人教版初三数学上册22.3实际问题和二次函数.3实际问题与二次函数3
22-3 实际问题与二次函数(3)

1 2 这条抛物线表示的二次函数为 y x 教材导读 2
2
解得 x1 6 , x2 6 水面的宽度 2 x 2 6 m
水面下降1cm,水面宽度增加____________m. 2 6 4
1 2 解: 3 x 2
x 6
2
1
-2
-1
1 -1 -2
2
-3
解法二
22-3 实际问题与二次函数(3)
人教版九年级数学上册
第
3 课时
利润问题
课件说明
• 二次函数是单变量最优化问题的数学模型,如生活中 涉及的求最大利润,最大面积等。这体现了数学的实 用性,是理论与实践结合的集中体现。本节课主要研 究建立坐标系解决实际问题.
阅读教材第51页至52页,明确学习目标
学习目标:
4 所以该车不能通过隧道
2、一场篮球赛中,球员甲跳起投篮,如图2,已知球在 A处出手时离地面20/9 m,与篮筐中心C的水平距离是 7m,当球运行的水平距离是4 m时,达到最大高度4m (B处),设篮球运行的路线为抛物线。篮筐距地面 3m。 ①问此球能否投中?
测评反馈
(选做)②、此时对 方球员乙前来盖帽。 已知乙跳起后摸到的 最大高度为3.19m, 他如何做才能盖帽成 功?
问题1: 图中是抛物线形拱桥,当拱顶离水面 2 m时,水面 宽 4 m 。水面下降 1 m,水面宽度增加多少? (1)求宽度增加多少需要什 么数据?
教材导读 (2)表示水面宽的线段的端 点在哪条曲线上?
探究“拱桥”问题
(3)如何求这组数据?需要先求什么?
(4)图中还知道什么?
(5)怎样求抛物线对应的函数的解析式?
解决抛物线型建筑问题“三步骤” 1、根据题意,建立恰当的坐标系,合理地设出所求的 函数的表达式。 2、准确转化线段的长与点的坐标之间的关系,得到抛 物线上点的坐标,代入解析式,求出二次函数解析式。 3、应用所求解析式及其性质解决问题。
人教版九年级上册数学22.3实际问题与二次函数(教案)

1.教学重点
-二次函数在实际问题中的应用:本节课的核心是让学生掌握如何将实际问题转化为二次函数模型,从而利用数学工具解决具体问题。例如,通过分析物体的抛物线运动,建立速度与时间的关系,进而求解物体的最大高度或最远距离。
-二次函数的性质及其图像:重点讲解二次函数的开口方向、顶点、对称轴等性质,并通过图像加深理解,使学生能够熟练运用这些性质解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c的函数,它能够描述许多抛物线形状的现象。它在物理学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设一个物体以抛物线轨迹运动,我们要计算它的最大高度和飞行距离。这个案例将展示二次函数在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂上,我们探讨了实际问题与二次函数的关联,尝试将抽象的数学概念应用到具体的生活实例中。我注意到,在理论介绍环节,学生对二次函数的基本概念掌握得还算扎实,但在案例分析时,一些学生在构建数学模型上遇到了困难。这让我意识到,将实际问题转化为数学语言,对他们来说是一个不小的挑战。
在实践活动和小组讨论中,学生们的参与度很高,大家积极讨论、动手实践,课堂氛围相当活跃。我特别高兴看到他们在讨论中互相启发,共同解决问题。然而,我也发现有些小组在分析问题时,还是局限于表面的理解,未能深入挖掘问题背后的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
22.3实际问题与二次函数(三)

22.3实际问题与二次函数(三)一、课前导学1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为______________.2. 如果抛物线经过原点,可设这条抛物线的关系式为________________.3. 如果抛物线的顶点在y 轴上,可设这条抛物线的关系式为________________.二、自主探究,合作交流问题:下图是抛物线拱桥,当其拱顶离水面m 2,水面宽m 4,水面下降m 1,水面宽度增加多少?三、自主探究,交流展示☆探究1:一个涵洞成抛物线形,它的截面如图,现测得,当水面宽m AB 6.1 时,涵洞顶点与水面的距离为m 4.2.这时,离开水面m 5.1处,涵洞宽ED 是多少?是否会超过m 1?4m2m图26.3.2☆探究2:如图,有一个抛物线形的水泥门洞.门洞的地面宽度为m 8,两侧距地面m 4高处各有一盏灯,两灯间的水平距离为m 6.求这个门洞的高度.(精确到m 1.0)、☆探究3:隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-x 2+4表示.(1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果隧道内设双行道(中间隔离带宽度忽略不计),那么这辆货运车是否可以通过?为安全起见,你认为隧道应限高多少比较适宜?为什么?(第13题)☆练检巩固:1. 拱桥呈抛物线形,其函数关系式为241x y -=,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .m 3B .m 62C .m 34D .m 92.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.图①3. 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?☆能力提升:1.某学校九年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高920米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图2的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?。
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例

(四)总结归纳
1.教师引导学生对所学知识进行总结归纳,帮助他们建立完整的知识体系;
2.学生通过总结归纳,巩固所学知识,提高他们的自我认知能力;
3.教师对学生的总结归纳进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
4.引导学生发现二次函数在实际问题中的应用规律,培养他们的实践能力。
(三)学生小组讨论
1.教师提出具有挑战性和开放性的课题,让学生在小组内进行讨论和合作交流;
2.引导学生运用所学知识,分析问题、解决问题,提高他们的实践能力和团队协作精神;
3.鼓励学生分享自己的观点和思考,培养他们的表达能力和批判性思维;
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
一、案例背景
本案例背景以人教版九年级数学上册22.3实际问题与二次函数(3)1为例,旨在通过实际问题引导学生理解和掌握二次函数的性质和应用。在教学过程中,我以生活实际为载体,设计了一系列具有代表性的例题和练习,让学生在解决实际问题的过程中,深化对二次函数的理解,提高运用数学知识解决实际问题的能力。
在案例背景中,我充分考虑了学生的年龄特点和知识水平,以符合九年级学生的认知发展需求。在教学设计上,我注重启发式教学,引导学生通过观察、分析、归纳和推理,探索二次函数的性质和实际应用。同时,我还关注学生的个体差异,提供不同难度的题目,让每个学生都能在数学学习中找到适合自己的路径,从而提高他们的自信心和积极性。
4.教师对小组合作过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高他们的自我认知能力;
人教版初中数学22.3 实际问题与二次函数(第3课时) 课件

① 能够将实际距离准确 的转化为点的坐标;
② 选择运算简便的方法
课后作业
作业 内容
22.3 实际问题与二次函数/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 如图,小李推铅球,如果铅球运行时离地面
的高度y(米)关于水平距离x(米)的函数解析式
为y
1 8
x2
1 2
x
32,那么铅球运动过程中y
最高点离地面的距离为 2 米.
O
x
课堂检测
22.3 实际问题与二次函数/
3. 某公园草坪的防护栏是由100段形状相同的抛物线形组成
的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢
的支柱,防护栏的最高点距底部0.5m(如图),则这条防护
栏需要不锈钢00m
C.160m
D.200m
课堂检测
22.3 实际问题与二次函数/
能力提升题
某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一 面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物 线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.
81.5=a•4502+0.5.
y
解得
a
81 4502
1. 2500
故所求表达式为 y
1
x2 0.5(450 x 450).
2500
-450
O
450 x
课堂检测
22.3 实际问题与二次函数/
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.
y 1 3502 0.5 49.5(m).
2500
y
当x=450﹣50=400(m)时,得
九年级数学上册22.3实际问题与二次函数(第3课时)教案(新版)新人教版

实际问题与二次函数(第3课时)教 学 目 标知识 技能 1. 利用二次函数解决有关拱桥等问题2. 用二次函数的知识分析解决有关抛物问题的实际问题过程 方法1. 在问题转化、建模过程中,发展合情推理能力,体会数形结合的思想.2. 通过实际问题,体验数学在生活实际的广泛应用性,发展数学思维.3. 在转化、建模中,学会合作、交流.情感 态度1•通过对拱桥图片的欣赏,感受数学在生活中的应用,激发学习热情. 2 .在转化、建模中,体验解决冋题的方法,培养学生的合作交流意识和探 索精神.重点 利用二次函数解决有关拱桥等问题. 用二次函数的知识分析解决有关抛物问题的实际问题.难点建立二次函数数学模型.问:你见过石拱桥吗?你观察过桥拱的形状吗? 【问题】一抛物线形拱桥,如图 26.3.3 — 2当水面在l 时, 拱顶离水面2米,水面宽4米.水面下降1米,水面宽度增加 多少?一、独立思考一一题目探究1 .分析问题(1 )如何建坐标系; (2)如何设抛物线的解析式?(3 )水面下降1米的含义是什 么,怎样把距离转化成坐标?(4 )如何求宽度增加多少?2 •解决问题解:设抛物线表示的二次函数为y ax 2 .如图 26.3.3 — 3.图 26.3.3 — 3由题意知抛物线经过点(2, 2),可得 2ax 2 , a 1 .21 2这条抛物线表示的二次函数为y —x .环节 情境 引入 教学问题设计欣赏一组石拱桥的图片26.3.3 — 1观察桥拱的形状.教学活动设计 教师出示图 片•学生观察图片 发表见解.自 主 探 究 合 作 交 流教师展示图片 并提出问题;学生 观察图片,自主分 析,得出结论.设二次函数,用 抛物线知识解决 教师关注:(1) 二次函数是 生活中实际问题的 模型,可以解决现 实问题;(2) 通过数学模 型的使用,感受数 学的应用价值.2又知水面下降1米时,水面的纵坐标为 y 3,则对应的横坐标是 ,6和6所以水面增加的宽度是 (2 • 6 4)米.二、小组活动——归纳总结请你按以下思路分析本类型题目的解法•⑴考察实物(抛物线形):⑵选建坐标系;⑶化距离成坐标; ⑷构建二次函数;⑸解决实际问题1.有一抛物线拱桥,已知水位在 AB 位置时,水面的宽度是4J6米,水位上升 4米就达到警戒线 CD 这时水面宽是4 3米•若洪水到来时,水位以每小时0.5米速度上升,如图26.3.3 — 4求水过警戒线后几小时淹到拱桥顶端M 处.成果 展示补 偿 提 高2.要修建一个圆形喷水池,如图 26.3.3 — 5池中心竖直安 装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线 形水柱在与池中心的水平距离为1m 处达到最高,高度为3m水柱落地处离池中心 3m,水管应多长?1. 本节课你有哪些收获?还有那些疑惑?2. 在课上你参与了多少问题的讨论,哪些问题得到了其他同学的认可?你最赞同哪一位同学的发言.1.如图 26.3.3—6,是某河上一 座古拱桥的截面 图,拱桥桥洞上 沿是抛物线形状,抛物线两端 点与水面的和距 离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面 4m 的景观灯,建立适当坐标系 .(1)求抛物 线的解析式(2)求两盏景观丁之间的水平距离.的关系;(2)由已给抛物线 图象如何求解析 式;(3)如果题中不给图象,关注学生 怎样建立抛物线模 型.学习小组内互 相交流,讨论,展 示.针对前几个环节出 现的问题,进行针 对性的补偿,对学 有余力的学生拓展 提高.作业 作业:1.必做:课本第52页,7、8题. 作业设必做题设计尝 试应 用学生独立完成.教师关注: (1)学生能否独立 找到两个变量之间。
人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。
人教版九年级数学上册22.3 实际问题与二次函数第三课时课件
6.(15 分)隧道的截面由抛物线和长方形构成,长方形的长为 8 m, 宽为 2 m,隧道最高点 P 位于 AB 的中央且距地面 6 m,建立如图所示 的坐标系.
(1)求抛物线的解析式;
(2)一辆货车高 4 m,宽为 2 m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什 么?
解:设大孔对应的抛物线所对应的函数关系式为y=ax2+6. 依题意,得B(10,0),∴a×102+6=0.解得a=-0.06.即y=- 0.06x2+6.当y=4.5时,-0.06x2+6=4.5.解得x=±5,∴DF= 5,EF=10.即水面宽度为10米
10.(14 分)杂技团进行杂技表演,演员从跷跷板右端 A 处弹跳到
看为抛物线.如图所示,正在甩绳的甲、乙两名同学拿绳的
手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿
绳子的手的水平距离1 m,2.5 m处.绳子在甩到最高处时刚
好通过他们的头顶.已知学生丙的身高是1.5 m,则学生 m
C.1.66 m
D.1.67 m
由题意可知,抛物线经过点 A(0,2),P(4,6),B(8,2).设抛物线的 方程为 y=ax2+bx+c,将 A,P,B 三点的坐标代入抛物线方程,解 得抛物线解析式为 y=-14x2+2x+2
(2)令 y=4,则有-14x2+2x+2=4.解得 x1=4+2 2,x2=4-2 2,∵ |x2-x1|=4 2>2,∴货车可以通过
D.12.1 m
2.(5分)某幢建筑物,从10 m高的窗口A用水管向外喷水,
喷出的水呈抛物线状(抛物线所在平面与地面垂直).如果抛物
线的最高点M离墙1 m,离地面 m(如图所示),则水流落地点
初中数学人教版九年级上册《2233实际问题与二次函数第三课时实物中的抛物线形问题问题》练习
22.3.3实际问题与二次函数第三课时一.选择题1.美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2+x+1 B.y=﹣x2+x﹣1C.y=﹣x2﹣x+1 D.y=﹣x2﹣x﹣12.如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A.比开始高0.8m B.比开始高0.4mC.比开始低0.8m D.比开始低0.4m3.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2 C.y=﹣x2 D.y=x24.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.2.76米 B.6.76米 C.6米 D.7米二.填空题5.如图为一座拱桥的示意图,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4,则选取点A为坐标原点时的抛物线解析式是.6.如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C 点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2,则y的最大值为___________。
22.3 实际问题与二次函数(第3课时) 人教版数学九年级上册练习(含答案)
22.3实际问题与二次函数(第3课时)一、选择题(共4小题)1.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小腾同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0)和(3,0);②当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;③当x=1时,函数有最大值是4;④函数与直线y=m有4个公共点,则m的取值范围是0<m<4.A.1B.2C.3D.42.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为( )A.172s B.175s C.180s D.186s3.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为( )A.B.8C.D.7.54.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1二、填空题(共2小题)5.如图是足球守门员在O处开出一记手抛高球后足球在空中运动到落地的过程,它是一条经过A,M,C三点的抛物线.其中A点离地面1.4米,M点是足球运动过程中的最高点,离地面3.2米,离守门员的水平距离为6米,点C是球落地时的第一点.那么足球第一次落地点C距守门员的水平距离为 米.6.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.则抛物线的解析式为 .三、解答题(共1小题)7.某园林专业户计划投资种植树木及花卉,根据市场调查与预测,图1是种植树木的利润y 与投资量x成正比例关系,图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1.l2,求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉,其中投入x(x>0)万元种植花卉,那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上,该园林专业户应怎样投资?参考答案一、选择题(共4小题)1.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是错误的;②根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此②是正确的;③由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故③错误.④由图象可知,函数与直线y=m有4个公共点,则m的取值范围是0<m<4,故④正确.故选:B.2.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣700,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.3.解:建立如图所示的平面直角坐标系,由题意可知各点的坐标,A(﹣4,0),B(4,0),D(﹣3,4).设抛物线的解析式为:y=ax2+c(a≠0),把B(4,0),D(﹣3,4)代入,得:,解得:,∴该抛物线的解析式为:y=﹣x2+,则C(0,).∴这个门洞内部顶端离地面的距离为m,故选:A.4.解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.二、填空题(共2小题)5.解:设抛物线的解析式为y=a(x﹣6)2+3.2,将点A(0,1.4)代入,得:36a+3.2=1.4,解得:a=﹣0.05,则抛物线的解析式为y=﹣0.05(x﹣6)2+3.2;当y=0时,﹣0.05(x﹣6)2+3.2=0,解得:x1=﹣2(舍),x2=14,所以足球第一次落地点C距守门员14米.故答案为:14.6.解:∵水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.∴B(6,6),A(12,0),设抛物线的解析式为y=a(x﹣6)2+6,∴y=a(12﹣6)2+6,∴0=a•62+6,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣6)2+6;故答案为:y=﹣(x﹣6)2+6.三、解答题(共1小题)7.解:(1)设l1:y=kx,∵函数y=kx的图象过(1,2),∴2=k⋅1,k=2,故l1中y与x的函数关系式是y=2x(x≥0),∵该抛物线的顶点是原点,∴设l2:y=ax2,由图2,函数y=ax2的图象过(2,2),∴2=a⋅22,解得:a=,故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉,则投入(10﹣x)万元种植树木,,∵a=>0,0<x≤10,∴当x=2时,w的最小值是18,他至少获得18万元的利润.(3)根据题意,当w=20时,,解得:x=0(不合题意舍),x=4,∴至少获得20万元利润,则x=4,∵在2≤x≤10的范图内w随x的增大而增大,∴w>20,只需要x>4,所以保证获利在20万元以上,该园林专业户应投资花卉种植超过4万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3实际问题与二次函数(3)
授课教师:唐小艳
学习目标:1、能根据实际情境建立适当的直角坐标系,会利用条件求出抛物线表示的二次函数;
2、能熟练运用二次函数的相关知识来解决实际问题。
学习过程:
一、复习回顾
如图,用待定系数法求出下列二次函数的解析式 (1) (2)
(3) (4)
二、知识生成——拱桥问题 探究3 如图所示,是抛物线拱桥,当拱顶离水面2m 时,水面宽4m.水面下降1m ,水面宽度增加多少?
请仔细阅读课本P51内容,回答如下问题,并把你不懂
的地方做好标记:
(1)求宽度增加多少需要什么数据?
(2)表示水面宽的线段的端点在哪条曲线上?
(3)如何求这组数据?需要先求什么?
(4)怎样求抛物线对应的函数解析式?
(5)如何建立直角坐标系?
y
x
O y
x O y x O y x
O
试试看:你还有其他的建立直角坐标系的方法吗?
你觉得哪种方法比较简便?在做题时需要注意什么问题?
方法归纳:(1)建立适当的,并将已知条件转化为;
(2)合理的设出所求的,并用求出关系式;
(3)利用二次函数的知识来解决实际问题。
三、针对练习
1、如图,有一个抛物线形的水泥门洞,门洞的地面宽度为8m,两侧距地面4m高处有一盏灯,两灯间的水平距离为6m,求这个门洞的高度.(精确到0.1m)
2、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4 m.
(1)如图所示的直角坐标系中,求出这条抛物线表示的函数的解析式;
(2)设正常水位时桥下的水深为2 m,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m.求水深超过多少m 时就会影响过往船只在桥下顺利航行.
四、课堂检测
1、(20分)某涵洞是一条抛物线形,它的截面如图所示,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离为2.4m ,则涵洞所在抛物线的函数表达式是
2、(20分)如图所示,桥拱是抛物线形,其函数解析式是214
y x =-,当水位线在AB 位置时,,这时水面离桥顶的高度9米,则水面宽AB 为 米.
(第1题图) (第2题图)
3、(20分)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为2125
y x =-
,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )
A 、-20m
B 、-10m
C 、20m
D 、10m
4、(20分)如图所示,某建筑物有一抛物线形的大门,洋洋想知道这道门的高度,她先测出门的宽度AB =8m ,然后用一根长为4m 的小竹竿CD 竖直的接触地面和
门的内壁,并测得AC =1m ,则门高OE =( )
A 、9m
B 、647
C 、8.7m
D 、9.3m
5、(20分)如图,一座拱桥的纵截面是抛物线的一段,拱桥的宽度是8米,水面宽是6米时水深3.5米,你能求出水面宽5米时水有多深吗?。