面 所成角的正弦值为 .若存在,求出 的值;若不存在,请说明理由.
① ;
② ;
③事件 与事件 相互独立;
④ , , 是两两互斥的事件.
十三世纪意大利数学家列昂纳多•斐波那契从兔子繁殖规律中发现了“斐波那契数列”,斐波那契数列 满足以下关系: = , = , = ,记其前 项和为 .
(1) =________ .
(2)设 = , = ( , 为常数), =________.
【2020年高考必备】湖南省长沙市高考数学一模试卷(理科)及解析

湖南省长沙市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i2.(5分)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的子集个数为()A.7 B.3 C.8 D.93.(5分)函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为,若角φ的终边经过点,则的值为()A.B.C.2 D.4.(5分)如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的a i为茎叶图中的学生成绩,则输出的m,n分别是()A.m=38,n=12 B.m=26,n=12 C.m=12,n=12 D.m=24,n=105.(5分)设不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|2的最小值为()A.B.C.D.6.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(0,2) D.(1,2)7.(5分)某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A.11 B.C.D.8.(5分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为()A.1006 B.1007 C.1008 D.10099.(5分)已知非零向量,,满足|﹣|=||=4,(﹣)•(﹣)=0,若对每一个确定的,||的最大值和最小值分别为m,n,则m﹣n的值为()A.随增大而增大B.随增大而减小C.是2 D.是410.(5分)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()A.4πB.12πC.16πD.36π11.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A.B.C.D.12.(5分)已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y ∈[﹣1,1],使得x+y2e y﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(1,e]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,展开式的常数项为15,则=.14.(5分)设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是.15.(5分)正项数列{a n}的前n项和为S n,且(n∈N*),设,则数列{c n}的前2016项的和为.16.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中,已知点D在BC边上,且,AB=3.(Ⅰ)求AD的长;(Ⅱ)求cosC.18.(12分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF 均为等边三角形,EF∥AB,EF=AD=AB.(1)过BD作截面与线段FC交于点N,使得AF∥平面BDN,试确定点N的位置,并予以证明;(2)在(1)的条件下,求直线BN与平面ABF所成角的正弦值.19.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d 的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?附:临界值表参考公式:,.20.(12分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x ﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.21.(12分)已知函数f(x)=+be﹣x,点M(0,1)在曲线y=f(x)上,且曲线在点M处的切线与直线2x﹣y=0垂直.(1)求a,b的值;(2)如果当x≠0时,都有f(x)>+ke﹣x,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.[选修4-5:不等式选讲]23.设f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(1)求集合M;(2)已知a∈M,比较a2﹣a+1与的大小.2018年湖南省长沙市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i【解答】解:复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,所以z2=1﹣i,∴z1z2=(1+i)(1﹣i)=2.故选:A.2.(5分)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的子集个数为()A.7 B.3 C.8 D.9【解答】解:由|x+1|﹣1>0,得|x+1|>1,即x<﹣2或x>0.∴A={x|x<﹣2或x>0},则∁U A={x|﹣2≤x≤0};由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.则B={x|sinπx=0}={x|x=k,k∈Z},则(∁U A)∩B={x|﹣2≤x≤0}∩{x|x=k,k∈Z}={﹣2,﹣1,0}.∴(∁U A)∩B的元素个数为3.∴(∁U A)∩B的子集个数为:23=8.故选:C.3.(5分)函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为,若角φ的终边经过点,则的值为()A.B.C.2 D.【解答】解:由题意相邻对称轴的距离为,可得周期T=π,那么ω=2,角φ的终边经过点,在第一象限.即tanφ=,∴φ=故得f(x)=sin(2x+)则=sin(+)=cos=.故选:A4.(5分)如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的a i为茎叶图中的学生成绩,则输出的m,n分别是()A.m=38,n=12 B.m=26,n=12 C.m=12,n=12 D.m=24,n=10【解答】解:由程序框图知:算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,由茎叶图得,在50名学生的成绩中,成绩大于等于80的人数有80,80,81,84,84,85,86,89,90,91,96,98,共12人,故n=12,由茎叶图得,在50名学生的成绩中,成绩小于60的人数有43,46,47,48,50,51,52,53,53,56,58,59,共12人,则在50名学生的成绩中,成绩小于80且大于等于60的人数有50﹣12﹣12=26,故m=26故选:B.5.(5分)设不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|2的最小值为()A.B.C.D.【解答】解:不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,如图:2对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|的最小值就是可行域内的点O与圆的圆心连线减去半径,所以,|MN|的最小值为:=.故选:C.6.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(0,2) D.(1,2)【解答】解:∵当x>0时,f(x)>0,∴2﹣m>0,故m<2.f′(x)=.∵f(x)有两个绝对值大于1的极值点,∴m﹣x2=0有两个绝对值大于1的解,∴m>1.故选:D.7.(5分)某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A.11 B.C.D.【解答】解:由多面体的三视图得:该多面体为如图所示的四棱锥P﹣ABCD,其中底面ABCD是边长为1的正方形,平面PAD⊥平面ABCD,点P到平面ABCD的距离为1,∴AB⊥平面PAD,∴AB⊥PA,∴PA==,∴该多面体各面的面积中最大的是△PAB的面积:S△PAB==.故选:C.8.(5分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为()A.1006 B.1007 C.1008 D.1009【解答】解:由等差数列的求和公式和性质可得S2014==1007(a1007+a1008)>0,∴a1007+a1008>0同理由S2015<0可得2015a1008<0,可得a1008<0,∴a1007>0,a1008<0,且|a1007|>|a1008|∵对任意正整数n,都有|a n|≥|a k|,∴k的值为1008故选:C.9.(5分)已知非零向量,,满足|﹣|=||=4,(﹣)•(﹣)=0,若对每一个确定的,||的最大值和最小值分别为m,n,则m﹣n的值为()A.随增大而增大B.随增大而减小C.是2 D.是4【解答】解:假设=(4,0)、=(2,2)、=(x,y),∵(﹣)•(﹣)=0,∴(4﹣x,﹣y)•(2﹣x,2﹣y)=x2+y2﹣6x﹣2y+8=0,即(x﹣3)2+(y﹣)2=4,∴满足条件的向量的终点在以(3,)为圆心、半径等于2的圆上,∴||的最大值与最小值分别为m=2+2,n=2﹣2,∴m﹣n=4,故选:D.10.(5分)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()A.4πB.12πC.16πD.36π【解答】解:∵AB=3,AC=,BC=2,∴AB2+AC2=BC2,∴AC⊥AB,∴△ABC的外接圆的半径为,∵△ABC和△DBC所在平面相互垂直,∴球心在BC边的高上,设球心到平面ABC的距离为h,则h2+3=R2=(﹣h)2,∴h=1,R=2,∴球O的表面积为4πR2=16π.故选:C.11.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A.B.C.D.【解答】解:设双曲线的一条渐近线方程为y=x,A(a,0),P(m,),(m>0),由=3,可得Q(3m,),圆的半径为r=|PQ|==2m•,PQ的中点为H(2m,),由AH⊥PQ,可得=﹣,解得m=,r=.A到渐近线的距离为d==,则|PQ|=2=r,即为d=r,即有=•.可得=,e====.故选C.12.(5分)已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y ∈[﹣1,1],使得x+y2e y﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(1,e]D.【解答】解:由x+y2e y﹣a=0成立,解得y2e y=a﹣x,∴对任意的x∈[0,1],总存在唯一的y∈[﹣1,1],使得x+y2e y﹣a=0成立,∴a﹣1≥(﹣1)2e﹣1,且a﹣0≤12×e1,解得≤a≤e,其中a=1+时,y存在两个不同的实数,因此舍去,a的取值范围是.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,展开式的常数项为15,则=.=•(﹣1)r•a6﹣r•,【解答】解:由的展开式的通项公式为T r+1令=0,求得r=2,故常数项为,可得a=1,因此原式为=,故答案为:.14.(5分)设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是[﹣16,16] .【解答】解:关于x,y的不等式|x|+|y|<1表示的可行域如图的阴影部分:可行域与坐标轴的交点坐标(1,0),(0,1),(0,﹣1),(﹣1,0),关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ax+4by≥8表示的范围在可行域外侧,当a>0,b>0时满足题意,可得≥1,≥1,可得0<ab≤16,当a>0,b<0时满足题意,可得﹣1,,可得:﹣2≤b<0,0<a≤8可得﹣16≤ab<0,当a<0,b>0时满足题意,可得,,可得:0<b≤2,﹣8≤a<0可得﹣16≤ab<0,当a<0,b<0时满足题意,可得,,可得:﹣2≤b<0,﹣8≤a <0,∴0<ab≤16,当ab=0时,不等式|x|+|y|<1和ax+4by≥8无公共解;故ab的取值范围是:[﹣16,16];故答案为:[﹣16,16].15.(5分)正项数列{a n}的前n项和为S n,且(n∈N*),设,则数列{c n}的前2016项的和为.【解答】解:正项数列{a n}的前n项和为S n,且(n∈N*)①,则:②,②﹣①得:+a n﹣a n,+1﹣a n=1,整理得:a n+1当n=1时,,解得:a1=1,所以:数列{a n}是以1为首项,1为公差的等差数列.则a n=1+n﹣1=n,所以:.则:=,数列{c n}的前2016项的和为:,=﹣1+,=﹣.故答案为:16.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为4.【解答】解:椭圆C:+=1的a=2,b=2,c=4,设左焦点为F'(﹣4,0),右焦点为F(4,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(2a﹣|PF'|)=|AF|+|AP|﹣|PF'|+2a≥|AF|﹣|AF'|+2a,当且仅当A,P,F'三点共线,即P位于x轴上方时,三角形周长最小.此时直线AF'的方程为y=(x+4),代入x2+5y2=20中,可求得P(0,2),=S△PF'F﹣S△AF'F=×2×8﹣×1×8=4.故S△APF故答案为:4.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中,已知点D在BC边上,且,AB=3.(Ⅰ)求AD的长;(Ⅱ)求cosC.【解答】解:(Ⅰ)由得到:AD⊥AC,所以,所以.(2分)在△ABD中,由余弦定理可知,BD2=AB2+AD2﹣2AB•AD•cosBAD即AD2﹣8AD+15=0,(4分)解之得AD=5或AD=3,由于AB>AD,所以AD=3.(6分)(Ⅱ)在△ABD中,由正弦定理可知,,又由,可知(8分)所以(10分)因为,即(12分)18.(12分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF 均为等边三角形,EF∥AB,EF=AD=AB.(1)过BD作截面与线段FC交于点N,使得AF∥平面BDN,试确定点N的位置,并予以证明;(2)在(1)的条件下,求直线BN与平面ABF所成角的正弦值.【解答】解:(1)当N为CF的中点时,AF∥平面BDN.证明:连结AC交BD于M,连结MN.∵四边形ABCD是矩形,∴M是AC的中点,∵N是CF的中点,∴MN∥AF,又AF⊄平面BDN,MN⊂平面BDN,∴AF∥平面BDN.(2)过F作FO⊥平面ABCD,垂足为O,过O作x轴⊥AB,作y轴⊥BC于P,则P为BC的中点.以O为原点,建立如图所示的空间直角坐标系,设AD=1,则BF=1,FP=,∵EF==1,∴OP=(AB﹣EF)=,∴OF=.∴A(,﹣,0),B(,,0),C(﹣,,0),F(0,0,),N(﹣,,).∴=(0,2,0),=(﹣,,),=(﹣,﹣,).设平面ABF的法向量为=(x,y,z),则,∴,令z=得=(2,0,),∴=﹣1,||=,||=.∴cos<,>==﹣.∴直线BN与平面ABF所成角的正弦值为|cos<,>|=.19.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d 的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?附:临界值表参考公式:,.【解答】解:(Ⅰ)记每户居民的平均损失为元,则:=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360…(2分)(Ⅱ)由频率分布直方图,得:损失超过4000元的居民有:(0.00009+0.00003+0.00003)×2000×50=15户,∴ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:Eξ=0×+1×+2×=.(Ⅲ)如图:K2=≈4.046>3.841,所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否4000元有关.…(12分)20.(12分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x ﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.【解答】解:(1)焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离,解得c=1,所以抛物线C的方程为x2=4y.(2)设,,由(1)得抛物线C的方程为,,所以切线PA,PB的斜率分别为,,所以PA:①PB:②联立①②可得点P的坐标为,即,,又因为切线PA的斜率为,整理得,直线AB的斜率,所以直线AB的方程为,整理得,即,因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,所以直线AB的方程为x0x﹣2y﹣2y0=0.(3)根据抛物线的定义,有,,所以=,由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,所以=.所以当时,|AF|•|BF|的最小值为.21.(12分)已知函数f(x)=+be﹣x,点M(0,1)在曲线y=f(x)上,且曲线在点M处的切线与直线2x﹣y=0垂直.(1)求a,b的值;(2)如果当x≠0时,都有f(x)>+ke﹣x,求k的取值范围.【解答】解:(1)f(x)=+be﹣x的导数为f′(x)=,由切线与直线2x﹣y=0垂直,可得f(0)=1,f′(0)=﹣,即有b=1,a﹣b=﹣,解得a=b=1;(2)当x≠0时,都有f(x)>+ke﹣x,即为+e﹣x>+ke﹣x,即有(1﹣k)e﹣x>,即1﹣k>,可令g(x)=,g(﹣x)==g(x),即有g(x)为偶函数,只要考虑x>0的情况.由g(x)﹣1=,x>0时,e x>e﹣x,由h(x)=2x﹣e x+e﹣x,h′(x)=2﹣(e x+e﹣x)≤2﹣2=0,则h(x)在x>0递减,即有h(x)<h(0)=0,即有g(x)<1.故1﹣k≥1,解得k≤0.则k的取值范围为(﹣∞,0].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52][选修4-5:不等式选讲]23.设f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(1)求集合M;(2)已知a∈M,比较a2﹣a+1与的大小.【解答】解:(1)由f(x)>﹣1,得或或解得0<x<2,故M={x|0<x<2}.(2)由(1)知0<a<2,因为,当0<a<1时,,所以;当a=1时,,所以;当1<a<2时,,所以.综上所述:当0<a<1时,;当a=1时,;当1<a<2时,.。
高考数学二轮复习 寒假作业(二十四)小题限时保分练——昆明一模试题节选(注意命题点分布)理

寒假作业(二十四) 小题限时保分练——昆明一模试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 解析:选A 由题意,得z =32+121+i=-+-=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限.2.设集合A ={x |x 2-3x <0},B ={x ||x |>2},则A ∩(∁R B )=( ) A .{x |-2≤x <3} B .{x |0<x ≤2} C .{x |-2≤x <0}D .{x |2≤x <3}解析:选B 因为B ={x ||x |>2}={x |x >2或x <-2},所以∁R B ={x |-2≤x ≤2},又A ={x |x 2-3x <0}={x |0<x <3},所以A ∩(∁R B )={x |0<x ≤2},故选B.3.函数y =sin 2x -3cos 2x 的图象的一条对称轴方程为( ) A .x =π12B .x =-π12C .x =π3D .x =-π6解析:选B 由题意得,函数y =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3,由2x -π3=π2+k π(k ∈Z)得,x =5π12+k π2(k ∈Z),令k =-1,得x =-π12,所以函数图象的一条对称轴方程为x =-π12,故选B.4.在数列{a n }中,若对任意的正整数n 均有a n +a n +1+a n +2为定值,且a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A .132B .299C .68D .99解析:选B 设a n +a n +1+a n +2=M ,则a n +1+a n +2+a n +3=M ,后式减去前式得a n +3=a n ,即数列{a n }是以3为周期的周期数列,a 7=a 1=2,a 9=a 3=3,a 98=a 2=4,所以在一个周期内的三项之和为9,所以S 100=33×9+2=299.5.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .8-4π3B .8-πC .8-2π3D .8-π3解析:选D 由三视图知,该几何体是由一个边长为2的正方体挖去一个底面半径为1,高为2的半圆锥而得到的组合体,所以该几何体的体积V =23-12×13π×12×2=8-π3.6.小明从某书店购买5本不同的教辅资料,其中语文2本,数学2本,物理1本.若将这5本书随机并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( )A.15 B.25 C.35D.45解析:选B 语文、数学只有一科的两本书相邻,有2A 22A 22A 23=48种摆放方法;语文、数学两科的两本书都相邻,有A 22A 22A 33=24种摆放方法;而五本不同的书排成一排总共有A 55=120种摆放方法.故所求概率为1-48+24120=25.7.执行如图所示的程序框图,若输入的a 的值为2,则输出的b 的值为( )A .-2B .1C .2D .4解析:选B 第一次循环,a =12,b =1,i =2;第二次循环,a =-1,b =-2,i =3;第三次循环,a =2,b =4,i =4;第四次循环,a =12,b =1,i =5;……;由此可知b 的值以3为周期出现,且当i =2 018时退出循环,此时共循环2 017次,又2 017=3×672+1,所以输出的b 的值为1.8.过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,且A ,C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于( )A .2B .3C .4D .5解析:选C 如图,设抛物线的准线与x 轴交于点D ,则由题意,知F (1,0),D (-1,0),分别作AA 1,BB 1垂直于抛物线的准线,垂足分别为A 1,B 1,则有|AC ||FC |=|AA 1||FD |,所以|AA 1|=43,故|AF |=43.又|AC ||BC |=|AA 1||BB 1|,即|AC ||AC |+|AF |+|BF |=|AF ||BF |,亦即2|AF |3|AF |+|BF |=|AF ||BF |,解得|BF |=4.9.已知D ,E 是△ABC 边BC 的三等分点,点P 在线段DE 上,若AP uuu r =x AB uuu r+y AC uuu r ,则xy 的取值范围是( )A.⎣⎢⎡⎦⎥⎤19,49B.⎣⎢⎡⎦⎥⎤19,14C.⎣⎢⎡⎦⎥⎤29,12D.⎣⎢⎡⎦⎥⎤29,14 解析:选 D 由题意,知P ,B ,C 三点共线,则存在实数λ使PB uu u r=λBC uuu r⎝ ⎛⎭⎪⎫-23≤λ≤-13,所以AB uuu r -AP uuu r =λ(AC uuu r -AB uuu r ),所以AP uuu r =-λAC uuu r +(λ+1) AB uuu r ,则⎩⎪⎨⎪⎧y =-λ,x =λ+1,所以x +y =1且13≤x ≤23,于是xy =x (1-x )=-⎝ ⎛⎭⎪⎫x -122+14,所以当x =12时,xy 取得最大值14;当x =13或x =23时,xy 取得最小值29,所以xy 的取值范围为⎣⎢⎡⎦⎥⎤29,14.10.空间四边形ABCD 的四个顶点都在同一球面上,E ,F 分别是AB ,CD 的中点,且EF ⊥AB ,EF ⊥CD .若AB =8,CD =EF =4,则该球的半径等于( )A.65216B.6528C.652D.65解析:选C 如图,连接BF ,AF ,DE ,CE ,因为AE =BE ,EF ⊥AB ,所以AF =BF .同理可得EC =ED .又空间四边形ABCD 的四个顶点都在同一球面上,所以球心O 必在EF 上,连接OA ,OC .设该球的半径为R ,OE =x ,则R 2=AE 2+OE 2=16+x 2,且R 2=CF 2+OF 2=4+(4-x )2,解得R =652. 11.已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 且满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12C.12D .2解析:选D 因为A (-2,0),B (2,0),|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以⎩⎪⎨⎪⎧x 1+x 2=6mk 1-3k 2=12,y 1+y 2=12k +2m =2,解得k =2.12.已知函数f (x )=e x-ax -1,g (x )=ln x -ax +a ,若存在x 0∈(1,2),使得f (x 0)g (x 0)<0,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫ln 2,e 2-12B .(ln 2,e -1)C .[1,e -1)D.⎣⎢⎡⎭⎪⎫1,e 2-12解析:选A 若存在x 0∈(1,2),使得f (x 0)g (x 0)<0,即[e x 0-(ax 0+1)][ln x 0-a (x 0-1)]<0.在同一直角坐标系下作出函数y =e x,y =ax +1,y =ln x ,y =a (x -1)的图象(图略).当a <0时,f (x 0)>0,g (x 0)>0恒成立,不满足题意;当a =1,x >1时,e x>x +1,ln x <x -1恒成立;当a >1,x >1时,ln x -a (x -1)<x -1-a (x -1)=(1-a )(x -1)<0,此时只需存在x 1∈(1,2),使得e x 1>ax 1+1,则e 2>2a +1,解得a <e 2-12,所以1<a <e 2-12;当0<a <1,x >1时,e x-(ax +1)>x +1-(ax +1)=(1-a )x >0,此时只需存在x 2∈(1,2),使得ln x 2<a (x 2-1),则ln 2<a (2-1),解得a >ln 2,所以ln 2<a <1.综上所述,实数a 的取值范围为⎝⎛⎭⎪⎫ln 2,e 2-12. 二、填空题(本题共4小题,每小题5分)13.(x -2)(x +1)5的展开式中,x 3的系数是________.(用数字填写答案)解析:(x -2)(x +1)5的展开中含x 3的项为x ·C 35x 2-2C 25x 3=-C 25x 3,所以x 3的系数为-C 25=-10.答案:-1014.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -3y +2≤0,y -2≤0,则z =-3x +4y 的最大值是________.解析:作出不等式组表示的平面区域如图中阴影部分所示,由图知,当直线z =-3x +4y 经过点A (1,2)时,z 取得最大值,即z max =5.答案:515.已知函数f (x )的图象关于y 轴对称,且对任意x ∈R 都有f (x +3)=-f (x ),若当x ∈⎝ ⎛⎭⎪⎫32,52时,f (x )=⎝ ⎛⎭⎪⎫12x ,则f (2 017)=________. 解析:因为对任意x ∈R 都有f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),函数f (x )是周期为6的周期函数,f (2 017)=f (336×6+1)=f (1).由f (x +3)=-f (x )可得f (-2+3)=-f (-2)=f (1),因为函数f (x )的图象关于y 轴对称,所以函数f (x )是偶函数,f (-2)=f (2)=⎝ ⎛⎭⎪⎫122=14,所以f (2 017)=f (1)=-f (-2)=-14.答案:-1416.数列{a n }的前n 项和为S n ,且a 1=23,a n +1-S n =23.用[x ]表示不超过x 的最大整数,如:[-0.4]=-1,[1.6]=1.设b n =[a n ],则数列{b n }的前2n 项和为__________.解析:当n ≥2时,由题意,得S n =a n +1-23,S n -1=a n -23,两式相减得,a n =a n +1-a n ,即a n +1a n =2(n ≥2),又当n =1时,a 1=23,a 2-a 1=23,所以a 2=43,即a 2a 1=2,所以数列{a n }是首项为23,公比为2的等比数列,所以a n =23·2n -1=13·2n.所以b 1=0,b 2=1=2b 1+1,b 3=2=2b 2,b 4=5=2b 3+1,b 5=10=2b 4,b 6=21=2b 5+1,b 7=42=2b 6,b 8=85=2b 7+1,…,b 2n -1=2b 2n -2,b 2n =2b 2n -1+1,所以b 1+b 2=21-1,b 3+b 4=23-1,b 5+b 6=25-1,b 7+b 8=27-1,…,b 2n -1+b 2n =22n -1-1,设数列{b n }的前2n 项和为T 2n ,则T 2n =-4n1-4-n =22n +13-n -23.答案:22n +13-n -23。
2020年湖南省长沙市高考数学一模试卷(理科)含答案解析
2020年湖南省长沙市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i为虚数单位,则复数的虚部是()A.3i B.﹣3i C.3 D.﹣32.记集合A={x|x﹣a>0},B={y|y=sinx,x∈R},若0∈A∩B,则a的取值范围是()A.(﹣∞,0)B.(﹣∞,0]C.[0,+∞)D.(0,+∞)3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱 B.圆锥 C.棱锥 D.棱柱4.二项式(x﹣2)5展开式中x的系数为()A.5 B.16 C.80 D.﹣805.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+16.考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有()A.10种B.60种C.125种D.243种7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间是()A.[﹣,]B.[﹣2π,﹣]C.[,2π]D.[﹣2π,﹣]和[,2π]9.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣210.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.911.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)12.已知双曲线C1:﹣=1(a>0,b>0)经过抛物线C2:y2=2px(p>0)的焦点,且双曲线的渐近线与抛物线的准线围成一个等边三角形,则双曲线C1的离心率是()A.2 B.C.D.二、填空题(本大题共4小题,每小题5分,把答案填在答题卡中对应题号后的横线上)13.=_______.14.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.15.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.16.已知f(x)是定义在R上的偶函数,令F(x)=(x﹣b)f(x﹣b)+2020,若b是a、c的等差中项,则F(a)+F(c)=_______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}满足a1++…+=2n+1.(1)求{a n}的通项公式;(2)求{a n}的前n项和.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101﹣150为轻度污染;151﹣200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录去年某地某月10天的AQI的茎叶图如图.(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE,CG=DE.(1)证明:面GEF⊥面AEF;(2)求二面角B﹣EG﹣C的余弦值.20.已知椭圆C1: +=1(a>b>0)的离心率为,P(﹣2,1)是C1上一点.(1)求椭圆C1的方程;(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.21.已知函数f(x)=alnx+x2﹣ax(a为常数)有两个极值点.(1)求实数a的取值范围;(2)设f(x)的两个极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分。
湖南长沙市2020届高三年级第二次模拟考试数学(文科)试卷(解析版)
2020年湖南长沙市高考数学二模试卷(文科)一、选择题(共12小题).1.已知集合A={0,1,2,3),B={﹣1,0,a},若A∩B={0,2),则a=()A.0 B.1 C.2 D.32.设i是虚数单位,若复数z满足z(1﹣i)=i,则复数z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知a=213,b=log213,c=log1312,则()A.b<c<a B.b<a<c C.a<b<c D.c<b<a4.如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为34,则阴影区域的面积为()A.√3B.2√3C.3√3D.4√35.记S n为等差数列{a n}的前n项和,若a1+3a5=12,则S7=()A.18 B.21 C.24 D.276.已知向量a→=(5,5),a→+2b→=(﹣3,11),则向量a→在向量b→方向上的投影为()A.1 B.√22C.−√22D.﹣17.已知函数f(x)=sin2x cosφ+cos2x sinφ图象的一个对称中心为(−π3,0),则φ的一个可能值为()A.−π3B.π3C.−5π6D.5π68.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了Fn=22n+1(n= 0,1,2,⋯)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F5=641*6700417,不是质数.现设a n=log4(F n﹣1)(n=1,2,…),S n表示数列{a n}的前n项和.若32S n=63a n,则n=()A.5 B.6 C.7 D.89.已知双曲线C:x 2a −y24a=1(a>0)的右焦点为F,点N在C的渐近线上(异于原点),若M点满足OF→=FM→,且ON→⋅MN→=0,则|MN|=()A.2a B.√5a C.4a D.2√5a 10.已知曲线y=ae x﹣1绕原点顺时针旋转θ后与x轴相切,若tanθ=2,则a=()A.12B.1 C.32D.211.在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD=4,过AA1作平面α使BD⊥α,且平面α∩平面A1B1C1D1=l,M∈l.下面给出了四个命题:这四个命题中,真命题的个数为()①l∥AC;②BM⊥AC;③l和AD1所成的角为60°;④线段BM长度的最小值为√6.A.1 B.2 C.3 D.412.已知f(x)={2|x+2|−2,−4≤x≤−1,log2(x+1),−1<x≤4,若函数g(x)=f2(x)﹣mf(x)﹣1恰有5个零点,则实数m的取值范围是()A .(0,32)B .(0,32]C .(0,2)D .(0,2]二、填空题:本大题共4小题,每小题5分,共20分.13.若实数x ,y 满足{0≤x −y ≤1,0≤x +y ≤1,则z =2x +y 的最大值为 .14.已知α是锐角,且sin (α−π6)=13.则sin (α+π3)= .15.我国古代数学名著《九章算术•商攻》中,阐述:“斜解立方,得两堑堵.斜解堑堵.其一为阳马,一为鳖臑”.如图,在一个为“阳马”的四棱锥P ﹣ABCD 中,底面ABCD 为矩形,AB =2.AD =√3,PA ⊥平面ABCD ,若直线PD 与平面ABCD 所成的角为60°,则PA = ,该“阳马”外接球体积为 .16.已知直线x ﹣my ﹣2=0与抛物线C :y 2=12x 交于A ,B 两点.P 是线段AB 的中点,过P 作x 轴的平行线交C 于点Q ,若以AB 为直径的圆经过Q ,则m = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.受突如其来的新冠疫情的影响,全国各地学校都推迟2020年的春季开学.某学校“停课不停学”,利用云课平台提供免费线上课程.该学校为了解学生对线上课程的满意程度,随机抽取了500名学生对该线上课程评分.其频率分布直方图如下:若根据频率分布直方图得到的评分低于80分的概率估计值为0.45. (1)(i )求直方图中的a ,b 值;(ii )若评分的平均值和众数均不低于80分视为满意,判断该校学生对线上课程是否满意?并说明理由(同一组中的数据用该组区间的中点值为代表);(2)若采用分层抽样的方法,从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果,再从中选取2人进行跟踪分析,求这2人中至少一人评分在[60,70)内的概率.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且b tan A=(2c﹣b)tan B.(1)求A;(2)若△ABC是锐角三角形,且a=3.求cosCb的取值范围.19.如图,在直三棱柱ABC﹣A1B1C1中,CC1=2AC=4,AB=3,∠CAB=90°.M是CC1的中点.(1)证明:平面A1B1M⊥平面ABM;(2)求四棱锥M﹣ABB1A1的侧面积.20.已知长轴长为2√2的椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,且以F1、F2为直径的圆与C恰有两个公共点.(1)求椭圆C的方程;(2)若经过点F2的直线l与C交于M,N两点,且M,N关于原点O的对称点分别为P,Q,求四边形MNPQ面积的最大值.21.已知函数f(x)=−3cosx−1ax2,f′(x)为f(x)的导函数.2(1)若f'(x)在区间[0,π2]上单调递减,求实数a的取值范围;(2)若x∈[0,π2],求证:当a≤3时.f(x)+1x3+3≥0.2(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B铅笔在答题卡上将所选题目对应题号后面的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosα,(α为参数),以坐y=2sinα标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=1.(1)求C1的极坐标方程,并求C1与C2交点的极坐标(ρ>0,−π2<θ<π2);(2)若曲线C3:θ=β(ρ>0)与C1,C2的交点分别为M,N,求|OM|•|ON|的值.[选修4-5:不等式选讲]23.已知f(x)=|2x﹣1|﹣2|x+1|.(1)解不等式f(x)≤0;(2)记函数f(x)的最大值为m,且a+b+c=m,求证:(a+1)2+(b+1)2+(c+1)2≥12.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3),B={﹣1,0,a},若A∩B={0,2),则a=()A.0 B.1 C.2 D.3【分析】利用交集定义直接求解.解:∵集合A={0,1,2,3),B={﹣1,0,a},A∩B={0,2),∴a=2.故选:C.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.设i是虚数单位,若复数z满足z(1﹣i)=i,则复数z对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出z的坐标得答案.解:由z(1﹣i)=i,得z=i1−i=i(1+i)(1−i)(1+i)=−1+i2=−12+i2.∴复数z对应的点的坐标为(−12,12),在第二象限.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.已知a=213,b=log213,c=log1312,则()A.b<c<a B.b<a<c C.a<b<c D.c<b<a 【分析】结合指数与对数函数的单调性分别确定a,b,c的范围,进而可比较大小.解:a=213>1,b=log213<0,c=log1312=log32∈(0,1),故b<c<a,故选:A.【点评】本题主要考查了利用函数单调性比较大小,属于基础试题.4.如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为34,则阴影区域的面积为()A.√3B.2√3C.3√3D.4√3【分析】由题意结合几何概型计算公式得到关于面积的方程,解方程即可求得最终结果.解:设阴影部分的面积为S,结合几何概型公式可得:12×4×4×√32=34;解得S=3√3:故选:C.【点评】本题考查几何概型及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.5.记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=12,则S 7=( ) A .18B .21C .24D .27【分析】由a 1+3a 5=12,可得:4a 1+12d =12,化为a 1+3d =3=a 4,利用性质可得:S 7=7(a 1+a 7)2=7a 4. 解:由a 1+3a 5=12,可得:4a 1+12d =12,∴a 1+3d =3=a 4, ∴S 7=7(a 1+a 7)2=7a 4=21.故选:B .【点评】本小题主要考查等差数列通项公式和前n 项和公式及其性质等基础知识,考查运算求解等数学能力,属于基础题.6.已知向量a →=(5,5),a →+2b →=(﹣3,11),则向量a →在向量b →方向上的投影为( ) A .1B .√22C .−√22D .﹣1【分析】先根据平面向量的线性坐标运算,由a →和a →+2b →的坐标计算出向量b →,然后由平面向量数量积的定义可知,向量a →在b →方向上的投影为a →⋅b →|b →|,再结合数量积的坐标运算即可得解.解:∵a →=(5,5),a →+2b →=(﹣3,11),∴b →=(−4,3),∴向量a →在b →方向上的投影为a →⋅b →|b →|=√(−4)2+32=−1,故选:D .【点评】本题考查平面向量数量积的定义与坐标运算,考查学生的分析能力和运算能力,属于基础题.7.已知函数f(x)=sin2x cosφ+cos2x sinφ图象的一个对称中心为(−π3,0),则φ的一个可能值为()A.−π3B.π3C.−5π6D.5π6【分析】先对已知函数进行化简,然后结合正弦函数的对称性即可求解.解:f(x)=sin2x cosφ+cos2x sinφ=sin(2x+φ),由题意可得,sin(φ−2π3)=0,所以φ−2π3=kπ即φ=2π3+kπ,k∈Z,结合选项可知,当k=﹣1时,φ=−13π.故选:A.【点评】本题主要考查了和差角公式在三角化简中的应用及正弦函数的对称性的应用,属于基础试题.8.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了Fn=22n+1(n= 0,1,2,⋯)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F5=641*6700417,不是质数.现设a n=log4(F n﹣1)(n=1,2,…),S n表示数列{a n}的前n项和.若32S n=63a n,则n=()A.5 B.6 C.7 D.8【分析】利用数列的递推关系式,求出通项公式,然后通过等比数列求解数列的和,然后求解n即可.解:因为F n=22n+1(n=0,1,2,⋯),所以a n=log4(F n﹣1)=log4(22n+1−1)= log422n=2n﹣1,所以{a n}是等比数列,首项为1,公比为2,所以S n=1(1−2n)1−2=2n﹣1.所以32(2n﹣1)=63×2n﹣1,解得n=6,故选:B.【点评】本题考查数列的递推关系式的应用,等比数列的判断,数列求和,考查计算能力.9.已知双曲线C:x 2a2−y24a2=1(a>0)的右焦点为F,点N在C的渐近线上(异于原点),若M点满足OF→=FM→,且ON→⋅MN→=0,则|MN|=()A.2a B.√5a C.4a D.2√5a【分析】画出图形,利用F是OM的中点,且ON⊥MN,作FH⊥ON于H,然后转化求解即可.解:双曲线C:x 2a2−y24a2=1(a>0)的一条渐近线y=2x的斜率为:2,且b=2a,F(√5a,0).由题意可得:F是OM的中点,且ON⊥MN,作FH⊥ON于H,则|FH|=√5a1+4=2a,所以|MN|=4a,故选:C.【点评】本题考查双曲线的简单性质的应用,数形结合以及计算能力,是中档题.10.已知曲线y=ae x﹣1绕原点顺时针旋转θ后与x轴相切,若tanθ=2,则a=()A.12B.1 C.32D.2【分析】由题意可知,未转动前曲线与直线y=2x相切,由此设切点为(x0,y0),求切点处导数,并令其为2,求出x0,即可求出a的值.解:由已知得:曲线y=ae x﹣1与直线y=2x相切.设切点为(x0,y0),因为y′=ae x﹣1,所以ae x0−1=2①,又切点满足:ae x0−1=2x0②,①②两式联立解得:x0=1,a=2.故选:D.【点评】本题考查导数的几何意义以及切线方程的求法,同时考查学生运用方程思想解题的能力和化简运算能力.属于中档题.11.在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD=4,过AA1作平面α使BD⊥α,且平面α∩平面A1B1C1D1=l,M∈l.下面给出了四个命题:这四个命题中,真命题的个数为()①l∥AC;②BM⊥AC;③l和AD1所成的角为60°;④线段BM长度的最小值为√6.A.1 B.2 C.3 D.4【分析】由ABCD﹣A1B1C1D1为长方体,可得BD⊥平面A1ACC1,结合题意可得面A1ACC1为平面α,直线A1C1为l,可知①正确;只有当M为A1C1的中点时,有BM⊥AC,当M在l上其它位置时,BM与AC不垂直,可知②错误;由题意,知∠A1C1B即为l和AD1所成角,由A1B=BC1≠A1C1,得∠A1C1B≠60°,故③错误;当M是A1C1的中点时,BM⊥A1C1,此时线段BM取得最小值,求得BM判断④错误.解:由ABCD﹣A1B1C1D1为长方体,可得BD⊥平面A1ACC1,即平面A1ACC1为平面α,直线A1C1为l,则l∥AC,故①正确;由M∈l,即M∈A1C1,只有当M为A1C1的中点时,有BM⊥AC,当M在l上其它位置时,BM与AC不垂直,故②错误;由AD1∥BC1,可知∠A1C1B即为l和AD1所成角,∵A1B=BC1≠A1C1,∴∠A1C1B≠60°,故③错误;由A1B=BC1=√22+42=2√5,可知当M是A1C1的中点时,BM⊥A1C1,此时线段BM取得最小值,且BM=√BB12+B1M2=√42+(√2)2=3√2,∴④错误.故只有①正确.故选:A.【点评】本题考查命题的真假判断与应用,考查空间中直线与直线、直线与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.12.已知f(x)={2|x+2|−2,−4≤x≤−1,log2(x+1),−1<x≤4,若函数g(x)=f2(x)﹣mf(x)﹣1恰有5个零点,则实数m的取值范围是()A.(0,32)B.(0,32]C.(0,2)D.(0,2]【分析】先作出函数的图象,然后结合函数的函数的零点与方程的根的关系,结合二次方程的实根分布问题即可求解解:如图所示,作出f(x)的图象,令f(x)=t显然t=0不是方程t2﹣mt﹣1=0的解,若t=﹣1是方程t2﹣mt﹣1=0的解,则m=0,此时t=±1,结合图象可知不满足题意,所以g(x)=f2(x)﹣mf(x)﹣1恰有5个零点等价于t2﹣mt﹣1=0一个解在(﹣1,0),一个解在(0,2],令h(t)=t2﹣mt﹣1,则{h(−1)=m>0h(0)=−1<0h(2)=4−2m−1≥0,解可得,0<m≤32.故选:B.【点评】本题主要考查了由函数的零点求解参数范围问题,体现了转化思想及数形结合思想的应用.二、填空题:本大题共4小题,每小题5分,共20分.13.若实数x ,y 满足{0≤x −y ≤1,0≤x +y ≤1,则z =2x +y 的最大值为 2 . 【分析】画出可行域,利用目标函数的几何意义求解最大值即可.解:作出约束条件的可行域,如图:直线z =2x +y 经过可行域的A 时,z 取得最大值, 由{x +y =1x −y =1解得A (1,0),所以z 的最大值为:2×1+0=2. 故答案为:2.【点评】本题考查线性规划的简单应用,画出约束条件的可行域是解题的关键,考查计算能力.14.已知α是锐角,且sin (α−π6)=13.则sin (α+π3)= √23 .【分析】由已知结合同角基本关系及诱导公式进行化简即可求解.解:因为α是锐角,且sin (α−π6)=13. 所以−π6<α−π6<13π,cos (α−π6)=2√23, 则sin (α+π3)=sin[(α−π6)+12π]=cos (α−π6)=2√23,故答案为:2√2.3【点评】本题主要考查了同角基本关系及诱导公式在三角化简求值中的应用,属于中档试题.15.我国古代数学名著《九章算术•商攻》中,阐述:“斜解立方,得两堑堵.斜解堑堵.其一为阳马,一为鳖臑”.如图,在一个为“阳马”的四棱锥P﹣ABCD中,底面ABCD 为矩形,AB=2.AD=√3,PA⊥平面ABCD,若直线PD与平面ABCD所成的角为60°,π.则PA= 3 ,该“阳马”外接球体积为323【分析】以AB,AD,AP为棱构造一个长方体,则该长方体的体对角线为其外接球的直径2R,由此能求出该“阳马”外接球体积.解:由题意得∠PDA=60°,则PA=√3AD=3,以AB,AD,AP为棱构造一个长方体,则该长方体的体对角线为其外接球的直径2R,即2R=√22+(√3)2+32=4,即R=2,∴该“阳马”外接球体积为V=4πR3=43π×8=32π3.3故答案为:3,32π.3【点评】本题考查线段长、“阳马”的外接球的体积的求法,考查线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.已知直线x﹣my﹣2=0与抛物线C:y2=12x交于A,B两点.P是线段AB的中点,过P作x轴的平行线交C于点Q,若以AB为直径的圆经过Q,则m=±2 .【分析】设AB的坐标,直线与抛物线的方程联立求出两根之和,进而求出AB的中点P 的坐标,由题意求出Q的坐标,进而求出弦长|AB|,|PQ|,再由题意可得m的值.解:设A(x1,y1),B(x2,y2),由{x−my−2=0 y2=12x,整理可得2y2﹣my﹣2=0,△=m2+8>0,y1+y2=m2,y1y2=﹣1,所以AB的中点P(m 24+2,m4),则Q(m28,m4),即|PQ|=m28+2,又|AB|=√1+m2|y1﹣y2|=√1+m2√m24+4,所以√1+m2√m24+4=2(m28+2)即√1+m2=√m24+4,解得m=±2,故答案为:±2.【点评】本题考查抛物线的性质及以线段为直径的圆的性质,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.受突如其来的新冠疫情的影响,全国各地学校都推迟2020年的春季开学.某学校“停课不停学”,利用云课平台提供免费线上课程.该学校为了解学生对线上课程的满意程度,随机抽取了500名学生对该线上课程评分.其频率分布直方图如下:若根据频率分布直方图得到的评分低于80分的概率估计值为0.45.(1)(i)求直方图中的a,b值;(ii)若评分的平均值和众数均不低于80分视为满意,判断该校学生对线上课程是否满意?并说明理由(同一组中的数据用该组区间的中点值为代表);(2)若采用分层抽样的方法,从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果,再从中选取2人进行跟踪分析,求这2人中至少一人评分在[60,70)内的概率.【分析】(1)(i)由频率分布直方图中小矩形面积之和为1,能求出a,b.(ii)由频率分布直方图能求出评分的众数和评分的平均值,从而得到该校学生对线上课程满意.(2)由题知评分在[60,70)和[90,100]内的频率分别为0.1和0.15,则抽取的5人中,评分在[60,70)内的为2人,评分在[90,100)的有3人,记评分在[90,100]内的3位学生为a,b,c,评分在[60,70)内的2位学生这D,E,从5人中任选2人,利用列举法能求出这2人中至少一人评分在[60,70)的概率.解:(1)(i)由已知得(0.005+a+0.03)×10=0.45,解得a=0.01,又(0.015+b)×10=0.55,∴b=0.04.(ii)由频率分布直方图得评分的众数为85,评分的平均值为55×0.05+65×0.1+75×0.3+85×0.4+95×0.15=80,∴该校学生对线上课程满意.(2)由题知评分在[60,70)和[90,100]内的频率分别为0.1和0.15,则抽取的5人中,评分在[60,70)内的为2人,评分在[90,100)的有3人,记评分在[90,100]内的3位学生为a,b,c,评分在[60,70)内的2位学生这D,E,则从5人中任选2人的所有可能结果为:(a,b),(a,c),(a,D),(a,E),(b,c),(b,D),(b,E),(c,D),(c,E),(D,E),共10种,其中,评分在[90,100]内的可能结果为(a,b),(a,c),(b,c),共3种,∴这2人中至少一人评分在[60,70)的概率为P=1−3=710.10【点评】本题考查频率、众数、平均数、概率的求法,考查古典概型、列举法、频率分布直方图等基础知识,考查运算求解能力,是基础题.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且b tan A=(2c﹣b)tan B.(1)求A;(2)若△ABC是锐角三角形,且a=3.求cosCb的取值范围.【分析】(1)直接利用三角函数关系式的恒等变换和正弦定理的应用求出A的值.(2)利用正弦定理的应用和锐角三角形的角的范围的应用求出结果.解:(1)由于△ABC的内角A,B,C的对边分别为a,b,c,且b tan A=(2c﹣b)tan B.∴sinB⋅sinAcosA =(2sinC−sinB)⋅sinBcosB,由于sin B≠0,所以sin A cos B=2sin C cos A﹣sin B cos A,则:sin(A+B)=2sin C cos A,即sin C=2sin C cos A,由于sin C≠0,所以cos A=12,由于0<A<π,所以A=π3.(2)根据正弦定理asinA =b sinB,所以b=2√3sinB.则:cosCb =cos(2π3−B)2√3sinB=−12cosB+√32sinB2√3sinB=4√3tanB+14.由于△ABC为锐角三角形,所以{0<B<π20<C<π2,即{0<B<π20<2π3−B<π2,所以π6<B<π2,所以tanB>√33,即043tanB 14,所以0<cosCb<14,所以cosCb 的取值范围为(0,14).【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.如图,在直三棱柱ABC﹣A1B1C1中,CC1=2AC=4,AB=3,∠CAB=90°.M是CC1的中点.(1)证明:平面A1B1M⊥平面ABM;(2)求四棱锥M﹣ABB1A1的侧面积.【分析】(1)由已知求解三角形证明即A1M⊥AM,再证明AB⊥平面ACC1A1,得AB ⊥A1M,由直线与平面垂直的判定可得A1M⊥平面ABM,进一步得到平面A1B1M⊥平面ABM;(2)分别求出四棱锥M﹣ABB1A1的四个侧面三角形的面积,作和得答案.【解答】(1)证明:在矩形ACC1A1中,AM=A1M=√22+22=2√2,AA1=4.则A1M2+AM2=AA12,即A1M⊥AM,又AB⊥AC,AB⊥AA1,AC∩AA1=A,则AB⊥平面ACC1A1,∵A1M⊂平面ACC1A1,∴AB⊥A1M,又AB∩AM=A,∴A1M⊥平面ABM,∵A1M⊂平面A1B1M,∴平面A1B1M⊥平面ABM;(2)解:由(1)知,AB⊥AM,∴S△ABM=S△A1B1M=12×3×2√2=3√2.在△ABC中,BC=√22+32=√13,∴S△B1BM=12×√13×4=2√13,又S△A1AM=12×4×2=4.∴四棱锥M﹣ABB1A1的侧面积为2×3√2+4+2√13=6√2+4+2√13.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体侧面积的求法,是中档题.20.已知长轴长为2√2的椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,且以F1、F2为直径的圆与C恰有两个公共点.(1)求椭圆C的方程;(2)若经过点F2的直线l与C交于M,N两点,且M,N关于原点O的对称点分别为P,Q,求四边形MNPQ面积的最大值.【分析】(1)由题意可得a 的值及b =c ,再由a ,b ,c 之间的关系求出b ,进而求出椭圆的方程;(2)由(1)可得右焦点F 2的坐标,由题意可得直线PQ 的斜率不为0,设直线PQ 的方程与椭圆联立求出两根之和及两根之积,由题意可得四边形PQMN 为平行四边形,所以四边形的面积等于一个三角形面积的4倍,求出三角形OPQ 的面积,由均值不等式可得面积的最大值.解:(1)由题意可得2a =2√2,且b =c ,又c 2=a 2﹣b 2,所以可得a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1; (2)由(1)可得右焦点F 2(1,0),再由题意可得直线PQ 的斜率不为0,设直线PQ 的方程为x =my +1,设P (x 1,y 1),Q (x 2,y 2),联立直线与椭圆的方程可得{x =my +1x 2+2y 2=2整理可得(2+m 2)y 2+2my ﹣1=0,所以y 1+y 2=−2m 2+m 2,y 1y 2=−12+m 2, 由题意可得四边形MNPQ 为平行四边形,所以S =4S △OPQ =4×12×|OF 2|×|y 1﹣y 2|=2×1×√(y 1+y 2)2−4y 1y 2=2√4m 2(2+m 2)2−4⋅−12+m 2=4√2√1+m 2(1+1+m 2)2=4√2√1(1+m 2)+11+m 2+2≤4√2√12+2=2√2, 当且仅当1+m 2=11+m 2即m =0时取等号, 所以四边形MNPQ 面积的最大值为2√2.【点评】本题考查求椭圆的方程及直线与椭圆的综合,及四边形的面积公式及均值不等式的应用,属于中档题.21.已知函数f(x)=−3cosx−1ax2,f′(x)为f(x)的导函数.2(1)若f'(x)在区间[0,π2]上单调递减,求实数a的取值范围;(2)若x∈[0,π2],求证:当a≤3时.f(x)+1x3+3≥0.2【分析】(1)先求f'(x)=3sin x﹣ax,令g(x)=3sin x﹣ax,再求导g'(x),原问题可转化为g'(x)≤0在[0,π2]上恒成立,即a≥3cos x恒成立,于是求出y=3cos x在[0,π2]上的最大值即可;(2)令h(x)=f(x)+1x3+3,原问题转化为证明h(x)≥0,求出h'(x),由于a≤23,所以h′(x)≥3sinx−3x+3x2,再令p(x)=3sinx−3x+32x2,再求导p'(x),2又令m(x)=p'(x),又求导m'(x),并得出m'(x)=﹣3sin x+3≥0,因此m(x)在[0,π2]上单调递增,依此,逐层往回递推直至能证明h(x)≥h(0)=0即可.解:(1)由题可知,f'(x)=3sin x﹣ax,令g(x)=3sin x﹣ax,则g'(x)=3cos x﹣a,∵f'(x)在区间[0,π2]上单调递减,∴当0≤x≤π时,3cos x﹣a≤0,即a≥3cos x恒成立,2而当0≤x≤π时,3cos x∈[0,3],2∴a≥3.(2)证明:令h(x)=f(x)+1x3+3,则h′(x)=f′(x)+32x2=3sinx−ax+32x2,2∵a≤3,∴h′(x)≥3sinx−3x+3x2,2令p(x)=3sinx−3x+3x2,则p'(x)=3cos x﹣3+3x,2令m(x)=3cos x﹣3+3x,则m'(x)=﹣3sin x+3≥0,∴m(x)在[0,π2]上单调递增,即m(x)≥m(0)=0,∴p'(x)≥0,∴p(x)在[0,π2]上单调递增,即p(x)≥p(0)=0,则h'(x)≥0,∴h(x)在[0,π2]上单调递增,即h(x)≥h(0)=0,也就是f(x)+1x3+3≥0.2【点评】本题考查利用导数研究函数的单调性和最值、不等式恒成立问题,解题的关键是多次构造函数,并求导,判断新函数的性质,然后再逐层往回递推,考查学生的转化与化归的能力、逻辑推理能力和运算能力,属于中档题.一、选择题(α为参数),以坐22.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosα,y=2sinα标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=1.(1)求C1的极坐标方程,并求C1与C2交点的极坐标(ρ>0,−π2<θ<π2);(2)若曲线C3:θ=β(ρ>0)与C1,C2的交点分别为M,N,求|OM|•|ON|的值.【分析】(1)根据同角三角函数关系式,消去参数,可得C1的直角坐标方程,再由x =ρcosθ,y=ρsinθ代入可得极坐标方程;联立C1与C2的极坐标方程,即可得到交点坐标;(2)分别联立曲线C3和C1,C3和C2的极坐标方程,分别得到OM和ON的长度,再求值即可.解:(1)由{x =2+2cosαy =2sinα(α为参数)消去参数可得(x ﹣2)2+y 2=4,即x 2+y 2﹣4x =0,又{x =ρcosθy =ρsinθ,则ρ2﹣4ρcos θ=0, 即C 1的极坐标方程为ρ=4cos θ.由{ρ=4cosθρcosθ=1,可得4cos 2θ=1,又−π2<θ<π2,所以θ=±π3,ρ=2. 即C 1与C 2交点的极坐标为(2,π3),(2,−π3). (2)由{θ=βρ=4cosθ,可得|OM |=4cos β, 由{θ=βρcosθ=1,可得|ON |=1cosβ, 所以|OM |•|ON |=4.【点评】本题考查了参数方程,极坐标方程和普通方程的互化,以及利用极坐标方程解决曲线与曲线的交点问题.[选修4-5:不等式选讲]23.已知f (x )=|2x ﹣1|﹣2|x +1|.(1)解不等式f (x )≤0;(2)记函数f (x )的最大值为m ,且a +b +c =m ,求证:(a +1)2+(b +1)2+(c +1)2≥12.【分析】(1)由题意可得|2x ﹣1|≤2|x +1|,两边平方,化简整理,可得所求解集;(2)运用绝对值不等式的性质可得m =3,即a +b +c =3,再由三个数的完全平方公式,结合基本不等式和不等式的性质,即可得证.【解答】(1)解:f (x )≤0即为|2x ﹣1|﹣2|x +1|≤0,即|2x ﹣1|≤2|x +1|,即为(2x﹣1)2≤4(x+1)2,化为12x≥﹣3,可得x≥−1,4};则原不等式的解集为{x|x≥−14(2)证明:由f(x)=|2x﹣1|﹣|2x+2|≤|2x﹣1﹣2x﹣2|=3,当x≤﹣1时,上式取得等号,则m=3,即a+b+c=3,又(a+b+c)2=a2+b2+c2+2ab+2bc+2ca≤a2+b2+c2+(a2+b2)+(b2+c2)+(c2+a2)=3(a2+b2+c2)(当且仅当a=b=c=1时取得等号),(a+b+c)2=3,则(a+1)2+(b+1)2+(c+1)2=a2+b2+c2+2a+2b+2c+3所以a2+b2+c2≥13≥3+2×3+3=12,则(a+1)2+(b+1)2+(c+1)2≥12.【点评】本题考查绝对值不等式的解法,以及绝对值不等式的性质,基本不等式的运用:证明不等式,考查转化思想和运算能力、推理能力,属于中档题.。
2020年湖南省长沙市长郡中学高考数学模拟试卷(理科)(二) (含解析)
2020年湖南省长沙市长郡中学高考数学模拟试卷(理科)(二)一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={y|y =x 2+2,x ∈R},B ={y|y =4−x,x ∈R},则A ∩B =( )A. {3,6}B. {−2,1}C. {y|y ≥2}D. R2. 下面是关于复数z =2−1+i 的四个命题:其中的真命题为( ),p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i , p 4:z 的虚部为−1.A. p 2,p 3B. p 1,p 2C. p 2,p 4D. p 3,p 43. 如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断错误的是( )A. 1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B. 1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C. 2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D. 2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率 4. 数列{2an+1}是等差数列,且a 1=1,a 3=−13,那么a 2020=( ) A. 10091010B. −10091010C. 20192020D. −201920205. (√x 3−2x )8二项展开式中的常数项为( )A. 56B. −56C. 112D. −1126. 已知a =(12)0.3,b =log 120.3,c =a b,则a ,b ,c 的大小关系是( )A. a <b <cB. c <a <bC. a <c <bD. b <c <a7. 已知,则sin2α=( )A. 12B. √32C. −12D. −√328. 2019年4月25日−27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为( )A. 198B. 268C. 306D. 3789. 在不等式组{x +y −2⩾0,x −y −2⩽0,y ⩽2,,所确定的三角形域内随机取一点,则该点到此三角形的三个顶点的距离均大于1的概率是( )A. π8B. 4−π2C. 1−π8D. 1−π410. 已知圆x 2+y 2=r 2(r >0)与抛物线y 2=2x 交于A,B 两点,与抛物线的准线交于C,D 两点,若四边形ABCD 是矩形,则r 等于( )A. √22B. √2C. √52D. √511. 已知长方体ABCD −A 1B 1C 1D 1中,AB =AD =2,AA 1=4,M 是BB 1的中点,点P 在长方体内部或表面上,且平面AB 1D 1,则动点P 的轨迹所形成的区域面积是( )A. 6B. 4√2C. 4√6D. 912. 已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2−2cx +y 2=0,椭圆C :x 2a +y 2b=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是( )A. [12,1)B. (0,12]C. [√22,1) D. (0,√22] 二、填空题(本大题共4小题,共20.0分)13. 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________. 14. 已知|a ⃗ |=1,b ⃗ =(1,√3),(b ⃗ −a ⃗ )⊥a ⃗ ,则向量a ⃗ 与向量b ⃗ 的夹角为______.15. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2和A 3表示事件从甲罐取出的球是红球,白球和黑球;再从乙罐中随机取出1个球,以B表示事件从乙罐取出的球是红球.则下列结论中正确的是(写出所有正确结论的编号). ①P(B)=25; ②P(B|A1)=511; ③事件B与事件A1相互独立; ④A1,A2,A3是两两互斥的事件.16.已知数列{a n}满足a1=0,a n+1=a n+n,则a2013=______ .三、解答题(本大题共7小题,共82.0分)17.在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=72sinAsinB.(Ⅰ)求角C的大小;(Ⅱ)若a=1,求△ABC面积.18.如图,四棱锥P−ABCD中,底面ABCD是平行四边形,∠BAD=60°,∠PAD=45°,点E在线段AB上,PE⊥AD且AB=3,AD=PE=AE=2.(1)求证:平面PAD⊥平面ABCD.(2)求直线PA与平面PDE所成角的正弦值.19.设椭圆x2a +y2b=1(a>b>0)的左焦点为F,右顶点为A,离心率为12,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为12.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为√62,求直线AP的方程.20.已知函数f(x)=m(x2−1)x−2lnx.(1)讨论函数f(x)的单调性;(2)若m=12,证明f(x)有且只有三个零点.21. [某商场以分期付款方式销售某种商品,根据以往资料統计,顾客购买该商品选择分期付款的期数ξ的分布列为其中0<a <1,0<b <1(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元) ①求X 的分布列;②若P(X ≤500)≥0.8,求X 的数学期望EX 的最大值.22. 在直角坐标系xOy 中,直线l 的参数方程为{x =−1−√22ty =2+√22t,(t 为参数),以坐标原点为极点x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρcos 2θ=sinθ. (1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,P(−1,2),求|PA|⋅|PB|.23.已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|−1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)−f(−b).-------- 答案与解析 --------1.答案:C解析:根据集合的基本运算即可.本题主要考查集合的基本运算,比较基础.解:A={y|y=x2+2,x∈R}={y|y≥2},B={y|y=4−x,x∈R}=R,则A∩B={y|y≥2},故选:C2.答案:C解析:解:∵z=2−1+i =2(−1−i)(−1+i)(−1−i)=−1−i,∴p1:|z|=√2,p2:z2=2i,p3:z的共轭复数为−1+i,p4:z的虚部为−1,故选:C.由z=2−1+i =2(−1−i)(−1+i)(−1−i)=−1−i,知p1:|z|=√2,p2:z2=2i,p3:z的共轭复数为−1+i,p4:z的虚部为−1,由此能求出结果.本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.3.答案:D解析:解析:本题主要考查学生的数据分析能力和图形阅读理解能力,属于基础题.根据图表中包含的信息对照选项分析即可判断真假.解:对于A,1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例.所以西安所占比例为3287>13,故A 正确,对于B ,由曲线图可知.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确,对于C ,2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213−116−97例,故C 正确, 对于D ,2月8日到2月10日西安新冠肺炎累计确诊病例增加了98−8888=544,2月6日到2月8日西安新冠肺炎累计确诊病例增加了88−7474=737,显然737>544,故D 错误.故选:D .4.答案:B解析:解:设等差数列{2a n+1}的公差为d ,且a 1=1,a 3=−13,∴2a 1+1=1,2a 3+1=3,∴3=1+2d ,解得d =1. ∴2a n +1=1+n −1=n ,∴a n =2n−1.那么a 2020=22020−1=−10091010. 故选:B . 设等差数列{2an+1}的公差为d ,且a 1=1,a 3=−13,可得2a 1+1=1,2a 3+1=3,3=1+2d ,解得d.可得通项公式,进而得出结论.本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.5.答案:C解析:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 解:(√x 3−2x )8二项展开式的通项公式为T r+1=C 8r⋅x8−r3⋅(−2)r ⋅x −r =(−2)r ⋅C 8r⋅x8−4r3,令8−4r 3=0,求得r =2,可得展开式的常数项为4C 82=112,故选C .6.答案:B解析:解:b =log 120.3>log 1212=1>a =(12)0.3,c =a b <a .∴c <a <b . 故选:B .利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.答案:A解析:本题考查二倍角公式以及诱导公式,属于基础题. 由,得,再运用二倍角公式以及诱导公式计算,即可得到答案.解:由,得,=−[1−2sin 2(π4+α)]=−(1−2×34)=12. 故选A .8.答案:A解析:由排列组合及计数问题分类讨论:①若选两个国内媒体一个国外媒体,②若选两个外国媒体一个国内媒体,可得解.本题考查了排列组合及计数问题,属中档题.。
2020年高考数学仿真押题试卷及答案(推荐)
2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(1)(3)i i -+的虚部是( ) A .4 B .4-C .2D .2-【解析】解:.∴复数(1)(3)i i -+的虚部是2-.【答案】D . 2.若集合,,则(A B = )A .{|12}x x -B .{|02}x x <C .{|12}x xD .{|1x x -或2}x >【解析】解:;.【答案】B .3.已知向量a ,b 的夹角为60︒,||1a =,||2b =,则|3|(a b += ) A .5B .17C .19D .21【解析】解:向量a ,b 的夹角为60︒,||1a =,||2b =,∴,则,【答案】C .4.设375()7a =,573()7b =,373()7c =,则a ,b ,c 的大小关系为( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【解析】解:由函数3()7x y =为减函数,可知b c <,由函数37y x =为增函数,可知a c >, 即b c a <<, 【答案】B .5.等差数列{}n a 的前n 项和为n S ,且21016a a +=,811a =,则7(S = ) A .30B .35C .42D .56【解析】解:等差数列{}n a 的前n 项和为n S ,且21016a a +=,811a =,∴,解得112a =,32d =,.【答案】B .6.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种【解析】解:①甲同学选择牛,乙有2种,丙有10种,选法有121020⨯⨯=种, ②甲同学选择马,乙有3种,丙有10种,选法有131030⨯⨯=种,所以总共有203050+=种. 【答案】B .7.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥ B .若c ⊥平面α,则//a α,//b α C .存在平面α,使得c α⊥,a α⊂,//b α D .存在平面α,使得//c α,a α⊥,b α⊥【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c ⊂平面α,则a 与α相交、平行或a α⊂,故A 错误;在B 中,若c ⊥平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α⊥,a α⊂,//b α,故C 正确;在D 中,若存在平面α,使得//c α,a α⊥,b α⊥,则//a b ,与已知a ,b 是两条异面直线矛盾,故D 错误.【答案】C .8.将函数()f x 的图象上的所有点向右平移4π个单位长度,得到函数()g x 的图象,若函数,0ω>,||)2πϕ<的部分图象如图所示,则函数()f x 的解析式为( )A .B .C .D .【解析】解:由图象知1A =,,即函数的周期T π=,则2ππω=,得2ω=,即,由五点对应法得23πϕπ⨯+=,得3πϕ=,则,将()g x 图象上的所有点向左平移4π个单位长度得到()f x 的图象, 即,【答案】C .9.已知定义域R 的奇函数()f x 的图象关于直线1x =对称,且当01x 时,3()f x x =,则5()(2f = )A .278-B .18-C .18D .278【解析】解:()f x 是奇函数,且图象关于1x =对称;;又01x 时,3()f x x =;∴.【答案】B .10.已知a R ∈且为常数,圆,过圆C 内一点(1,2)的直线l 与圆C 相切交于A ,B 两点,当弦AB 最短时,直线l 的方程为20x y -=,则a 的值为( ) A .2B .3C .4D .5 【解析】解:化圆为,圆心坐标为(1,)C a -,半径为21a +. 如图,由题意可得,过圆心与点(1,2)的直线与直线20x y -=垂直. 则21112a -=---,即3a =. 【答案】B .11.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为( ) A .479B .480C .455D .456【解析】解:根据题意,分3种情况讨论:①,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有553360A ⨯=种情况,即有360个大于420789的正整数, ②,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有44372A ⨯=种情况,即有72个大于420789的正整数,③,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有4424A =种情况,其中有420789不符合题意,有24123-=个大于420789的正整数,则其中大于420789的正整数个数有个;【答案】C .12.某小区打算将如图的一直三角形ABC 区域进行改建,在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知20AB m =,10AC m =,则DEF ∆区域内面积(单位:2)m 的最小值为( )A .253B .75314C .10037D .7537【解析】解:ABC ∆是直三角形,20AB m =,10AC m =,可得103CB =,DEF 是等边三角形,设CED θ∠=;DE x =,那么;则cos CE x θ=,BFE ∆中由正弦定理,可得可得,其中23tan 3α=; 1037x ∴;则DEF ∆面积【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量(,1)a x =,(3,2)b =-,若//a b ,则x = 32- .【解析】解:向量(,1)a x =,(3,2)b =-,//a b ,∴132x =-,解得32x =-. 故答案为:32-.14.若,则a 的值是 2 .【解析】解:,1a >,,解得2a =,故答案为:2;15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1b =,,当ABC ∆的面积最大时,cos A = . 【解析】解::,,,,由A ,(0,)B π∈,B A B ∴=-,或,2A B ∴=,或A π=(舍去). 2A B ∴=,.由正弦定理sin sin AC BCB A=可得,2cos a B ∴=,,30B π->,3B π∴<,∴当22B π=时S 取得最大值,此时.故答案为:0.16.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到直线50x -=的距离大于7的概率是 .【解析】解:如图,不等式对应的区域为DEF ∆及其内部. 其中(6,2)D --,(4,2)E -,(4,3)F , 求得直线DF 、EF 分别交x 轴于点(2,0)B -,当点D 在线段2x =-上时,点D 到直线50x -=的距离等于7,∴要使点D 到直线的距离大于2,则点D 应在BCD ∆中(或其边界)因此,根据几何概型计算公式,可得所求概率.故答案为:425.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设各项均为正数的数列{}n a 的前n 项和为n S ,满足:对任意的*n N ∈,都有111n n a S +++=,又112a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2log n n b a =,求【解析】解:(Ⅰ)根据题意,由111n n a S +++=,①, 则有1n n a S +=,②,(2)n①-②得:12n n a a +=,即112n n a a +=,又由112a =, 当1n =时,有221a S +=,即,解可得214a =, 则所以数列{}n a 是首项和公比都为12的等比数列, 故12n na =; (Ⅱ)由(Ⅰ)的结论,12n n a =,则,则.18.如图1,在直角梯形ABCD 中,//AB CD ,AD CD ⊥,2AD AB ==,作BE CD ⊥,E 为垂足,将CBE ∆沿BE 折到PBE ∆位置,如图2所示. (Ⅰ)证明:平面PBE ⊥平面PDE ;(Ⅱ)当PE DE ⊥时,平面PBE 与平面PAD 所成角的余弦值为255时,求直线PB 与平面PAD 所成角的正弦值.【解析】证明:(Ⅰ)在图1中,因为BE CE ⊥,BE DE ⊥, 所以在图2中有,BE PE ⊥,BE DE ⊥,又因,所以BE ⊥平面PDE ,因BE ⊂平面PBE ,故平面PBE ⊥平面PDE . 解:(Ⅱ)因为PE DE ⊥,PE BE ⊥,,所以PE ⊥平面ABED .又BE ED ⊥,以E 为原点,分别以ED ,EB ,EP 所在直线为x 轴,y 轴,z 轴,建立如图1所示的空间直角坐标系,设PE a =,(2D ,0,0),(0P ,0,)a ,(2A ,2,0), 则(2PD =,0,)a -,(2PA =,2,)a -. 设平面PAD 的法向量为(n x =,y ,)z ,由00n PD n PA ⎧=⎪⎨=⎪⎩,即.取2z =,得(n a =,0,2),取平面PBE 的法向量为(2ED =,0,0),由面PBE 与平面PAD 所成角的余弦值为255,得,即,解得4a =,所以(4n =,0,2),(0PB =,2,4)-,设直线PB 与平面PAD 所成角为α,.所以直线PB 与平面PAD 所成角的正弦值为25.19.为了保障某种药品的主要药理成分在国家药品监督管理局规定的值范围内,某制药厂在该药品的生产过程中,检验员在一天中按照规定每间隔2小时对该药品进行检测,每天检测4次:每次检测由检验员从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:)mg .根据生产经验,可以认为这条药品生产线正常状态下生产的产品的其主要药理成分含量服从正态分布2(,)N μσ. (Ⅰ)假设生产状态正常,记X 表示某次抽取的20件产品中其主要药理成分含量在之外的药品件数,求(1)P X =(精确到0.001)及X 的数学期望;(Ⅱ)在一天内四次检测中,如果有一次出现了主要药理成分含量在之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查;如果在一天中,有连续两次检测出现了主要药理成分含量在之外的药品,则需停止生产并对原材料进行检测.(1)下面是检验员在某一次抽取的20件药品的主要药理成分含量: 10.02 9.78 10.04 9.92 10.14 10.04 9.22 10.13 9.91 9.95 10.099.969.8810.019.989.9510.0510.059.9610.12经计算得,.其中i x 为抽取的第i 件药品的主要药理成分含量,1i =,2,⋯,20.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对本次的生产过程进行检查? (2)试确定一天中需停止生产并对原材料进行检测的概率(精确到0.001). 附:若随机变量Z 服从正态分布2(,)N μσ,则,,,,.【解析】解:(Ⅰ)抽取的一件药品的主要药理成分含量在之内的概率为0.9974,从而主要药理成分含量在之外的概率为0.0026,故.因此, X 的数学期望为;(Ⅱ)(1)由9.96x =,0.19s =,得μ的估计值为ˆ9.96μ=,σ的估计值为ˆ0.19σ=, 由样本数据可以看出有一件药品的主要药理成分(9.22)含量在ˆˆ(3μσ-,,10.53)之外,因此需对本次的生产过程进行检查.(2)设“在一次检测中,发现需要对本次的生产过程进行检查”为事件A ,则P (A );如果在一天中,需停止生产并对原材料进行检测,则在一天的四次检测中,有连续两次出现了主要药理成分含量在之外的药品,故概率为3[P P =(A )2][1P ⨯-(A ).故确定一天中需对原材料进行检测的概率为0.007.20.已知椭圆的离心率为22,且过点(2,2). (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设A 、B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记ABM ∆,ABN ∆的面积为1S ,2S ,求12||S S -的最大值.【解析】解:(Ⅰ)根据题意可得:22c a =,22421a b+=,222a b c =+, 解得:28a =,2b =.故椭圆C 的标准方程为:22184x y +=.(Ⅱ)由(Ⅰ)知(2,0)F ,当直线l 的斜率不存在时,12S S =,于是12||0S S -=; 当直线l 的斜率存在时,设直线,设1(M x ,1)y ,2(N x ,2)y , 联立22(2)184y k x x y =-⎧⎪⎨+=⎪⎩,得.,,于是.当且仅当22k =±时等号成立,此时12||S S -的最大值为4. 综上,12||S S -的最大值为4. 21.已知函数.(Ⅰ)讨论()f x 的单调性.(Ⅱ)若()0f x =有两个相异的正实数根1x ,2x ,求证.【解析】解:(Ⅰ)函数的定义域为(0,)+∞..①当0a 时,()0f x '<,()f x ∴在(0,)+∞上为减函数;②当0a >时,,()f x ∴在1(0,)a 上为减函数,在1(,)a +∞上为增函数.(Ⅱ)证明:要证.即证,即12112a x x <+. 由得,∴只要证.不妨设120x x >>,则只要证即证明:.令121x t x =>,则只要证明当1t >时,12lnt t t<-成立. 设,1t >,则,∴函数()g t 在(1,)+∞上单调递减,()g t g <(1)0=,即12lnt t t<-成立.由上分析可知,成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寒假作业(二十二) 小题限时保分练——长沙一模试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |y =lg(x -1)},B ={x ||x |<2},则A ∩B =( ) A .(-2,0) B .(0,2) C .(1,2)D .(-2,2)解析:选C 因为A ={x |x >1},B ={x |-2<x <2},所以A ∩B ={x |1<x <2}=(1,2). 2.复数2-ii =( )A .-1-2iB .-1+2iC .1-2iD .1+2i解析:选A2-ii=-i(2-i)=-1-2i. 3.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6=( ) A .8 B .6 C .4D .3解析:选D 法一:设等差数列{a n }的公差为d , 因为2(a 1+a 3+a 5)+3(a 8+a 10)=36,所以12a 1+60d =36,即a 1+5d =3,所以a 6=3.法二:因为a 1+a 5=2a 3,a 8+a 10=2a 9,所以2(a 1+a 3+a 5)+3(a 8+a 10)=6a 3+6a 9=36,所以a 3+a 9=6, 所以2a 6=a 3+a 9=6,所以a 6=3.4.已知向量a =(1,cos α),b =(sin α,1),若a ⊥b ,则sin 2α=( ) A .-12B .-1C.32D .1解析:选B 法一:因为a =(1,cos α),b =(sin α,1),且a ⊥b ,所以a ·b =sin α+cos α=0,所以tan α=-1,所以α=-π4+k π(k ∈Z),所以sin 2α=-1.法二:因为a =(1,cos α),b =(sin α,1),且a ⊥b ,所以a ·b =sin α+cos α=0,两边平方得,sin 2α+2sin αcos α+cos 2α=0,所以1+sin 2α=0,所以sin 2α=-1.5.函数f (x )=cos xx的图象大致为( )解析:选D 易知函数f (x )=cos x x 为奇函数,其图象关于原点对称,所以排除A 、B ;当x =π6时,f ⎝ ⎛⎭⎪⎫π6=cosπ6π6=33π>0,排除C ,故选D. 6.已知圆C :(x -2)2+y 2=1,直线l :y =kx ,在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12B.2-22C.3-33 D.2-32解析:选C 法一:若直线y =kx 与圆(x -2)2+y 2=1相离,则2|k |k 2+1>1,解得k <-33或k >33,又k ∈[-1,1],所以-1≤k <-33或33<k ≤1,所以事件“直线l 与圆C 相离”发生的概率为P =2-2332=3-33.斜角为π6或5π6,即法二:如图,当直线y =kx 与圆(x -2)2+y 2=1相切时,直线的倾直线的斜率为33或-33,所以直线l 与圆C 有公共点时,-33≤k ≤33,所以事件“直线l与圆C 相离”发生的概率为P =1-2332=3-33.7.执行如图的程序框图,已知输出的s ∈[0,4].若输入的t ∈[0,m ],则实数m 的最大值为( )A .1B .2C .3D .4⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1的解析:选 D 由程序框图知,该算法的功能是求分段函数s =值,作出s 的图象如图所示.由图象得,若输入的t ∈[0,m ],输出的s ∈[0,4],则m 的最大值为4,故选D.8.某几何体的三视图如图所示,则该几何体的表面积为( )A.7π3B .8+π3C .(4+2)πD .(5+2)π解析:选D 由几何体的三视图知,该几何体为组合体,其下部是底面直径为2、高为2的圆柱,上部是底面直径为2,高为1的圆锥.所以该几何体的表面积为4π+π+2π=(5+2)π,故选D.9.已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,z min =45,最大值为点O 与点A (-2,3)的距离的平方,z max =|OA |2=13.10.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点,若|AB |=6,则△AOB 的面积为( )A. 6 B .2 2 C .2 3D .4解析:选A 因为抛物线y 2=4x 的焦点F 的坐标为(1,0),当直线AB 垂直于x 轴时,|AB |=4,不满足题意,所以设直线AB 的方程为y =k (x -1),与y 2=4x 联立,消去x ,得ky 2-4y -4k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4,所以|y 1-y 2|=16k2+16,因为|AB |=1+1k2|y 1-y 2|=6,所以4⎝ ⎛⎭⎪⎫1+1k 2=6,解得k 2=2,所以|y 1-y 2|=16k 2+16=26,所以△AOB 的面积为12×1×26= 6. 11.已知函数f (x )=cos2ωx2+32sin ωx -12(ω>0,x ∈R),若函数f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,512B.⎝ ⎛⎦⎥⎤0,512∪⎣⎢⎡⎭⎪⎫56,1112C.⎝ ⎛⎭⎪⎫0,56D.⎝ ⎛⎦⎥⎤0,512∪⎣⎢⎡⎦⎥⎤56,1112 解析:选D f (x )=12⎝ ⎛⎭⎪⎫2cos 2ωx 2-1+32sin ωx =12cos ωx +32sin ωx =sin ⎝ ⎛⎭⎪⎫ωx +π6,当x ∈(π,2π)时,ωx +π6∈⎝⎛⎭⎪⎫ωπ+π6,2ωπ+π6,依题意,得⎩⎪⎨⎪⎧ωπ+π6≥k π,2ωπ+π6≤k +1π(k ∈Z),k -16≤ω≤k 2+512(k ∈Z).由k 2+512≥k -16,得k ≤76.由ω>0得k 2+512>0,所以k >-56,又k ∈Z ,所以k =0或1,当k =0时,ω∈⎝ ⎛⎦⎥⎤0,512;当k =1时,ω∈⎣⎢⎡⎦⎥⎤56,1112.所以ω的取值范围是⎝ ⎛⎦⎥⎤0,512∪⎣⎢⎡⎦⎥⎤56,1112.12.已知函数f (x )=f ′1ee x+f 02x 2-x ,若存在实数m 使得不等式f (m )≤2n 2-n 成立,则实数n 的取值范围为( )A.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞)B .(-∞,-1]∪⎣⎢⎡⎭⎪⎫12,+∞C .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ D.⎝⎛⎦⎥⎤-∞,-12∪[0,+∞) 解析:选A 因为f ′(x )=f ′1ee x+f (0)x -1,f (0)=f ′1e,所以f ′(1)=f ′(1)+f ′1e-1,所以f ′(1)=e ,f (0)=1,所以f (x )=e x +12x 2-x ,f ′(x )=e x+x -1.因为f ′(0)=0,且x >0时,f ′(x )>0,x <0时,f ′(x )<0,所以函数f (x )的最小值为f (0)=1.因为存在实数m 使得f (m )≤2n 2-n 成立,所以2n 2-n ≥1,解得n ≤-12或n ≥1.二、填空题(本题共4小题,每小题5分)13.已知向量a =(1,-1),b =(t,1),若(a +b )∥(a -b ),则实数t =________. 解析:法一:因为a =(1,-1),b =(t,1), 所以a +b =(t +1,0),a -b =(1-t ,-2),因为(a +b )∥(a -b ),所以-2(t +1)=0,解得t =-1.法二:因为(a +b )∥(a -b ),由平面向量的平行四边形法则可知,a ∥b ,所以t =-1. 答案:-114.已知双曲线经过点(22,1),其一条渐近线方程为y =12x ,则该双曲线的标准方程为________.解析:法一:因为第一象限的点(22,1)在渐近线y =12x 的右下方,所以双曲线的焦点在x 轴上,故设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),所以⎩⎪⎨⎪⎧b a =12,8a 2-1b 2=1,解得a =2,b =1,所以双曲线的标准方程为x 24-y 2=1.法二:因为双曲线的渐近线为y =12x ,所以设双曲线的方程为x 24-y 2=λ(λ≠0),又双曲线过点(22,1),所以λ=1,所以双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=115.已知三棱锥A BCD 中,AB ⊥平面BCD ,BC ⊥CD ,BC =CD =1,AB =2,则该三棱锥外接球的体积为________. 解析:因为BC =1,CD =1,BC ⊥CD ,所以BD =2,又AB =2,且AB ⊥平面BCD ,所以AD =2,AB ⊥CD ,所以CD ⊥平面ABC ,所以CD ⊥AC ,所以三棱锥A BCD 的外接球的球心为AD 的中点,半径为1,所以三棱锥A BCD 的外接球的体积为4π3.答案:4π316.已知数列{a n }中,a 1=1,a n +1=2a n +n -1(n ∈N *),则其前n 项和S n =________.解析:因为a n +1=2a n +n -1,所以a n +1+(n +1)=2(a n +n ),又a 1+1=2,所以数列{a n +n }是首项为2,公比为2的等比数列,所以a n +n =2n,所以a n =2n-n ,所以数列{a n }的前n 项和S n =21-2n1-2-1+n n 2=2n+1-2-n 2+n2. 答案:2n +1-2-n 2+n2。