数学:23.1《图形的旋转》(第3课时)课件(人教新课标九年级上)

合集下载

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

课题:23.1图形的旋转一、教学目标1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.二、教学重点和难点1.重点:图形的旋转概念.2.难点:图形的旋转概念.三、教学过程(一)创设情境,导入新课师:在日常生活中我们经常能看到各种美丽的图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家仔细看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).师:我们再来看一个图案.(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称).师:下面我们再来看一个图案.(师出示下面的图案)(图在九年级上册P73)师:(指图案)大家看,这个图案又是怎么设计的?生:……(让几名同学发表看法)(这个图案可以看成是利用轴对称而形成,也可以看成是利用旋转而形成,如果学生没有提出轴对称,教师也不必提)师:(指准图案)这是一片花瓣,把这片花瓣这样旋转得到这片花瓣,再这样旋转得到这片花瓣,最后形成了花的图案.可见这个图案是用一片花瓣经过旋转得到的(边讲边板书:旋转)师:看了这三个图案,我们可以回答开始时的那个问题:美丽的图案是怎么设计出来的?谁来回答这个问题?生:……(让几名同学回答)师:(指准板书)美丽的图案是利用平移、轴对称、旋转设计出来的.师:平移、轴对称、旋转是图形变换的三种方式,平移我们在初一的时候已经学过,轴对称我们在初二的时候已经学过,从本节课开始我们要学习旋转.(板书课题:23.1图形的旋转)(二)尝试指导,讲授新课师:什么是图形的旋转?(边讲边指准图案)所谓图形的旋转就是把(要指准一片花瓣)一个图形绕着某一点转动一个角度.这个点0(边讲边在图中标0)叫做旋转中心(板书:点0叫做旋转中心),转动的角(边讲边在图中标角)叫做旋转角(板书:转动的角叫做旋转角).师:(指准图案)大家算一算,这个旋转角等于多少?(让生算一会儿师再讲)这是周角,旋转角是周角的五分之一,所以旋转角是360°÷5=72°.师:图形上的点P(边讲边在图中标点P)经过旋转变成P′(边讲边在图中标P′),点P与点P′叫做这个旋转的对应点(板书:点P与点P′叫做这个旋转的对应点).(标图后,原图成下图)(三)试探练习,回授调节1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点,旋转角等于°,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋转角是∠,点A的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′.(四)尝试指导,讲授新课师:前面我们学习了图形旋转的概念,下面我们要动手画一画旋转图形.师:怎么画旋转图形?(稍停)画旋转图形有一个很好的办法.师:(演示挖有三角形洞的硬纸板)这是一块硬纸板,里面挖了一个三角形.利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以这个顶点为旋转中心旋转(边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下)师:(指准图)这个三角形经过旋转得到了这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′).师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)A BA/师:(指准图)刚才我们画的旋转图形是以顶点为旋转中心,如果我们以三角形外的一点为旋转中心,旋转图形又是怎么样的呢?师:(演示挖有三角形洞的硬纸板)和刚才一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(硬纸板上要挖一个小洞为旋转中心,并用粉笔标明位置,边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下).师:(指准图)这个三角形经过旋转得到这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′),点C的对应点是点C′(边讲边在图中标C,C′).师:(指图)在这个三角形的旋转中,哪个角等于旋转角?(让生思考一会儿)师:(用虚线连接OA,OA′,并指准)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)OC/B/A/CB A(五)试探练习,回授调节4.利用挖有一个三角形洞的硬纸板画出三角形的旋转图形,并在图中用字母标出旋转中心、对应点和旋转角.(要求学生在课前做好挖有一个三角形的硬纸板)(六)归纳小结,布置作业师:本节课我们学习了图形旋转的概念,什么是图形的旋转?(指准旋转图案)把一个图形绕着某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.图形上的点P经过旋转变为点P′,点P与点P′叫做对应点.(作业:P57练习2.P60习题6)四、板书设计23.1图形的旋转平移图案平移旋转图案旋转点O叫做旋转中心旋转图形一轴对称图案轴对称转动的角叫做旋转角旋转图形二点P与点P′叫做对应点课题:23.1图形的旋转(第2课时)一、教学目标1.经历探索过程,知道图形旋转的性质,能对性质作简单的运用.2.发展空间观念,培养分析、归纳、抽象、概括能力.二、教学重点和难点1.重点:图形的旋转性质.2.难点:探索图形的旋转性质.三、教学过程(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转,转动的角叫做旋转 .如果图形上的点P经过旋转变为点P′,A那么这两个点叫做旋转的 .EB2.填空:(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于 于旋转角;(2)如图,△ABC 绕点O 旋 转得到△DEF ,旋转中心是 点 ,点A 的对应点是 点 ,点B 的对应点是 点 ,点C 的对应点是 点 ,∠ 等于 于旋转角.(二)创设情境,导入新课师:(板书课题:23.1图形的旋转)上节课我们学习了图形旋转的概念,本节课我们要学习什么?本节课我们要学习图形旋转的性质.让我们先来看一个三角形的旋转图形.(三)尝试指导,讲授新课师:(演示挖有三角形的硬纸板)和上节课所做的一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(边讲边旋转),好,就旋转到这里,再画一个三角形(边讲边画,然后移开硬纸板).师:(指准图)这个三角形经过旋转得到了这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′),点C 的对应点是点C ′(边讲边在图中标C ,C ′).(旋转图形如下图所示)O .FEDAB CO .C /A /B /AB C师:(指图)请大家仔细观察这个图,从这个旋转图形,你发现图形旋转有什么性质?(让生观察一会儿)师:谁来说说你的发现?生:……(让几名学生发表自己的看法,如果学生说不出什么,师继续教学)师:(指准图)这是旋转前的图形,这是旋转后的图形,显然这两个图形是全等的.从这一事实我们得出图形旋转的一个性质:旋转前后的图形全等(板书:旋转前后的图形全等).师:旋转前后的图形全等,这是图形旋转的一个性质,下面我们来看第二个性质.师:(用虚线连接OA,OA′,并指准图)OA转到了OA′,线段OA与OA′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OB,OB′,并指准图)OB转到了OB′,线段OB与OB′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OC,OC′,并指准图)同样,OC也等于OC′.师:(指准图)OA=OA′,OB=OB′,OC=OC′,这说明什么?谁能用自己的话来概括这一事实?生:……(多让几名学生发表自己的看法,鼓励学生用自己的语言概括)师:(指准图)OA=OA′说明对应点A,A′到旋转中心的距离相等,OB=OB′说明对应点B,B′到旋转中心的距离也相等,OC=OC′说明对应点C,C′到旋转中心的距离也相等.可见,对应点到旋转中心的距离相等(板书:对应点到旋转中心的距离相等).师:(指板书)这是图形旋转的第二个性质,下面我们来看第三个性质.师:(指准图)△ABC绕着点O转到△A′B′C′,在这个旋转中,哪个角等于旋转角?生:∠AOA′.师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠BOB ′.师:(指准图)OB 转到OB ′,可见∠BOB ′也等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠COC ′.(生答师在图中标角)师:(指准图)∠AOA ′,∠BOB ′,∠COC ′都等于旋转角,这说明什么?(稍停)这说明对应点与旋转中心所连线段的夹角等于旋转角(板书:对应点与旋转中心所连线段的夹角等于旋转角).师:(指板书)这就是图形旋转的第三个性质.师:下面大家结合图形把这三个性质默读几遍,看看你对这三个性质的意思理解了吗?(生默读)师:知道了图形旋转的性质,下面请大家利用性质来做两个练习. (四)试探练习,回授调节3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )(五)归纳小结,布置作业ED CB A师:本节课我们学习了图形旋转的性质,请大家把这三个性质一起来读一遍.(生读)(作业:P 59习题3.4.) 四、板书设计 23.1图形的旋转 旋转前后的图形全等三角形旋转图 对应点到旋转中心的距离相等. 对应点与旋转中心所连……课题:23.1图形的旋转(第3课时)一、教学目标1.巩固图形旋转的性质,会根据性质画旋转后的图形.2.发展空间观念,培养直观想象能力和画图能力. 二、教学重点和难点1.重点:根据性质画旋转后的图形.2.难点:根据性质画旋转后的图形. 三、教学过程(一)基本训练,巩固旧知 1.填空:图形旋转的性质是: (1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 . (二)创设情境,导入新课 (师出示下面的板书)OA /B /C /A C B旋转前后的图形全等.对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.师:(指准图)上节课我们利用这个图归纳出来图形旋转的三个性质.师:(指准图)△ABC经过旋转得到△A′B′C′,显然△ABC与△A′B′C′全等,于是我们有了第一个性质:旋转前后图形全等.师:(指准图)△ABC转到△A′B′C′,显然OA=OA′,OB=OB′,OC=OC′,于是我们归纳出第二个性质:对应点到旋转中心的距离相等.师:(指准图)OA转到OA′,OB转到OB′,OC转到OC′,所以∠AOA′,∠BOB′,∠COC′都等于旋转角,于是我们发现第三个性质:对应点与旋转中心所连线段的夹角等于旋转角.师:(指板书)有了图形旋转的性质,这节课我们就利用这些性质来解决问题,解决什么问题呢?请大家来看一个例题.(三)尝试指导,讲授新课(师出示例题)例任意画一个△ABC,作下列旋转:(1)以A为中心,把这个三角形顺时针旋转50°;(2)以三角形外任取一点O为中心,把这个三角形逆时针旋转90°.师:(指准例题)例题需要我们做什么?任意画一个△ABC(边讲边画△ABC),以点A为中心,把这个三角形顺时针旋转50°,画出旋转后的图形.师:(指准△ABC)要画△ABC旋转后的图形,关键是什么?(稍停)关键是要找到点A、点B、点C旋转后的位置,因为是以点A为中心旋转,所以旋转后点A没动,那点B、点C旋转后在哪里?大家自己先画个草图找一找.(生画图,师巡视)师:下面我们一起来画图.师:利用量角器在AB的顺时针方向画∠BAB′=50°,并且使AB′=AB(边讲边画);再在AC的顺时针方向画∠CAC′=50°,并且使AC′=AC(边讲边画);连接B′C′(边讲边画).师:(指准图)△AB′C′就是以A为中心,△ABC顺时针旋转50°得到的图形.(画好的图形如下所示)师:(指准例题)下面我们来看第(2)小题,(2)小题要我们做什么?任意画一个△ABC (边讲边画△ABC ),以三角形外任取一点O 为中心(边讲边画点O ),把这个三角形逆时针旋转90°,画出旋转后的图形.师:(指准△ABC )要画出△ABC 旋转后的图形,和(1)小题一样,关键是要找到点A 、点B 、点C 旋转后的位置,也就是要找到对应点A ′、点B ′、点C ′的位置. 点A ′、点B ′、点C ′在哪里?大家画个草图找一找.(生画图,师巡视)师:下面我们一起来画.师:先用虚线连接OA (边讲边画),利用三角尺在OA 的逆时针方向画∠AOA ′=90°,并且使OA ′=OA (边讲边画),点A ′就是点A 的对应点.师:用同样的方法画点B ′,先用虚线连接OB (边讲边画),利用三角尺在OB 的逆时针方向画∠BOB ′=90°,并且使OB ′=OB (边讲边画),点B ′就是点B 的对应点.师:用同样的方法画出点C ′(画出点C ′).师:连接A ′B ′,B ′C ′,C ′A ′(边讲边画),(指准图)△A ′B ′C ′就是以O 为中心,△ABC 逆时针旋转90°得到的图形.(画好的图如下所示)B C A OC /A /B /B /C /A CB(四)试探练习,回授调节2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.4.如图,以点O 为中心,把△ABC 顺时针旋转120°.5.如图,以点B 为中心,把△ABC 旋转180°.(五)归纳小结,布置作业 B AC B A C.O B O ..O P .师:本节课我们学习了画旋转后的图形,画旋转后的图形关键是要找到对应点.(指准例(2)题图)譬如,要画△ABC旋转后的图形,关键是要找到对应点A′,B′,C′.怎么找对应点A′,B′,C′?(稍停)要利用图形旋转的性质来找.根据性质,OA=OA′,∠AOA′等于旋转角90°,这样我们找到了对应点A′,用同样方法可以找到B′,C′.师:总之,画旋转后的图形,关键是找对应点,而找对应点的根据是图形旋转的性质.(作业:P59习题1.5.)四、板书设计三角形旋转图例旋转前后的图形全等对应点到旋转中心距离相等对应点与旋转中心所连……。

人教版九年级数学上册《23.1.3旋转作图》课件

人教版九年级数学上册《23.1.3旋转作图》课件

8.【2020·伊春】如图,在正方形网格中,每个小正 方形的边长都是1个单位长度,在平面直角坐标系 中,△ABC的三个顶点A(5,2),B(5,5),C(1,1) 均在格点上. (1)将△ABC向下平移5个单位长度 得到△A1B1C1,并写出点A1的坐标;
解:如图所示,△A1B1C1即为所求,点A1的坐标为 (5,-3);
2.如图,由一个矩形绕某点按顺时针方向旋转 90°后所形成的图形是( B ) A.①④ B.②③ C.①② D.②④
3.如图,在4×4的正方形网格中,△MNP绕某点 旋转一定的角度,得到△M1N1P1,则其旋转中 心是( B ) A.点A B.点B C.点C D.点D
4.【2020·南通】以原点为中心,将点P(4,5)按逆时 针方向旋转90°,得到的点Q所在象限为( B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
解:如图①.
②在①中所画图形中,∠AB′B=____4_5___°.
(2)【问题解决】 如图②,在Rt△ABC中,BC=1,∠C=90°,延长 CA到D,使CD=1,将斜边AB绕点A顺时针旋转90° 到AE,连接DE,求∠ADE的度数.
解:如图②,过点E作EH⊥CD交CD的延长线于点H. ∵∠C=∠BAE=90°, ∴∠B+∠CAB=90°,∠CAB+∠EAH=90°. ∴∠B=∠EAH. ∵AB=AE,∠C=∠H=90°,∴△ABC≌△EAH(AAS). ∴BC=AH,EH=AC. ∵BC=CD,∴CD=AH.∴DH=AC=EH. ∴∠EDH=45°.∴∠ADE=135°.
解:如图,△ A1B1C1 在旋转过程中扫过的面积为 14×π×(4 2)2+12×3×4=8π+6.
【点拨】本题中将△CDB绕点C旋转,并未指明旋转 方向,故应分两种情况,常出现只考虑其中一种情 况的错解.

人教版初中数学九年级上册 23.1 图形的旋转 初中九年级数学教学课件PPT 人教版

人教版初中数学九年级上册 23.1 图形的旋转  初中九年级数学教学课件PPT 人教版
轴对称(折一下) 旋转(转一下)
谢谢
Байду номын сангаас
C
设点E的对应点为点E′,因为旋转后的图形与旋转 前的图形全等,所以
∠ABE′=∠ADE=90°, BE′=DE .
因此,在CB的延长线上取点E′ ,使BE′ =DE,则 △ABE′为旋转后的图形.
几何就是研究图形在运动变换中的不变性质 和不变量。
克莱因 (1849~1925)
德国数学家
【旋转的性质】
对应点到旋转中心的距离相等; 对应点与旋转中心所连线段的夹角等于旋转角; 旋转前、后的图形全等。
【欣赏旋转之美】
生活中不是缺少美,而是缺少发现美的眼睛。
奥古斯特·罗丹 (1840~1917) 法国著名雕塑家
【小结】
对比平移、轴对称和旋转,它们有哪些相同点 和不同点?
相同点:变换前、后的图形都是全等的。 不同点:平移(移一下)
交流质疑、精讲点拨
请同学们观察图形,找出旋转中心、旋转方向、
旋转角度。
找出图形在旋转前后不变的量和变化的量。 找出图中的全等三角形并加以证明。
A
D
E
B
E′
C
例题分析
解:因为点A是旋转中心,所以它
的对应点是它本身.
A
D
在正方形ABCD中,
E
AD=AB,∠DAB=90°,所以旋转
后点D与点B重合.
E' B
23.1 图形的旋转
【引入】
【定义】
观察思考:这些现象有什么共同特点?
O A
B
A
C
D
A
B
O
【定义】
把一个平面图形绕着平面内某一定点按
某个方向转动一个角度,这样的图形变换叫 做图形的旋转.

人教版数学九年级上册23.1图形的旋转课件

人教版数学九年级上册23.1图形的旋转课件

(2)时钟的时针在不停地转动,从 中午 12 时到下午 4 时,时针旋转的旋 转角是多少度?从上午 9 时到上午 10 时呢?
(4)填空
O 45°
B
A
点A绕_O_点,往_顺_时_针方向,
转动了_4_5 度到点B.
B´ A
C0
100

B
O

△ABC绕_O_点,往_顺_时_针方向,转动了_10_0 度到△A’B’C’
旋转的三要素: 旋转中心 旋转方向
旋转角度
例题解析
例题:如图,△的对应点是____点__D__;
A
线段OB的对应线段是__线__段__O__D;
线段CD的对应线段是__线__段__A_B_;
B
∠AOB的对应角是__∠__C_O__D_;
C
∠B的对应角是____∠__D__;
旋转.
点 O 叫旋转中心,转动的角叫做旋转角.
如果图形上的点 P 经过 旋转变为点 P′,那么这 两个点叫做这个旋转的 对应点.
P
O 120° P′
3.小试牛刀
(1)下列现象中属于旋转的有( C )个
①地下水位逐年下降; ②方向盘的转动; ③水龙头开关的转动; ④钟摆的运动; ⑤荡秋千运动. A.2 B.3 C.4 D.5
温故而知新: 这种图形变换叫什么?
平移的定义:
平移变换
在平面内,将一个图形沿某个方向移 动一定的距离,叫做图形的平移.
平移的特征: 平移不改变图形的形状和大小。
平移前后图形是全等的.
轴对称变换
轴对称:把一个图形 沿着某一条直线折叠, 如果它能够与另一个 图形重合,那么就说 这两个图形关于这条 直线(成轴)对称

人教版数学九年级上册:23.1《图形的旋转》 PPT课件(共24页)

人教版数学九年级上册:23.1《图形的旋转》 PPT课件(共24页)

转动硬纸板,再描出这个挖掉的三角形洞
(△A′B′C′),移开硬纸板.
请大家运用刻度尺和量角器度量线段和有关角,并
探索旋转的性质.
O
A'
C'
B'
归纳总结
旋转的性质
对应点到旋转中心的距离相等. 对应点与旋转中心所连线段的夹角等于旋转角. 旋转前后的图形全等.
三、掌握新知
例 如图,E是正方形ABCD中CD边上任意一点,以点A为
中心,把△ADE顺时针旋转90°,画出旋转后的图形.
分析:关键是确定△ADE三个顶点的 A
D
对应点,即它们旋转后的位置.
E
B
C
解: 因为点A是旋转中心,所以它
A
D
的对应点是它本身.
在正方形ABCD中,
E
AD=AB,∠DAB=90°,所以旋
E' B
C
转后点D与点B重合.
设点E的对应点为点E′,因为旋转后的图形与旋转
(1)选择不同的旋转中心、不同的旋转角,看看旋转 效果; (2)改变三角形的形状,看看旋转效果.
五、运用新知
请以下列图形为基纳小结
第二十三章 旋 转
23.1 图形的旋转
第1课时 旋转的概念及性质
一、复习导入
问题 我们以前学过图形的平移、对称等变换,它们 有哪些特征? 生活中是否还有其他运动变化呢?回答是肯定的,下 面我们就来研究.
二、探索新知
探索1
归纳总结
把一个图形绕着某一定点O 转动一定角度的图 形变换叫做_旋__转_____.这个定点O 叫旋__转__中__心___,转
动的角叫做_旋__转__角_. 如果图形上的点P经过旋转变为点P′,那么点P

人教版数学九年级上册. 图形的旋转完美课件

人教版数学九年级上册. 图形的旋转完美课件

(1)如图,△ABO绕点O旋转得到△CDO,则:
点A的对应点是__点__C____;
A
旋转中心是___点__O___;
线段OB的对应线段是线段__O___D_____;
∠A的对应角是__∠__C______;
O
旋转角是__∠_A_O__C_或__∠_B__O_D____;
B C
D
人教版数学九年级上册23.1 图形的旋转课件
把一个图形绕着某一定点O转动一个角度的 图形变换叫做旋转.这个定点O叫旋转中心,转 动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这
两个点P和P′叫做这个旋转的对应点.
P
旋转角就是对应点与
O 120
旋转中心所连线段
P′ 的夹角
人教版数学九年级上册23.1 图形的旋转课件
人教版数学九年级上册23.1 图形的旋转课件
认识旋转
O
0
45
B
A
人教版数学九年级上册23.1 图形的旋转课件
人教版数学九年级上册23.1 图形的旋转课件
认识旋转
B/
A
0
/
90
A
P
人教版数学九年级上册23.1 图形的旋转课件
B
人教版数学九年级上册23.1 图形的旋转课件
填一填: 思考一下影响旋转的有哪些要素?
旋转的图要1 素:
图2
1、点A绕_O_点,往_顺_时_针方向,转动了_45_度到点B.
于旋转角。
应用
DБайду номын сангаас
C
四边形ABCD是正方形,△DCE
M
顺时针旋转后与△DAF重合,
E
那么
(1)旋转中心是__点__D__

数学人教版九年级上册23.1《图形的旋转》课件 (共13张PPT)

数学人教版九年级上册23.1《图形的旋转》课件 (共13张PPT)

点,即它们旋转后的位置.
A
D
E
还有别的办
法吗?
E′ B
C
△ABE′为旋转后的图形.
7/2/2019
课堂小结
1. 旋转的定义:在平面内,把一个图形绕某一个定点 转动一个角度的图形变换称为旋转. 这个定点称为
这旋转节中课心你,学转动到的了角什称为么旋知转识角?.
2. 旋转的性质: ① 旋转前、后的图形全等. ② 对应点到旋转中心的距离相等. ③ 对应点与旋转中心所连线段的夹角等于旋转角.
④ 3.旋转应用(如作图)
7/2/2019
作业:P62-63第3,5,9
7/2/2019
祝老师们工作胜 利、身体健康!
祝同学们学习进 步,中考胜利!
7/2/2019
旋转角是_∠_A__O_D__,___∠_B__O_E_,__ ∠COF ;
7/2/2019
探究活动
A
B'
C'
B
A'
探旋究转的问性题质:
O
C
1.在图形的旋转过程中,哪些发生了改变?哪些没有发
生改变旋? 转前、后的图形全等;
2.分别连结对应点A、A'与旋转中心O,量一量线段OA与
线段对OA应',它点们到有旋什转么中关心系?的任距意离找一相对等对; 应点,量一下
南康六中 黄过房
探索新知
钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
如图,风车风轮的每个叶片在风的吹动下转动到新的位置,以上这 些现象有什么共同特点呢?
7/2/2019
指针、叶片等看作图形.

人教版九年级数学上册课件:23.1图形的旋转_(共29张PPT)

人教版九年级数学上册课件:23.1图形的旋转_(共29张PPT)

在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
这个定点称为旋转中心,转动的角称
为旋转角。
A
B
旋转角
o
旋转中心
如果一个图形沿着一条直线对折,两侧的 图形能够完全重合,这个图形就是轴对称图形。
钟表的指针在不停地转动,如图,从3时到5时,时 针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
时针转了60°
物体绕定点 转动
风车风轮的每个叶片在风的吹动下转动到新的位置。 以上这些现象有什么共同的特点?
归纳定义
把一个图形绕着某一定点O转动一个角度 的图形变换叫做旋转.这个定点O叫旋转中心, 转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这 两个点P和P′叫做这个旋转的对应点.
复习:
平移的定义:在平面内,将一个图形沿某个方向移动一
定的距离,这样的图形运动称为平移. 平移不改变图形的形状和大小, 平移由移 动的方向和距离决定.
平移的性质:经过平移,对应点所连的线段平行且相
等;对应线段平行且相等,对应角相等.
在平面内,将一个图形整体沿某个方向 移动一定的距离,这样的图形运动叫做平 移。
9
8 76
1 2 3
4 5
旋转角度是90°
12 11 10
9
8 76
1 2 3
4 5
旋转角度是30°
3.如图,杠杆绕支点转动撬起重物,杠杆 的旋转中心在哪里?旋转角是哪个角?
A
B/ O
B
A/
旋转中心在支点O 旋转角为∠AOA/
实践探究
A 在硬纸板上,挖一个三角形洞,再挖一个小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D A E
B C
引申3:如图,直线a⊥直线b于点P,画出 △ABC关于直线a对称的△A’B’C’,然后再画 出△A’B’C’关于直线b对称的△A”B”C”。
a b A C B P
思考:①你能说出△ABC与△A”B”C” 的关系吗? ②若将a⊥b改成a∥b,画出 图 形; ③从中体会到轴对称、平移、 旋转间的关系了吗?
1.画出将线段AB绕点O按顺时针方向旋转 900后的图形。 B A O B’ A’
合作与交流
2. 画出将△ABC绕点C按逆时针方向旋转 1500后的对应三角形。
B
C
A
引申1:如图,它是由哪个“图案”通 过旋转得到的?旋转中心在何处?旋转 了多少度?
思考:本答案唯一吗?共有几种不同的旋 转方式?
引申2:如图,△ABE和△ACD均为直角三角形, ∠EAB=∠CAD=900,连结EC, 画出△ACE以点A为旋转中心逆时针方向旋 转900后的三角形。
M E B D C
试一试
如图,是△AOB绕点O按逆时针方向旋转450所得的。
B'
A' D' O D
'
B’ 点B的对应点是点_____ 0B’ 线段OB的对应线段是线段______ A’B’ 线段AB的对应线段是线段______
∠ A’ ∠A的对应角是______; ∠B’ B ∠B的对应角是______ ;
; ;
O ; 旋转中心是点______
A
旋转的角度是 ______。
450
试一试
下图是由正方形ABCD旋转而成。
C C' D A
B'
B
(1)旋转中心是__________ 450 (2) 旋转的角度是_________ (3) 若正方形的边长是1,则 C’D=_________ √ 2-1
D'
A
合作交流
小结
这节课你有哪些收获?
1、图形的平移是相对的,要确定参照物, 旋转也一样,绕不同的点旋转会有 不同的结 果; 2、平移需要确定两个量即平移的方向与平 移的距离; 3、旋转需要确定两个量即旋转的中心与旋 转的角度。
/ 健康煲汤网
脸面,是她自己别要,咎由自取,那就休要怪他别客气!随着最后壹道防线の解除,他就差拿着壹各放大镜,壹寸壹寸地毯式搜索婉然身上任何壹各可能存有箭伤の地方。可 是,令他极度失望の是,没什么找到任何壹各箭伤,连“疑似”箭伤都没什么,连壹各红点都没什么!望着壹丝别挂却是壹点点箭伤都没什么の婉然,二十三小格直到现在才 明白,原来婉然刚刚那样拼命与他顽抗,就是为咯狠狠地激怒他,以求壹死!猜透咯婉然の心思,他气急败坏地留下壹句意味深长の话:“想死?没什么那么容易!爷别会让 您死,爷只会让您生别如死!”第壹卷 第578章 感谢送走咯皇上壹行,王爷总算如释重负地长长出咯壹口。此时左臂の箭伤痛得他汗水出咯壹身又壹身,即使是萧瑟の秋风 中,竟湿透咯里三层外三层の衣裳。幸好当时出咯松露亭之后,他迅速更换咯新の外袍,所以从外面根本看别出任何异样,但是,当他回到房间,秦顺儿替他脱下湿透の衣服 之后,两人那才发现,他の胳膊早已经肿得老高,留下壹片紫得已经发黑の箭痕,而直接参与咯对抗那枚小箭の地方,皮肤被生生地震裂,肌肉都有些外翻出来。即使受咯那 么重の伤,王爷仍是别敢请太医,否则今晚の壹切就要前功尽弃。好在创伤药是园子里常备の药品,秦顺儿赶快就取咯过来,仔细地给他上咯药,又将伤处用绷带缠上,以便 于伤口尽快愈合。药膏敷在伤处,凉丝丝の,随着药力渐渐渗入皮肤,有效地缓解咯胳膊の疼痛,虽然伤口处仍是突突地跳着痛,但已经是可以忍受范围内の事情咯。包扎好 伤口,他の第壹各想法就是派秦顺儿去跟水清传各话,表达对她の谢意。但是想咯想,他又变咯主意,让秦顺儿给他披上披风,亲自来到咯水清院子。来到水清の住处,他并 没什么派秦顺儿先过去,而是直接进咯院子,刚好见到月影从水清の房间里出来。月影没想到那各时候王爷会亲自过来,于是赶快俯身请安。他急于见到水清,就壹边直接进 咯门,壹边问月影:“您家主子呢?”“回爷,仆役在里间刚歇下咯。”他万没什么料到水清已经歇下咯,因为按照惯例,他若是在园子里,她是需要前来向他请安の。今天 她还没什么过来请安,怎么就歇下咯?那各意外情况让他进退两难。进去吧,她已经歇下咯,他晓得她の睡眠极为别好,壹旦被惊搅,那壹夜都别想再睡咯。别进去吧,他可 是特意来感谢她の,无功而返让他很别甘心。犹豫半响,他只得稍微提高咯些声音对月影说道:“告诉您家主子,爷过来谢谢她。”其实,他那句话就是想亲自对水清说,别 管她是否睡着咯,他都亲自来向她表示咯最真诚の谢意。半天也没什么得到里屋有任何回音,想来她是已经睡着咯,那各结果也是意料之中の事情。累咯整整壹天,原本就是 弱别禁风の身子,如此高强度の操劳,又加上松露亭那惊心动魄の壹幕,精神遭受极度惊吓,别给累坏咯才怪呢。可是他又有些失落与惆怅,他多么希望她能亲耳听到他亲口 说出来の那句感谢の话!他对她尽善尽美の接驾无比赞美,他对她の机智勇敢心生敬佩,她从来都别会辜负咯他の期望,别但别会辜负他の期望,而且永远都会给他带来意料 之外の惊喜。四十三天の王府管家已经做得十分完美,而今日の迎接圣驾则是将那份完美发挥到咯极致,更逞论松露亭那化险为夷の壹幕,她真の是仙女吗?点石成金,化腐 朽为神奇,难道她就是老天爷派给她の仙女,救他于危难?第壹卷 第579章 解释仙女没什么睡着,仙女听到咯他の真心感谢,但是仙女再次假装睡着咯,因为仙女早就预料 到他会前来对她进行壹番感谢,而仙女根本就别想听他の那些所谓感谢の话!她今天之所以会那么做,只是尽壹各诸人の本分而已,她是他の诸人,壹荣俱荣,壹损俱损,她 最天然の职责就是为他排忧解难,尽自己最大の力量协助他。所以她今天の所作所为完全是她份内之事,有啥啊需要他来感谢の呢?假设那件事情也需要感谢,那她岂别是天 天都要感谢他?她要感谢他给咯她那么尊贵体面の地位,那么奢华无忧の生活?而那些也全是他作为壹各王爷,作为壹各男人,理所当然应该给予他の侧福晋应有の生活,是 理所当然の事情。既然他为她做の那壹切都是理所当然,为啥啊她为他做の事情就要接受他の感谢?等咯壹段时间,仍
A1 A
B
B1
1
2
o
(1)△ABC与△
3
C C1
A1B1C1全等; (2)AO=A1O,BO=B1O,CO=C1O;
(3)∠1= ∠2= ∠3。
例1、如图,△ABC是等腰三角形, ∠BAC=36°,D是BC上一点, △ABD经过旋转后到达△ACE的位 置, ⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果M是AB的中点,那么经过上 述旋转后,点M转到了什么位置? A
23.1图形的旋转(3)
在平面内,将一个图形绕一个定点旋转一定 的角度,这样的图形运动称为图形的旋转, 这个定点称为旋转中心,旋转的角度称为旋 转角。
结论:
旋转前后的图形全等。 ห้องสมุดไป่ตู้应点到旋转中心的距离相等。 每一对对应点到旋转中心的连线所成 的角彼此相等。
将△ABC绕点O旋转到 △ A1B1C1,
相关文档
最新文档