4.1.1圆的方程课件

合集下载

圆的方程课件PPT

圆的方程课件PPT

2.点与圆的位置关系 设点 P 到圆心的距离为 d,圆的半径为 r,则点与圆的位置有 如表所示的对应关系.
位置关系 点在圆外 点在圆上 点在圆内
d 与 r 的关系 ___d_>_r___ ___d_=__r__ ___d_<_r___
自主探究 探究 1:方程(x-a)2+(y-b)2=r2(a,b,r∈R)表示一个圆吗? 为什么?
解:
法一:设圆的方程为(x-a)2+(y-b)2=r2(r>0).
则b5=-0a,2+2-b2=r2, 3-a2+-2-b2=r2.
a=4, 解得b=0,
r= 5.
∴所求圆的方程为(x-4)2+y2=5.
法二:
∵圆过 A(5,2),B(3,-2)两点, ∴圆心一定在线段 AB 的中垂线上. AB 中垂线的方程为 y=-12(x-4), 令 y=0,得 x=4.即圆心坐标 C(4,0), ∴r=|CA|= 5-42+2-02= 5, ∴所求圆的方程为(x-4)2+y2=5.
【答案】未必表示圆,当 r≠0 时,表示圆心为(a,b),半径 为|r|的圆;当 r=0 时,表示一个点(a,b).
探究 2:由圆的标准方程可以得到圆的哪些几何特征? 【答案】由圆的标准方程可直接得到圆的圆心坐标和半径.
预习测评 1.若一圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和 半径分别是( ) A.(-1,5), 3 B.(1,-5), 3 C.(-1,5),3 D.(1,-5),3
错解:由题意可知圆心在直线 y=2x 上,且在线段 AB 的垂直 平分线 x=2 上,由xy==22,x, 可得圆心 C(2,4),r=|AC|= 17, ∴圆 C 的方程为(x-2)2+(y-4)2=17.

4.1.1 圆的标准方程

4.1.1 圆的标准方程

5.如图,已知隧道的截面是半径为4米的半圆,车 辆只能在道路中心线一侧行驶,一辆宽为2.7米, 高为3米的货车能不能驶入这个隧道?
解:以某一截面半圆的圆心为 坐标原点,半圆的直径AB所在 的直线为x轴,建立直角坐标系
y
(如右图).
2 2
A
0
2.7
B
x
那么半圆的方程为 x y 16( y 0), 将x=2.7代入,得 y 16 2.7 8.71 <3.
【解】设圆M的方程为(x-a)2+(y-b)2=r2(r>0),
1- a 2 + -1- b 2 = r2 , 2 2 2 -1a + 1b = r , a + b - 2 = 0,
根据题意得
解得a=b=1,r=2, 故所求圆M的方程为(x-1)2+(y-1)2=4.
第四章 圆与方程
4.1 圆的方程
4.1.1 圆的标准方程
生活掠影
一石激起千层浪
乐在其中
生活掠影
奥运五环
福建土楼
生活中,我们经常接触一些圆形,下面我们就 一起来认识一下圆吧!
1.掌握圆的标准方程.(重点)
2.会由圆的标准方程写出圆的半径和圆心坐标,
能根据条件写出圆的标准方程.
3.会用待定系数法求圆的标准方程.(难点)
2
即在离中心线2.7米处,隧道的高度低于货车的
高度.因此,货车不能驶入这个隧道.
圆 的
推导步骤 特点
求法
建系设点→写条件→列方程→化简→说明

准 方 程
圆心(a,b)、半径r 待定系数法和直接法
不想当元帅的士兵不是好士兵。
A.(x-1)2+(y-1)2=1

圆方程ppt课件ppt课件

圆方程ppt课件ppt课件

03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。

4.1.1 圆的标准方程

4.1.1 圆的标准方程

目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三
(2)(方法一)由题意,得线段 AB 的垂直平分线的方程为
3x+2y-15=0.

3������ + 2������-15 = 0, 解得 3������ + 10������ + 9 = 0,
������ = 7, ������ = -3.
所以圆心 C 的坐标为(7,-3).
求圆的标准方程时,一般先从确定圆的两个要素入手,即先求出圆 心的坐标和半径,再写出圆的标准方程.
②确定圆心和半径时,常用到中点坐标公式、两点间的距离公式,
有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中 垂线的交点为圆心”等.
(2)待定系数法,步骤是:
①设圆的标准方程为(x-a)2+(y-b)2=r2(r>0); ②由条件列方程(组)解得a,b,r的值; ③写出圆的标准方程.
������
������
<
-
5 2
.
-12-
4.1.1 圆的标准方程
目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三
题型二 求圆的标准方程
【例2】 求下列圆的标准方程: (1)圆心是(4,-1),且过点(5,2); (2)经过A(6,5),B(0,1)两点,并且圆心C在直线l:3x+10y+9=0上. 解:(1)(方法一)由题意知圆的
-11-
4.1.1 圆的标准方程
题型一 题型二 题型三
目标导航
知识梳理
重难聚焦
典例透析
【变式训练1】 已知点A(1,2)在圆C:(x-a)2+(y+a)2=2a2的内部,求

4.1.1圆的标准方程

4.1.1圆的标准方程

2.求过点(0,1)和(0,3),半径等于1 的圆的方程。
x2+(y-2)2=1
典型例题
y 2 ,直线方程 为 y x b,当b为何值时,圆与直线有两个交 点?只有一个交点?没有交点?
2 2
例3:已知圆的方程是 x
分析:法一:代数法 法二:几何法
典例小结 直线与圆的位置关系:
圆心到直线距离为d,半径为r
( x a) 2 ( y b) 2 r 2
圆的标准方程
( x a) ( y b) r
2 2 2
是否在圆上的点都适合这个方程?是否适合这 个方程的坐标的点都在圆上? 点M(x, y)在圆上,由前面讨论可知,点M的坐 标适合方程;反之,若点M(x, y)的坐标适合方程, 这就说明点 M与圆心的距离是 r ,即点M在圆心为A (a, b),半径为r的圆上. 把这个方程称为圆心为A(a, b),半径长为r 的圆 的方程,把它叫做圆的标准方程.
3.点到直线的距离公式?
d
圆的方程
当圆心位置与半径大小确定后,圆就唯一确定 了.因此一个圆最基本要素是圆心和半径. 如图,在直角坐标系中,圆心(点)A的位置用 坐标 (a,b) 表示,半径r的大小等于圆上任意点M(x, y) 与圆心A (a,b) 的距离.
y M (x, y)
ห้องสมุดไป่ตู้
r O
A(a,b) x
3 x 3
2
y 6 10
2
课堂练习
1、已知圆经过P(5、1),圆心在C(8、3),求圆方程.
Y
C(8、3) P(5、1) X
0
(x-8)2+(y-3)2=13
课堂练习
2、求以c(1、3)为圆心,并和直线 3x-4y-6=0相切的圆的方程.

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

第四章 圆 与 方 程 4.1 圆 的 方 程 4.1.1 圆的标准方程圆的标准方程圆心为C(x 0,y 0),半径为r 的圆的标准方程为(x -x 0)2+(y -y 0)2=r 2,特别地,圆心在原点时,圆的标准方程为x 2+y 2=r 2.(1)如果圆的标准方程为(x +x 0)2+(y +y 0)2=a 2(a ≠0),那么圆的圆心、半径分别是什么? 提示:圆心为(-x 0,-y 0),半径为|a|.(2)如果点P(x 0,y 0)在圆x 2+y 2=r 2上,那么x 20 +y 20 =r 2,若点P 在圆内呢?圆外呢?提示:若点P 在圆内,则x 20 +y 20 <r 2;若点P 在圆外,则x 20 +y 20 >r 2.1.辨析记忆(对的打“√”,错的打“×”) (1)圆的标准方程由圆心、半径确定.( √ ) (2)方程(x -a)2+(y -b)2=m 2一定表示圆.( × )(3)原点在圆(x -x 0)2+(y -y 0)2=r 2上,则x 20 +y 20 =r 2.( √ ) 提示:(1)如果圆的圆心位置、半径确定,圆的标准方程是确定的. (2)当m =0时,表示点(a ,b).(3)原点在圆上,则(0-x 0)2+(0-y 0)2=r 2,即x 20 +y 20 =r 2. 2.圆(x -1)2+y 2=3的圆心坐标和半径分别是( ) A .(-1,0),3B .(1,0),3C .()-1,0, 3D .()1,0 , 3【解析】选D.根据圆的标准方程可得,(x -1)2+y 2=3的圆心坐标为(1,0),半径为 3 . 3.到原点的距离等于 3 的点的坐标所满足的方程是________.【解析】设点的坐标为(x ,y),根据到原点的距离等于 3 以及两点间的距离公式,得(x -0)2+(y -0)2= 3 ,两边平方得x 2+y 2=3,是半径为 3 的圆. 答案:x 2+y 2=3类型一 圆的标准方程的定义及求法(数学抽象、数学运算)1.以点(2,-1)为圆心,以 2 为半径的圆的标准方程是( ) A .(x +2)2+(y -1)2= 2 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2= 2【解析】选C.由题意,圆的标准方程是(x -2)2+(y +1)2=2. 2.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .x 2+(y -3)2=1D .x 2+(y +3)2=1【解析】选C.由题意,设圆的标准方程为x 2+(y -b)2=1,由于圆过点(1,3),可得1+(3-b)2=1,解得b =3,所以所求圆的方程为x 2+(y -3)2=1.3.已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25【解析】选C.圆C 的圆心坐标C(6,8),则OC 的中点坐标为E(3,4),半径|OE|=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.4.圆心在直线x -2y -3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________. 【解析】方法一(几何性质法):设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a). 因为该圆经过A ,B 两点,所以|CA|=|CB|,所以(2a +3-2)2+(a +3)2 =(2a +3+2)2+(a +5)2 , 解得a =-2,所以圆心为C(-1,-2),半径长r =10 . 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知,⎩⎨⎧a -2b -3=0,(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,解得a =-1,b =-2,r =10 (负值舍去), 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法三(几何性质法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3+52+2 =12, 所以弦AB 的垂直平分线的斜率为k =-2,所以弦AB 的垂直平分线的方程为y +4=-2x ,即2x +y +4=0. 又圆心是直线2x +y +4=0与直线x -2y -3=0的交点, 所以圆心坐标为(-1,-2),所以圆的半径长r =(2+1)2+(-3+2)2 =10 , 故所求圆的标准方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=101.直接法求圆的方程圆的方程由圆心、半径决定,因此求出圆心和半径即可写出圆的标准方程. 2.待定系数法求圆的方程(圆心(a ,b)、半径为r)特殊位置 标准方程 圆心在x 轴上 (x -a)2+y 2=r 2 圆心在y 轴上 x 2+(y -b)2=r 2 与x 轴相切 (x -a)2+(y -b)2=b 2 与y 轴相切(x -a)2+(y -b)2=a 23.利用圆的性质求方程求圆的方程时,可以利用圆的性质求圆心、半径,如弦的垂直平分线过圆心,过切点垂直于切线的直线过圆心等.类型二点与圆的位置关系的判断(数学抽象、数学运算)1.点P(m,5)与圆x2+y2=24的位置关系是( )A.在圆外 B.在圆内C.在圆上 D.不确定【解析】选A.把P(m,5)代入x2+y2=24,得m2+25>24,所以点P在圆外.2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,所以点P(3,2)在圆内.3.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.【解析】因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,所以m=10.则圆的方程为(x+2)2+y2=10.答案:(x+2)2+y2=10.4.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.【解析】由题意知,点A在圆C上或圆C的外部,所以(1-a)2+(2+a)2≥2a2,所以2a+5≥0,所以a≥-52.因为a≠0,所以a的取值范围为⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).【思路导引】1.将点P的坐标代入圆的方程,看方程的等于号变成了什么符号,然后进行判断.2.验证点P与圆心的距离与半径之间的关系.3.将点的坐标代入圆的方程,解方程即可得出m的值,进而得方程.4.不在圆的内部,即在圆上或圆外.点与圆位置关系的判断与应用(1)位置关系的判断:①几何法:判断点到圆心的距离与半径的大小;②代数法:将点的坐标代入圆的方程左边,判断与r 2的大小. (2)位置关系的应用:代入点的坐标,利用不等式求参数的范围.【补偿训练】1.若点(3,a)在圆x 2+y 2=16的内部,则a 2的取值范围是( ) A .[0,7) B .(-∞,7) C .{7}D .(7,+∞)【解析】选A.由点在圆的内部,得9+a 2<16得a 2<7,又a 2≥0,所以0≤a 2<7. 2.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B .(0,1) C .⎝ ⎛⎭⎪⎫-1,15 D .⎝ ⎛⎭⎪⎫-15,1【解析】选D.因为点(2a ,a -1)在圆的内部,所以d =(2a )2+(a -2)2 =4a 2+a 2-4a +4 =5a 2-4a +4 < 5 , 解得-15 <a <1,所以a 的取值范围是⎝ ⎛⎭⎪⎫-15,1 .3.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5)D .[0,5]【解析】选C.由题意,得(a +1-a)2+(3-1)2>m ,即m<5, 又由圆的方程知m>0,所以0<m<5.类型三 与圆有关的最值问题(数学抽象、数学运算)角度1 与几何意义有关的最值问题【典例】已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.【思路导引】首先由条件观察x 、y 满足的条件,然后分析x 2+y 2的几何意义,求出其最值. 【解析】由题意知,x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取得最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12 =32 ,最小距离为1-12 =12.因此x2+y2的最大值和最小值分别为94,14.1.本例条件不变,试求yx的取值范围.【解析】设k=yx,变形为k=y-0x-0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k=yx,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即|-k|k2+1≤12,解得-33≤k≤33.即yx的取值范围是⎣⎢⎡⎦⎥⎤-33,33.2.本例条件不变,试求x+y的最值.【解析】令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时,在y轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b=±22-1,即最大值为22-1,最小值为-22-1.角度2 距离的最值问题【典例】1.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2【解析】选B.|PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值为3-(-3)-2=4.2.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.【解析】由题意知,点M在圆O内,O为圆心,MO的延长线与圆O的交点到点M(2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2 .答案:5+ 2【思路导引】1.转化为圆心到直线x=-3的距离减去半径;2.转化为M到圆心的距离加半径.1.与圆有关的最值问题的常见类型及解法(1)形如u=y-bx-a形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l=ax+by形式的最值问题,可转化为动直线y=-abx+lb在y轴上的截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离的方法采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值或最小值.1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+ 2 C.2+22D.1+2【解析】选B.圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为 2 ,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2 .2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )A.2 B.1 C.0 D.-1【解析】选B.x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,由几何意义可知最小值为(14-13)2=1.3.如果实数x,y满足(x-2)2+y2=3,求yx的最大值和最小值.【解析】方法一:如图,当过原点的直线l与圆(x-2)2+y2=3相切于上方时yx最大,过圆心A(2,0)作切线l的垂线交于B,在Rt△ABO中,OA=2,AB= 3 .所以切线l的倾斜角为60°,所以yx的最大值为 3 .同理可得yx的最小值为- 3 .方法二:令yx=n,则y=nx与(x-2)2+y2=3联立,消去y得(1+n2)x2-4x+1=0,Δ=(-4)2-4(1+n2)≥0,即n2≤3,所以- 3 ≤n≤ 3 ,即yx的最大值和最小值分别为 3 ,- 3 .【补偿训练】1.已知圆C的圆心为C(x0,x),且过定点P(4,2).(1)求圆C的标准方程.(2)当x为何值时,圆C的面积最小?求出此时圆C的标准方程.【解析】(1)设圆C的标准方程为(x-x0)2+(y-x)2=r2(r≠0).因为圆C过定点P(4,2),所以(4-x0)2+(2-x)2=r2(r≠0).所以r2=2x2-12x+20.所以圆C的标准方程为(x-x0)2+(y-x)2=2x2-12x+20.(2)因为(x-x0)2+(y-x)2=2x2-12x+20=2(x-3)2+2,所以当x=3时圆C的半径最小,则圆C的面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2.2.已知实数x,y满足方程x2+(y-1)2=14,求(x-2)2+(y-3)2的取值范围.【解析】(x-2)2+(y-3)2可以看成圆上的点P(x,y)到A(2,3)的距离.圆心C(0,1)到A(2,3)的距离为d=(0-2)2+(1-3)2=2 2 ,由图可知,圆上的点P(x ,y)到A(2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .即(x -2)2+(y -3)2 的取值范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .。

4.1.1圆的标准方程

4.1.1圆的标准方程
( x a) ( y b) r
2 2 2
( x a) ( y b) m
2 2
2.下列方程表示的曲线分别是什么? 2 2 y 4 ( x 1)
y 4 ( x 1)
2
21
方程 ( x a)2 ( y b)2 r 2 , 叫做以点 (a , b) 为圆心, r为半径 的圆的标准方程。 作用:
O
y
A
r
x M
需要几个量?
a,b,r.需三个条件
(1)已知圆心坐标和半径可写出圆的方程; (2)可由标准方程直接看出圆心和半径。
6
知识应用
(1) ( x 2) ( y 1) 2,
10
探究新知
对于点 M(x0 , y0) 和圆A: ( x a)2 ( y b)2 r 2 , (1)点在圆上 ( x 0 a ) 2 ( y 0 b ) 2 r 2 ; (2)点在圆内 ( x 0 a ) 2 ( y 0 b ) 2 r 2 ; 2 2 2 (3)点在圆外 ( x 0 a ) ( y 0 b ) r ;
8
知识应用
( x a) ( y b) r
2 2
2
练习3:写出满足下列条件的圆的标准方程. (1)圆心为(2 , -3),半径是 5的圆 ; (2)圆心为(-1 , 2),且过原点的圆 ; (3)以(0 , 0), (6 , -8)为直径端点的圆 ; (4)圆心为原点,且与直线x=1相切的圆. 解:(1) ( x 2) ( y r
2 2
2
练习1:说出下列方程表示的圆的圆心和半径. (2) x ( y 2) ( 2) ,

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系

直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)

r2

展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0

解得a=2,b=-3,r=5.


O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为

(x–2)2+(y+3)2=25.

C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2

ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.


O
x


C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.2
圆的一般方程
问题提出
1.圆心为A(a,b),半径为r的圆 的标准方程是什么?
( x a) ( y b) r
2 2
2
2.直线方程有多种形式,圆的方 程是否还可以表示成其他形式?这是 一个需要探讨的问题.
知识探究一:圆的一般方程
思考1:圆的标准方程 ( x a) ( y b) r 展开可得到一个什么式子?
2 2
思考4:方程 x y Dx Ey F 0 可化
2 2

D 2 E 2 D E 4F (x ) ( y ) 2 2 4
2 2

它在什么条件下表示圆?
4F 思考5:当 D E 4 F 0或 D E 时, 0 2 2 方程 表示什么图 x y Dx Ey F 0 形?
思考3:在直角坐标系中,已知点M(x0, 2 2 2 ( x a) ( y ,如何判 b) r y0)和圆C: 断点M在圆外、圆上、圆内? (x0-a)2+(y0-b)2>r2时,点M在圆C外; (x0-a)2+(y0-b)2=r2时,点M在圆C上;
(x0-a)2+(y0-b)2<r2时,点M在圆C内.
2 2
2 2 2 2 2
2
思考2:方程 x y 2ax 2by a b r 0 的一般形式是什么?
x y Dx Ey F 0
2 2
思考3:方程 x y 2 x 4 y 1 0 2 2 与 x y 2 x 4 y 6 0 表示的图形 都是圆吗?为什么?
理论迁移 例1 求过三点O(0,0),A(1,1), B(4,2)的圆的方程,并求出这个圆的 半径长和圆心坐标.
例2 方程 x y ax 2ay 2a a 1 0 表示的图形是一个圆,求a的取值范围.
2 2 2
例3 已知线段AB的端点B的坐标是 (4,3),端点A在圆(x+1)2+y2=4上运 动,求线段AB的中点M的轨迹方程.
y
(x-a)2+(y-b)2=r2
o
r A
M
x
思考4:对于以点A(a,b)为圆心,r为半 径的圆,由上可知,若点M(x,y)在圆上, 则点M的坐标满足方程(x-a)2+(y-b)2=r2 ; 反之,若点M(x,y)的坐标适合方程(xa)2+(y-b)2=r2 ,那么点M一定在这个圆 上吗? y
r
A o x M
第四章 4.1 4.1.1
圆与方程 圆的方程 圆的标准方程
问题提出 1.在平面直角坐标系中,两点确定一条 直线,一点和倾斜角也确定一条直线, 那么在什么条件下可以确定一个圆呢? 圆心和半径 2.直线可以用一个方程表示,圆也可 以用一个方程来表示,怎样建立圆的 方程是我们需要探究的问题.
Hale Waihona Puke 知识探究一:圆的标准方程思考4:经过一个点、两个点、三个点分 别可以作多少个圆? 思考5:集合{(x,y)|(x-a)2+(y-b)2≤r2} 表示的图形是什么?
y r A o x
理论迁移 例1 写出圆心为A(2,-3),半径 长等于5的圆的方程,并判断点M(5, -7),N( 5 ,-1)是否在这个圆上?
例2 △ABC的三个顶点的坐标分别是 A(5,1),B(7,-3),C(2,-8), 求它的外接圆的方程. y A
y C o y C x o x y C
o
x
D=0
E=0
F=0
知识探究二:圆的直径方程 思考1:已知点A(1,3)和B(-5,5),如 何求以线段AB为直径的圆方程? 思考2:一般地,已知点A(x1,y1), B(x2,y2),则以线段AB为直径的圆方 y P 程如何?
B A o x
(x-x1)(x-x2)+(y-y1)(y-y2)=0
思考5:我们把方程 ( x a) ( y b) r 称为圆心为A(a,b),半径长为r的圆的 标准方程,那么确定圆的标准方程需要 几个独立条件?
2 2 2
思考6:以原点为圆心,1为半径的圆 称为单位圆,那么单位圆的方程是什 么? x2+y2=1
思考7:方程 ( x a) ( y b) r , 2 2 2 2 2 ( x a) ( y b) r ,( x a) ( y b) m 是圆方程吗?
y B
A
o
M x
例4 已知点P(5,3),点M在圆 x2+y2-4x+2y+4=0上运动,求|PM|的最 大值和最小值.
P y o C
A
M x
B
小结作业
2 2
x 2 y 2 Dx Ey F 0 1.任一圆的方程可写成
的形式,但方程 x y Dx Ey F 0表示 的曲线不一定是圆,当2 E 2 4F 0 时, D D E 方程表示圆心为 , ) ,半径为 (
2 2
1 2 2 D E 4F 2
的圆.
2.用待定系数法求圆方程的基本步骤: (1)设圆方程 ;(2)列方程组; (3)求系数; (4)小结.
3.求轨迹方程的基本思想: 求出动点坐标x,y所满足的关系.
作业: P123练习:1,2,3. P124习题4.1B组:1,2,3.
2 2 2
思考8:方程 y 4 ( x 1) 与 y 4 ( x 1) 表示的曲线分别是什么?
2
2
知识探究二:点与圆的位置关系 思考1:在平面几何中,点与圆有哪几种 位置关系?
思考2:在平面几何中,如何确定点与圆 的位置关系?
A O OA<r O OA=r A O A
OA>r
o C B
x
例3 已知圆心为C的圆经过点 A(1,1)和B(2,-2),且圆心C在 直线l :x-y+1=0上,求圆C的标准方程.
y
l A C x
o B
小结作业
(1)圆的标准方程的结构特点. (2)点与圆的位置关系的判定. (3)求圆的标准方程的方法: ①待定系数法;②代入法.
作业: P120练习: 1,3. P124习题4.1A组:2,3,4.
思考1:圆可以看成是平面上的一条曲线, 在平面几何中,圆是怎样定义的?如何 用集合语言描述以点A为圆心,r为半径 的圆? M
r
P={M||MA|=r}.
A
平面上到一个定点的距离等于定长的 点的轨迹叫做圆.
思考2:确定一个圆最基本的要素是什么? 思考3:设圆心坐标为A(a,b),圆半径 为r,M(x,y)为圆上任意一点,根据圆 的定义x,y应满足什么关系?
2 2
2 2
思考6:方程 x y Dx Ey F 0 2 2 ( D E 4F 0)叫做圆的一般方程,其 圆心坐标和半径分别是什么?
2 2
D E 圆心为 ( , ) 2 2
,半径为
1 2 2 D E 4F 2
思考7:当D=0,E=0或F=0时, 2 2 圆 x y Dx Ey F 0 的位置分别 有什么特点?
相关文档
最新文档