【浙教版】九年级下第3章《投影与三视图》3.4 简单几何体的表面展开图(2)——圆柱的侧面积和全面积
浙教版九年级数学下册第三章《3.2简单几何体的三视图(2)》公开课课件

复习:
基本几何体三视图 的画法:
主视图 长
俯视图
左视图 高
宽
宽
(1)确定主视图的位置,画出主视图;
(2)在主视图的下方画出俯视图,注意 与主视图“长对正”;
(3)在主视图的右方画出左视图,注意 与主视图“高齐平”,与俯视图“宽相
等”。
范例
例1、画出下图所示的一些基本几何体 的三视图:
•
例2:画出下图支 架的三视图,支 架的两个台阶的 高度和宽度都是 解: 如图是支架的三视图 同一长度.
例3:
下图是一根钢 管的直观图,画 出它的三视图.
解:如图是钢管的三 视图,其中的虚线表 示钢管的内壁.
归纳
三视图中线的画法:
在画三视图时,看得见部分的轮 廓线通常画成实线,因被其他部分遮 挡而看不见部分的轮廓线通常画成虚 线。
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/302021/7/302021/7/307/30/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/302021/7/30July 30, 2021
课堂练习:
• 课本课内练习第1、2题
小结 1、基本几何体三视图的位置规定
2、基本几何体三视图的画法 3、三视图中线的画法
作业布置:
• 课本作业题第2题
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/302021/7/302021/7/307/30/2021 9:13:01 AM
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/302021/7/302021/7/30Jul-2130-Jul-21
初中数学浙教版九年级下册3

初中数学浙教版九年级下册3.4 简单几何体的表面展开图(2)同步训练一、基础夯实1.(2013•百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A. 6cm2B. 4πcm2C. 6πcm2D. 9πcm22.乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A. 7.5cmB. 6.25cmC. 5cmD. 4.75cm3.制作一个底面直径为30 cm、高为40 cm的圆柱形无盖铁桶,所需铁皮至少为( )A. 1425πcm2B. 1650πcm2C. 2100πcm2D. 2625πcm24.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A. B. C. D.5.(2013•无锡)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A. 30cm2B. 30πcm2C. 15cm2D. 15πcm26.一个长方形长为4cm,宽为2cm,以它的长边为轴,把长方形转一周后,得到一个圆柱体体积为()A. 8πcm3B. 4πcm3C. 16πcm3D. 12πcm37.如下图所示,已知圆柱的高为8,底面半径为3,若用一个平面沿着上底的直径竖直向下截该圆柱,那么截面的面积为()A. 24B. 48C. 32D. 728.一个圆柱的高是10分米,底面积为6.28平方分米,把它截成两个同样的小圆柱后,表面积比原来增加了()平方分米.A. 6.28B. 9.42C. 10D. 12.569.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________cm2.(结果保留π)10.把一个长、宽、高分别为3cm、2cm、1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________.11.一个几何体的三视图如图所示(单位:mm),你能画出这个几何体的图形吗?并求出其表面积和体积.12.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)二、提高训练13.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B. C. D.14.如图,已知圆柱的底面直径BC= ,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A. B. C. D.15.如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A. 4.5B. 6C. 8D. 916.如图,在正方形纸片ABCD中,EF∥AB,M,N是线段EF的两个动点,且MN=EF,若把该正方形纸片卷成一个圆柱,使点A与点B重合,若底面圆的直径为6cm,则正方形纸片上M,N两点间的距离是________cm.17.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为________.答案解析部分一、基础夯实1. C解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm2.故选:C.分析:易得此几何体为圆柱,底面直径为2cm,高为3cm.圆柱侧面积=底面周长×高,代入相应数值求解即可.2. B解:设高变成了xcm,根据题意得π×(4÷2)2×4=π×(3.2÷2)2×x,解得x=6.25,答:高变成了6.25cm.故答案为:B.分析:设高变成了xcm,根据圆柱的体积保持不变列出方程求解即可3. A解:圆柱的侧面积为:2=圆柱的底面圆的面积为:∴需铁皮至少为:1200+225=1425故答案为:A分析:根据题意可得出圆柱底面圆的半径为15,再根据圆柱的侧面积=底面圆的周长×圆柱的高;然后再根据圆柱的表面积=圆柱的侧面积+底面圆的面积,计算即可求解。
九年级数学下册第3章投影与三视图3.4简单几何体的表面展开图第1课时棱柱的表面展开图练习浙教版(2

九年级数学下册第3章投影与三视图3.4 简单几何体的表面展开图第1课时棱柱的表面展开图同步练习(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册第3章投影与三视图3.4 简单几何体的表面展开图第1课时棱柱的表面展开图同步练习(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册第3章投影与三视图3.4 简单几何体的表面展开图第1课时棱柱的表面展开图同步练习(新版)浙教版的全部内容。
第3章三视图与表面展开图3.4 简单几何体的表面展开图第1课时直棱柱的表面展开图知识点1 立方体、长方体的表面展开图1.2016·绍兴如图3-4-1是一个正方体,则它的表面展开图可以是( )图3-4-1图3-4-22.如图3-4-3是一个长方体包装盒,则它的表面展开图是()图3-4-3 图3-4-4知识点2 其他直棱柱的展开图图3-4-53.图3-4-5是某个几何体的表面展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱4.下列图形经过折叠不能围成一个棱柱的是()图3-4-65.2017·包头将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )图3-4-76.2017·舟山一个立方体的表面展开图如图3-4-8所示,将其折叠成立方体后,“你”字对面的字是()图3-4-8A.中 B.考 C.顺 D.利7.图3-4-9①②为同一长方体房间的示意图,图③为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图①中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图②中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近.(2)在图③中,半径为10 dm的圆M与D′C′相切,圆心M到边CC′的距离为15 dm。
浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案4

浙教版数学九年级下册《3.4 简单几何体的表面展开图》教案4一. 教材分析《3.4 简单几何体的表面展开图》是浙教版数学九年级下册的教学内容。
这部分内容主要让学生了解和掌握简单几何体的表面展开图的特点和绘制方法。
通过学习,学生能够更好地理解几何体的空间结构,提高空间想象能力。
二. 学情分析九年级的学生已经掌握了基本的几何知识,具备一定的学习能力和探究精神。
但部分学生在空间想象力方面还稍显不足,因此需要在教学过程中给予更多的引导和鼓励。
三. 教学目标1.了解简单几何体的表面展开图的特点和绘制方法。
2.提高学生的空间想象能力和动手操作能力。
3.培养学生的合作意识和创新精神。
四. 教学重难点1.重难点:简单几何体的表面展开图的特点和绘制方法。
2.难点:如何培养学生的空间想象能力和动手操作能力。
五. 教学方法1.采用问题驱动法,引导学生主动探究和发现。
2.运用合作学习法,培养学生的团队协作能力。
3.利用动手操作法,提高学生的实践能力。
4.引入案例分析法,帮助学生更好地理解和应用知识。
六. 教学准备1.准备简单几何体的模型,如长方体、正方体、圆柱体等。
2.准备相应的表面展开图,以便进行对比和分析。
3.准备黑板和多媒体设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用多媒体展示各种简单几何体的图片,引导学生观察和思考:这些几何体有什么特点?它们在现实生活中的应用有哪些?2.呈现(10分钟)展示简单几何体的模型和表面展开图,让学生直观地感受两者的关系。
引导学生发现和总结几何体的表面展开图的特点。
3.操练(10分钟)学生分组讨论,每组选择一个几何体,尝试绘制其表面展开图。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几组学生的作品进行展示和点评,让学生互相学习和借鉴。
教师总结几何体表面展开图的绘制方法和注意事项。
5.拓展(10分钟)引导学生思考:如何将一个几何体展开成多个部分?这些部分之间有什么联系?学生分组探讨,教师点评和指导。
九年级数学下册《简单几何体的表面展开图》教学设计

九年级数学下册《简单几何体的表面展开图》教学设计一、教材分析本节课的内容是新版浙教版教材变动幅度较大的一个地方,将原教材中的八上的《直棱柱》、九上的《3.6圆锥的侧面积和全面积》与九下的《投影与三视图》进行整合,并且改变了呈现的顺序,最后整合成的九下第三章《三视图与表面展开图》.这样的修订,使教材更加紧凑,逻辑性更强,符合学生的认知规律,也便于教师教学.本节课内容是在学生已经初步具备空间观念(即三视图的相关知识)的前提下,在学生已熟知圆的周长、面积,弧长、扇形的面积;初步积累直棱柱、圆柱的表面展开图的数学活动经验的基础上,通过类比、操作、实验、观察、猜想、归纳、证明等数学活动,将简单几何体(圆锥)转化为平面图形,进一步帮助学生形成三维空间概念,发展空间想象能力;同时,为学习圆台的侧面展开图做好铺垫,也为高中的立体几何学习打好基础.二、教学目标知识与技能目标:1、知识目标:(1)了解圆锥是怎样的一种旋转体.(2)了解圆锥的表面展开图,并会画圆锥的表面展开图;理解圆锥的侧面积公式,全面积公式,侧面展开图的圆心角公式及其推导过程.(3)会计算圆锥的侧面积和全面积,会计算圆锥侧面展开图的圆心角.2、技能目标:(1)通过动手操作、小组合作来探索圆锥的侧面积公式和侧面展开图的圆心角公式,并画出圆锥的侧面展开图,从而培养学生动手操作、合作交流、归纳概括的能力.(2)通过观察圆锥与侧面展开图的关系培养学生观察、分析和转化的能力,形成三维空间概念,发展空间想象能力.(3)通过运用公式的计算和“用一用”的求解,培养学生应用数学知识解决实际问题的能力.旨在培养学生探究、应用数学和创新的能力.过程与方法目标:(1)类比圆柱的学习,经历圆锥形成、相关概念的发生过程.(2)通过观察、猜想、操作、合作等活动,经历自主探究的认识过程,即从观察、比较、分析、归纳中,体会类比、转化、对应的思想方法.旨在培养学生的科学态度和科学精神.情感态度与价值观目标:(1)通过研究圆锥与侧面展开图的关系,类比圆柱研究圆锥并延伸至圆台,体验客观事物是不断运动发展变化,而事物之间总是互相联系、互相制约的辩证唯物主义观点.(2)通过动手操作、合作探究,激发学生对圆锥知识的好奇心及兴趣,逐步形成积极参与数学活动,主动与他人合作交流的意识.(3)体现数学学习的快乐,体会知识源于实践,又运用于生活.旨在让学生体会圆锥在生活中的广泛应用;体验数学学习的乐趣,享受征服困难后获得成功的喜悦感,提高应用数学的意识.三、教学重难点重点:认识圆锥的表面展开图,并会画它们的表面展开图.难点:理解圆锥侧面展开图的形状,以及它与圆锥母线长l,底面圆半径r之间的关系.教学设备或教辅工具:多媒体、希沃授课助手和手机、圆锥模型、圆规、带刻度的直尺、剪刀、胶带、半径为4cm和6cm的圆形纸片.四、教学流程1.类比联想,引入新课教师:上节课我们学习了圆柱的表面展开图,对于圆柱,我们已经有了哪些认识?学生说教师板书:1、形成;2、相关概念;3、表面展开.;4、三视图教师:将矩形绕它的一条边旋转一周,它的其余各边所成的面围成的一个几何体是圆柱,如果把矩形改成直角三角形,将一个直角三角形绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体是什么?(1)先让学生自己猜想.(2.教师再用几何画板演示.(3.类比圆柱的相关概念,学生很自然地能说出圆锥的相关概念.(4.类比圆柱的学习,学生很自然地能说出圆锥的研究路径和方法.2.合作探究,发现新知等学生通过类比圆柱的学习,联想到圆锥的研究途径和方法后,教师:现在我们就来研究圆锥的侧面展开图,想象一下,会是什么图形?学生猜想是扇形后,教师组织学生进行四人小组合作,剪出圆锥模型的展开图,观察剪出图形的特点,再一起合作完成以下问题串:(1.将一个圆锥模型的侧面沿它的一条母线剪开、铺平.观察所得的平面图形是什么图形?(2.圆锥的母线与侧面展开图有什么关系?(3.圆锥的底面周长与侧面展开图有什么关系?(4.圆锥的侧面积与侧面展开图的面积有什么关系?请一个小组上台展示,并把展开图用磁铁挂在黑板上,并进行讲解,教师再用课件动画演示,实物模型演示.通过这些活动后,“圆锥的母线对应扇形的半径;圆锥的底面周长对应扇形的弧长;圆锥的侧面积对应扇形的面积”已经在学生的脑海中自然流淌.教师板书:对应.教师:类比圆柱的侧面积公式,你觉得圆锥的侧面积和哪些量有关?学生回答后,教师:如果已知圆锥的底面半径r和母线l,你能推导出圆锥的侧面积吗?学生自己思考,推导出圆锥的侧面积.全面积公式.教师:我们观察圆锥的侧面积和哪个公式在形式上很相似?学生回答:借助几何画板的演示,学生体悟这些公式之间的联系,加深对侧面积公式的理解.3.多样应用,内化新知3..我来算一算已知一个圆锥的底面半径为3cm,母线长为6cm,则这个圆锥的侧面积为_________,全面积为__________3..我来判一判学生判断这句话不对,并解释了理由.教师提炼:圆锥的高h,底面半径r和母线l的数量关系式..3..我来想一想圆锥形烟囱帽(如图)的母线长为100cm,高为60cm.变“封闭”为“开放”,让学生进行联想,自己编题.教师:做烟囱帽时,往往先在铁皮上画好扇形,然后裁剪下来围成圆锥的形状.这个圆锥形烟囱帽展开图到底是怎么样的一个扇形呢?带着这个问题我们来完成下面的探究活动.4.合作学习,再探新知4..合作学习请一个小组上台展示,教师板书:当母线l一定时,圆心角越大,则r越大;当圆心角一定时,l越大,则r越大.教师:刚才我们从平面图形到空间图形,直观地感受了这三者之间的关系.数学是一门严谨的学科,如果扇形的圆心角记作θ,那么θ,l,r能用怎样的等式来表示呢?引导学生作简要推理:方法一:利用圆锥底面圆的周长等于展开后扇形的弧长:方法二:利用圆锥的侧面积等于展开后扇形的面积:4..我来画一画圆锥形烟囱帽(如图)的母线长为100cm,高为60cm.以1:50的比例画出这个烟囱帽的展开图.借助希沃授课助手和手机,将学生的作品进行展示,并点评.5.实际应用,深化新知在一个底面半径为1m,母线长为6m的圆锥形屋顶内,一蜘蛛在点A处,点A是底面圆周上一点.(1)如图1,试问:蜘蛛从点A出发沿圆锥的侧面爬行一周后回到点A,最近路线如何爬行?追问:最近路线的长度是多少?(2)如图2,一苍蝇在点D处,D是过母线AB的轴截面上另一母线BC的中点,试问:蜘蛛为捉住B处的苍蝇,最近路线又如何爬行?要求学生先独立思考,再相互交流.通过师生交流,达成共识,将圆锥的侧面展开,将立体图形转化为平面图形.6.总结盘点,凸显四基这节课你学到了什么概念?说说你对概念的理解?你有什么学习体验?【设计意图:让学生观察通过上述图示,从基本知识、基本技能、基本数学思想方法和基本活动经验四个维度进行总结,再次体验观察、实验、思考、归纳、猜想、验证(证明)是获取数学知识的重要途径】7.布置作业,拓展联想将一个直角梯形绕它的一条垂直于底边的腰旋转一周,它的其余各边所成的面围成的一个几何体是什么?你能研究这个立体图形的哪些方面?你打算怎么研究.。
九年级下第3章投影与三视图课件(浙教版共10份)(9)全面版

4.
(只列式不计算) 根据给出数据求侧面积: • S侧=ch =31.4×15
15
C=31.4 (单位:厘米)
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时 光不会因你而停留,你却会随着光阴而老去。 有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做��
新浙教版九年级数学下册第三章《3.2简单几何体的三视图(2)》优质公开课课件.ppt
。2021年1月14日星期四2021/1/142021/1/142021/1/14
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/142021/1/142021/1/141/14/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/142021/1/14January 14, 2021
3.2简单几何体的三视图(2)
复习:
基本几何体三视图 的画法:
主视图 长
俯视图
左视图 高
宽
宽
(1 与主视图“长对正”;
(3)在主视图的右方画出左视图,注意 与主视图“高齐平”,与俯视图“宽相
等”。
范例
例1、画出下图所示的一些基本几何体 的三视图:
•
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/142021/1/142021/1/142021/1/14
谢谢观看
• 10、人的志向通常和他们的能力成正比例。2021/1/142021/1/142021/1/141/14/2021 6:42:25 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/142021/1/142021/1/14Jan-2114-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/142021/1/142021/1/14Thursday, January 14, 2021 • 13、志不立,天下无可成之事。2021/1/142021/1/142021/1/142021/1/141/14/2021
(1)圆柱
(2)四棱锥 (3)球
圆
柱
主视图
九年级数学下册第3章三视图与表面展开图3.2简单几何体的三视图教学课件新版浙教版
说一说
1、说出圆柱、圆锥、球、直三棱柱的三视图吗?
2、有没有三视图都一样的物体? 3、画三视图的规则如何?
填一填
1.直三棱柱的三视图分别是 矩形 , 矩形 , 三角形 ; 2.圆锥的三视图分别是 三角形 ,三角形 , 圆形 . 3.圆柱的三视图分别是__矩__形___,__矩__形___,__圆__形___. 4. 三视图都一样的几何体是 球体 , 立方体 .
在主视图、俯视图中都体现形体的长度,且长度在竖 直方向上是对正的,我们称之为长对正。
在主视图、左视图上都体现形体的高度,且高度在水 平方向上是平齐的,我们称之为高平齐。
在左视图、俯视图上都体现形体的宽度,且是同一形 体的宽度,是相等的,我们称之为宽相等。
3.2简单几何体的三视图(2)
温故而知新
主视图 俯视图
左视图 A
主视图 俯视图
左视图 C
主视图 左视图
B 俯视图
主视图 俯视图
左视图 D
例4.一个圆锥如图,底面直径为8 cm,高6 cm, 按1:4比例画 出它的三视图.
主视图
左视图
俯视图
圆柱、圆锥和球的三种视图如下表所示:
几何体
主视图
左视图
俯视图
例2、如图,一个蒙古包上部的圆锥部分和下部的圆柱部分 的高都是2 m,底面直径为3 m,请以1:200的比例画出它的 三视图.
请画它的三视图.
主视图
左视图
3cm
2cm 4cm
主视方面
3cm
3cm
4cm
2cm
2cm 4cm
俯视图
点E KN
GF 矩形OPQR
B
图3-19
长方体和立方体都是直四棱柱。
(浙教版)九年级数学下册 同步备课系列专题3.4 简单几何体的表面展开图(第2课时)(作业)
第3章投影与三视图3.4 简单几何体的表面展开图(第2课时)一、选择题1.观察下列图形,其中是正方体的表面展开图的是()A.B.C.D.【答案】C【分析】由正方体的表面展开图,“1-4-1型”的6种,“2-3-1型”的3种,“2-2-2型”的1种,“3-3型”的1种,可判断,A B,同时正方体的表面展开图中不能出现“田”字型、“凹”字型,可判断D,只有选项C中的图形符合题意,从而可得答案.【详解】解:正方体的表面展开图,共有11种情况,其中“1-4-1型”的6种,“2-3-1型”的3种,“2-2-2型”的1种,“3-3型”的1种,选项错误;,A B同时正方体的表面展开图中不能出现“田”字型、“凹”字型,∴选项错误;D选项C中的图形符合题意,故选C.【点睛】本题考查的是正方体的表面展开图,掌握正方体的表面展开图的形状与特点是解题的关键.2.把一个圆柱体橡皮泥揉成一个与它等底的圆锥体,高将()A .扩大3倍B .缩小3倍C .扩大6倍D .缩小6倍【答案】A【分析】 根据等底等高的圆锥形和圆柱形的体积关系解答即可.【详解】 解:∵在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形的体积是圆柱形体积的13 ∴,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍.故答案为A .【点睛】 本题主要考查了等底等高的圆锥形和圆柱形的体积关系,掌握等底等高的圆锥形的体积是圆柱形体积的13是解答本题的关键.3.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为( )2cmA .πB .2πC .3πD .4π 【答案】C【分析】直接利用“圆锥的侧面积=π×底面半径×母线长”解答即可.【详解】解:该圆锥的侧面积为π×1×3=3π.故答案为C .【点睛】本题考查了求圆锥的侧面积,掌握“圆锥的侧面积=π×底面半径×母线长”是解答本题的关键. 4.一个圆锥的底面半径为3cm ,母线长为5cm ,这个圆锥的侧面积为( )A .212cm πB .215cm πC .2cmD .220cm π 【答案】B【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【详解】解:这个圆锥的侧面积=π×3×5=15πcm 2,故选:B.【点睛】本题考查了圆锥的面积计算;掌握圆锥的侧面积计算公式是解决本题的关键.5.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为()A.10B.12C.14D.20【答案】A【分析】由于圆柱的高为12cm,S为BC的中点,故BS=6cm,先把圆柱的侧面展开,连接AS,利用勾股定理即可得出AS的长.【详解】解:沿着S所在的母线展开,如图,连接AS,则AB=12×16=8,BS=12BC=6,在Rt△ABS中,根据勾股定理AB2+BS2=AS2,即82+62=AS2,解得AS=10.∵A,S两点之间线段AS最短,∴点A到点S移动的最短距离为AS=10cm.故选:A.【点睛】本题考查的是平面展开−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.6.如图,将长方形ABCD 绕虚线l 旋转一周,则形成的几何体的体积为( )A .πr 2hB .2πr 2hC .3πr 2hD .4πr 2h【答案】C【分析】 根据柱体的体积V=S •h ,求出形成的几何体的底面积,即可得出体积.【详解】解:∵柱体的体积V=S •h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:()22223r r r πππ-=,∴形成的几何体的体积等于:23r h π.故选:C .【点睛】本题主要考查了圆柱的形成,圆柱体体积公式,根据已知得出柱体的底面面积是解决问题的关键. 7.一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )A .46米2B .37米2C .28米2D .25米2【答案】B【分析】由图形可知分四层,每一层再分侧面与上表面两部分求出表面积,然后相加即可得解.【详解】解:最上层,侧面积为4,上表面面积为1,总面积为4+1=5,第二层,侧面积为4,第三层,侧面积2×4=8,上表面面积为4-1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9-4=5,总面积为12+5=17,5+4+11+17=37,所以被他涂上颜色部分的面积为37平方米.故选:B.【点睛】本题考查了几何体的表面积,注意分四层,每一层再分侧面积与上表面两部分求解,注意求解的层次性是关键.8.已知一圆锥的母线长为6,底面半径为3,则该圆锥的侧面积为()A.27πB.36πC.18πD.9π【答案】C【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:∵圆锥的母线长为6,底面半径为3,∴该圆锥的侧面积为:π×3×6=18π.故选:C.【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.二、填空题9.如图,圆锥的底面圆直径AB 为2,母线长SA 为4,若小虫P 从点A 开始绕着圆锥表面爬行一圈到SA 的中点C ,则小虫爬行的最短距离为________.【答案】【分析】将圆锥的侧面展开,是一个扇形,AC 就是小虫爬行的最短路程,利用弧长与圆心角的公式,求展开图的圆心角l 180n R π=,R=4,l=2πr=2π,可求出n 的大小,由于n=90º,利用勾股定理可求AC 的长即可. 【详解】把圆锥的侧面展开,弧长是2πr=2π,母线AS=4, 侧面展开的圆心角4l 2180180n R n πππ===,n=90º即∠ASC=90º, C 为AD 的中点SD=2,线段AC 是小虫爬行的最短距离,在Rt △SAC 中,由勾股定理的故答案为:【点睛】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.10.用10个棱长为a cm的正方体摆放成如图的形状,像这样向下逐层累加摆放总共10层,其表面积是________2cm.【答案】330a2【分析】一层是6个面,二层有12个面,第三层有18个面(除去重合的),…,第十层有60个面,相加后乘以一个正方形面积即可.【详解】解:若如此摆放10层,其表面积是6×(1+2+…+10)a2=330a2.故答案为:330a2.【点睛】本题考查了几何体的表面积,图形的变化类的应用,主要考查学生的观察图形的能力,关键是能根据结果得出规律.11.如图,圆锥的母线长OA=6,底面圆的半径为32,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为___________(结果保留根号)【答案】【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为32, ∴圆锥的底面周长为2π×32=3π, 设圆锥的侧面展开图的圆心角为n . ∴63180n ππ⨯=,解得n =90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,∴=.故答案为:.【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.12.已知圆锥形模具的母线长、半径分别是12cm 、4cm ,求得这个模具的侧面积是______.【答案】248cm π【分析】根据圆锥侧面积公式直接计算即可.【详解】圆锥侧面积=12×底面周长×母线长 4r =,∴底面圆的周长为8π,21812482S cm ππ∴=⨯⨯=, 故答案为:248cm π.【点睛】本题考查了圆锥侧面展开后的面积问题,熟记基本公式是解题关键.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径5cm r =,该圆锥的母线长12cm l =,则扇形的圆心角θ度数为_______.【答案】150°【分析】根据扇形的弧长公式解题.【详解】圆锥的底面周长即是侧面展开图扇形的弧长,2180n l r ππ∴=︒ 1225180n ππ⨯∴⨯=︒,解得625=150n =⨯︒ 故答案为:150°.【点睛】本题考查圆锥侧面展开图的圆心角,涉及扇形的弧长公式,是重要考点,难度较易,掌握相关知识是解题关键.14.如图所示的平面纸能围成正方体盒子,请把与面A 垂直的面用图中字母表示出来是__.【答案】B、C、E、F【分析】根据正方体展开图的特征,属于正方体展开图的“141”结构,将它折成正方体后,A面与D面相对,其余的面都与A面垂直,从而可得答案.【详解】解:因为正方体的表面展开图,相对的面之间一定相隔一个正方形,面“A”与“D”是相对面,它们互相平行,剩下的面都与A面垂直;所以:围成正方体盒子,与面A垂直的面用图中字母表示出来是:B、C、E、F;故答案为:B、C、E、F.【点睛】本题是考查正方体的展开图,是培养学生的观察能力和空间想象能力.此类题可动手折叠一下,即可解决问题,又锻炼了动手操作能力.三、解答题15.如图,用若干个棱长完全相同的小正方体搭成一个几何体.(1)请画出从正面、左面、上面观察该几何体得到的形状图;(2)若每个小正方体的棱长为2cm,则该几何体的表面积为_____2cm.【答案】(1)见详解;(2)168【分析】(1)分别从正面、左面、上面观察该几何体,从而画出三视图;(2)分别数出(1)中三个方向小正方体的面的个数,再乘以2,然后求得一个面的面积,把它们相乘即可求解.【详解】解:(1)观察几何体,可得:(2)()2258822168cm ++⨯⨯=. 故答案是:168【点睛】本题考查了画三视图、求几何体的表面积,关键是在画图时一定要将几何体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.16.如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B 出发,沿圆锥侧面爬到过母线AB 的轴截面上另一母线AC 上,问它爬行的最短路线是多少?【分析】结合题意进行曲面展开,通过在平面扇形图中计算最短路路径问题.【详解】如图,沿过母线AB 的轴截面展开得扇形ABC ,此时弧BC 的长为底面圆周长的一半,故BC π=, 由180A AB BC π∠=︒,3AB =,则60A ∠=︒, 作BD AC ⊥,此时BD 即为蚂蚁爬行的最短路径,∴在Rt ABD △中,BD AB ==.【点睛】本题考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,来解决.17.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)若从正面看到的形状图的长为15cm,宽为4cm;从左面看到的形状图的宽为3cm,从上面看到的形状图的最长边长为5cm,求这个几何体的所有棱长的和为多少?它的侧面积为多少?它的体积为多少?【答案】(1)直三棱柱;(2)所有棱长的和69cm,侧面积180cm2,体积90cm3【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)这个几何体的所有棱长的和为2个3cm、2个4cm、2个5cm,3个15cm的和;三个长为15cm,宽分别为3cm、4cm、5cm的长方形的面积即是几何体的侧面积;先求出俯视图的面积,再乘高15cm,即为体积.【详解】解:(1)直三棱柱;(2)这个几何体所有棱长的和:153345269cm⨯+++⨯=.它的侧面积:(3+4+5)15⨯=180cm2;它的体积:12×3×4×15=90cm3故这个几何体的所有棱长的和为69cm,它的侧面积为180cm2,它的体积为90cm3.【点睛】此题考查从三视图判断几何体,掌握棱柱的侧面都是长方形,上下底面是几边形就是几棱柱是解决问题的关键.18.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.【答案】(1)5,22;(2)答案见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为1,1,2;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为2,1,1.【详解】(1)几何体的体积:1×1×1×5=5(立方单位),表面积:(4+3+4)×2=22(平方单位);故答案为:5,22;(2)如图所示:.【点睛】本题主要考查了画几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.19.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.42cm.【答案】(1)画图见解析;(2)2【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;【详解】(1)S=⨯+++(2)2(677)2=⨯+2202()2=42cm答:它的表面积是42cm2.【点睛】本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.20.如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,则这个几何体中所有棱长的和是多少?它的表面积是多少?【答案】(1)直三棱柱;(2)51cm;2120cm【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与表面积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的表面积为:2×(12×3×4)+(3+4+5)×9=120(cm2)答:所有棱长的和是51cm,它的表面积为120cm2.【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.。
新浙教版九年级下册初中数学 3-4 简单几何体的表面展开图 教学课件
答:这个圆柱的直径约为9.6cm。
第四十二页,共七十七页。
1.如图,已知矩形ABCD, AB=25 cm, AD=13 cm . 若以AD边 为轴,将矩形旋转一周,则所成的圆柱的底面直径是 _______5_0cm,母线长是________c1m3 ,侧面展开图是一组邻边长分 别为 ___________5的0π一cm个和矩13形cm.
问题1.圆柱体怎么形成呢? 将矩形绕一边所在直线旋转360°所形 成的几何体
问题2.你对圆柱还有哪些了解?
S侧 =2 rh
S表 =2 rh+2 r 2
V = r 2h
第五十二页,共七十七页。
第3课时
试一试:以直角三角形一条直角边所在的直线为轴,其 余各边旋转一周而成的面所围成的几何体是……?
第五十三页,共七十七页。
S侧=2πrl 思想:“转化思想”
S全= S侧+ 2S底=2πrl+ 2πr2
求圆柱的侧面积(立体问题) 转化为求矩形的面积(平面
问题)
运动的观点(圆柱的形成)
方法:圆柱的侧面展开(化曲为直).
第五十页,共七十七页。
如图为一个圆柱的三视图.根据三视图的尺寸,画出这个圆柱
的表面展开图.
第五十一页,共七十七页。
AB CD E
第十二页,共七十七页。
添上一个小正方形,使下图折叠后能围成一个立方体, 有哪几种添法?
AB CD E
第十三页,共七十七页。
添上一个小正方形,使下图折叠后能围成一个立 方体,有哪几种添法?
AB CD E
第十四页,共七十七页。
添上一个小正方形,使下图折叠后能围成一个立方体, 有哪几种添法?
S圆柱全面积=圆柱侧面积+2×底面积 =2πr l+ 2πr2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2cm
.
2cm
.
小组合作计算出圆柱的表面积:
①S侧=ch =3.14×2×2 =12.56(cm²) ③S表= S侧+ 2S底 ②S底=πr² =12.56+3.14×2 =3.14×1² =12.56+6.28 =3.14(cm²) =18.84(cm²)
判断:(对的画“√”,错的画“×”) 1、圆柱的侧面展开可以得到一个长方形,这个长方形的长 等于圆柱的底面直径,宽等于圆柱的高。 ( )
①S侧=ch =3.14×2×1 =6.28(m²) ③S表= S侧+ 2S底 ②S底=πr² =6.28+0.2826×2 =3.14×0.3² =6.8452 =0.2826(m²) ≈6.85(m²)
• 3.如图,把一个圆柱形木块沿它的轴剖开 ,得矩形ABCD。已知AD=18cm,AB= 30cm,求这个圆柱形木块的表面积(精 确到1cm2)
分析:由图知,圆柱底面 的半径r为1cm,母线长L为 2.5cm 。因此圆柱的表面 展开图中两个底面应画成 半径为1cm 的圆,侧面展 开图应画成 2πr=2π×1≈6.28(cm),宽 为2.5cm的长方形。
解:所求圆柱的表面展开图如下:
• S侧=2πr • =2× π ×1 ×2.5 • =5 π (cm²) • S全=2πr²+ 2πrL • = 2πr×1²+ 2πr×1 ×2.5 • = 7 π (cm²) • 答:这个圆柱的侧面积为5 π cm²,全面积 为 7π cm².
阅读课本P84弄清下面几个概念
底面
侧面
高、母线
讨论:
怎样求圆柱的侧面积?
长方 形 圆柱的侧面展开后是_______
圆柱的形成
可以看成
由矩形旋转而成
圆柱的展开
得出公式
S侧=c·h=2πrh S表= S侧+ 2S底
把下面圆柱的侧面展开,得到的长方形的长和 宽各是多少厘米?两个底面分别是多大的圆?
4.Βιβλιοθήκη (只列式不计算) • S侧=ch =31.4×15
15
C=31.4 (单位:厘米)
×
2、给大厅的圆柱刷油漆,刷油漆的部分面积是圆柱的侧 面积。
(√
)
3、圆柱形通风管的表面积等于它的侧面积。(
√
)
4、一个圆柱的侧面展开是正方形,它的底面周长和高 相等。 ( )
√
• 例3.如图为一个圆柱的三视图.以相同的比 例画出它的表面展开图,并计算它的侧面 积和全面积. (结果保留π)
25
10
• S侧=2πr • =2× π ×1 ×2.5 • =5 π (cm²) • S全=2πr²+ 2πrL • = 2πr×1²+ 2πr×1 ×2.5 • = 7 π (cm²) • 答:这个圆柱的侧面积为5 π cm²,全面积 为 7π cm².
①铝皮: ②羊皮: S侧=ch 2S底=πr²×2 =3.14×6×2.6 =3.14×3²×2 =3.14×15.6 =3.14×18 =48.984(dm²) =56.52(cm²)
第3章 三视图与表面展开图
——圆柱的侧面积和全面积
在一个圆柱形的牛奶罐的表面上A处有 一只蚂蚁,它发现雪糕壳表明上的B 处有一滴残留的雪糕,那么请你为这 只蚂蚁设计一条最短的路线,使它最 快爬到B处。 • 把一个圆柱侧面展开,是什么图形?
圆 柱 • 圆柱的底面 的 • 圆柱的侧面 • 圆柱的母线 有 关 概 念