物理竞赛电磁学习题集(含解答)

合集下载

物理竞赛之电磁学

物理竞赛之电磁学

大学物理竞赛—电磁学题目训练知识点罗列1、电场和磁场的计算2、电能和磁能的计算3、有电解质和磁介质存在的情况4、电容器的电容和螺线管的自感互感5、静电场力和磁场力的计算6、动生电动势和感生电动势的计算例1:如图,两边为电导率很大的导体,中间两层是电导率分别为和的均匀导电介质,它们的厚度分别为d 1和d 2,导体的横截面积为S ,流过的电流为I 。

求:(1)两层导电介质中的电场强度;(2)每层导电介质两端的电势差。

1σ2σ12σσ12d d IISIjE σσ==SIE 11σ=SIE 22σ=SId d E U 11111σ==SId d E U 22222σ==解:(1)由欧姆定律的微分形式,有:于是:(2)根据电势的定义可得:解:例2一半径为的半球形电极埋在大地里,大地视为均匀的导电介质,其电导率为,求接地电阻。

rI1r 2r 跨步电压若通有电流I ,求半径为,两个球面的电压。

1r 2r σr 2d 1d 22rrr R R r rσπσπ∞∞===⎰⎰221112212d 111d ()22r r r r r R R r r r σπσπ===-⎰⎰12121211()2I V V IR r r σπ-==-211212111d ()2r r V V E r r r σπ-==-⎰另一种解法:j Eσ=22I j rπ=22I E rπσ⇒=rI1r 2r例3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连,如图所示。

求:环中心的磁感应强度。

A BI I OABI OI l 21l 21⎰B I 10d l m π40r 2=1l 1解:==I 1I 2R 2R 1l 2l 1=B =B 1B 2⎰B I 20d l m π40r 2=2l 2I l =I 21l 21其他几种变化:AoB:0=B O 处环心IO R⎪⎭⎫⎝⎛-=πI m 11200R B IO R⎪⎭⎫⎝⎛+=πI m 11200R B1IIabco2≠B12IIoab=B12abcdoII=B例4 半径为R 的木球上绕有细导线,所绕线圈很紧密,相邻的线圈彼此平行地靠着,以单层盖住半个球面,共有N 匝。

电磁学1-全国中学生物理竞赛专题模拟练习试卷及参考答案

电磁学1-全国中学生物理竞赛专题模拟练习试卷及参考答案

在 l 十分缓慢的变化过程中,相积分
J pdq 常量
其中广义动量 p mgl ,广义坐标 。对于简谐运动 JE f
E 为只含 q 、 q 的二次项能量, f 为振动频率。
对于电路系统,同理有
J pdq 常量 , E CU 2 , f
2 LC
故 CU 2 LC 为常量,即
U C 3/4
r a
A
0 I 2
ln
r a
对于本题,磁场线方程为
B dr 0

Bydx Bxdy 0 而
Bx
A y
By
A x
故磁场线方程为
A dx A dy dA 0 x y

A 常数
在原点处
A
0 I 2
ln
a a
0 I 2
ln
a a
0
在 xOy 平面上任一点 P,若 P 距两直导线 r1 、 r2 ,则磁矢势
图4
题5 如图 5,两块相互垂直的无穷大与半无穷大的导体板分别带 上电势 U 与 0 ,两板最近相距 d,两板均垂直于 xOy 平面,相 交于 y 轴与 x 轴上的一段射线。求空间电势分布。
图5
1
格悟物理
参考答案
题 1 解:对于无穷长线电荷密度为 的带电导线,在距轴 r 处的电势
40
dz z2 r2
位置变至
r0
/0
, 0
。边界条件:
0

0

0

变为 0 与 时 0 。
在 (r, ) 坐标中,
电像法得
r0
/0

0
r0
/0
, 0
处有一线电荷密度为

物理竞赛练习题 电磁学

物理竞赛练习题 电磁学

物理竞赛练习题《电场》班级____________座号_____________姓名_______________1、半径为R的均匀带电半球面,电荷面密度为σ,求球心处的电场强度。

2、有一均匀带电球体,半径为R,球心为P,单位体积内带电量为ρ,现在球体内挖一球形空腔,空腔的球心为S,半径为R/2,如图所示,今有一带电量为q,质量为m的质点自L点(LS⊥PS)由静止开始沿空腔内壁滑动,不计摩擦和质点的重力,求质点滑动中速度的最大值。

3、在-d ≤x ≤d 的空间区域内,电荷密度ρ>0为常量,其他区域均为真空。

若在x =2d 处将质量为m 、电量为q (q <0)的带电质点自静止释放。

试问经多长时间它能到达x =0的位置。

4、一个质量为M 的绝缘小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m 、带电量为+q 的带电小物体(可视为质点),小车质量与物块质量之比M :m =7:1,物块距小车右端挡板距离为l ,小车车长为L ,且L =1.5l 。

如图所示,现沿平行于车身方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,之后与小车右挡板相碰,碰后小车速度大小为碰前物块速度大小的1/4。

设小物块滑动过程中及其与小车相碰过程中,小物块带电量不变。

(1)通过分析与计算说明,碰撞后滑块能否滑出小车的车身?(2)若能滑出,求由小物块开始运动至滑出时电场力对小物块所做的功;若不能滑出,求小物块从开始运动至第二次碰撞时电场力对小物块所做的功。

E物理竞赛练习题 《电势和电势差》班级____________座号_____________姓名_______________1、两个电量均为q =3.0×10-8C 的小球,分别固定在两根不导电杆的一端,用不导电的线系住这两端。

将两杆的另一端固定在公共转轴O 上,使两杆可以绕O 轴在图面上做无摩擦地转动,线和两杆长度均为l =5.0cm 。

电磁学试题(含答案)

电磁学试题(含答案)

电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。

全国高中物理竞赛专题十三 电磁感应训练题解答

全国高中物理竞赛专题十三  电磁感应训练题解答

1、 如图所示为一椭圆形轨道,其方程为()222210x y a b a b+=>>,在中心处有一圆形区域,圆心在O 点,半径为()r b <,圆形区域中有一均匀磁场1B ,方向垂直纸面向里,1B 以1B t k ∆∆=的速率增大,在圆外区域中另有一匀强磁场2B ,方向与1B 相同,在初始时,A 点有一带正电q 的质量为m 的粒子,粒子只能在轨道上运动,把粒子由静止释放,若要其通过C 点时对轨道无作用力,求2B 的大小。

解:由于r b a <<,故轨道上距O 为R 的某处,涡旋电场强度为22122B r kr E R t R∆==∆方向垂直于R 且沿逆时针方向,故q 逆时针运动。

q 相对O 转过θ∆角时,1B 对其做功为22kr W F x Eq x q R Rθ∆=∆=∆=∆而2B 产生的洛伦兹力及轨道支持力不做功,故q 对O 转过θ角后,其动能为22122k kr Emv W q θ==∆=∑q 的速度大小为v =q 过C 时,()320,1,2,2n n θππ=+=C 处轨道不受力的条件为22mv qvB ρ=其中ρ为C 处的曲率半径,可以证明:2a b ρ=(证明略)将v 和θ的表达式代入上式可得)20,1,2,B n ==2、 两根长度相等,材料相同,电阻分别为R 和2R 的细导线,两者相接而围成一半径为a 的圆环,P Q 、为其两个接点,如图所示,在圆环所围成的区域内,存在垂直于图面、指向纸内的匀强磁场,磁感应强度的大小随时间增大的变化率为恒定值b 。

已知圆环中感应电动势是均匀分布的,设M N 、为圆环上的两点,M N 、间的圆弧为半圆弧的一半,试求这两点间的电压()M N U U -。

解:根据法拉第定律,整个圆环中的感应电动势的大小2E r b tπ∆Φ==∆ (1) 按楞次定律判断其电流方向是逆时针的,电流大小为 23E EI R R R==+ (2) 按题意,E 被均匀分布在整个圆环上,即MN 的电动势为4E ,NQPM 的电动势为34E ,现考虑NQPM ,在这段电路上由于欧姆电阻所产生电势降落为()22I R R +,故3242M N R U U E R I ⎛⎫-=-+ ⎪⎝⎭ (3) 由(1)、(2)、(3)式可得2112M N U U r b π-=-(4) 当然,也可采用另一条路径(MTN 圆弧)求电势差()211424321212N M M N E R E E R U U I E r b U U R π-=-=-===-- 与(4)式相符。

物理竞赛电磁学习题讲解资料

物理竞赛电磁学习题讲解资料

强. (2)电容器的电容
解(1)设这两层电介质中的 场强和电位移矢量分别为
E1,E2;D1,D2.由高斯面S1可知:
D dS S1
D2 S0
D1 S0
0
D2 D1
由高斯面S2可知:
A
S0
0
+-+ +S-+2+-+ +-+ +-+ +- 1'
d1
d2
+-
S0
S+-1
-+
E1
-+
D1
-+
-+12''
B 2r
0
I
I (
(r 2 R32
R22 ) R22 )
B
0 I ( R32 r 2 ) 2r( R32 R22 )
r > R3 ,
B 2r 0
江西理工大学理学院
R3
R1 R2
I I
r
B=0
➢ 结论: 均匀磁场中,任意形状刚性闭合平面 通电线圈所受的力和力矩为:
F 0, M Pm B
q
0r2
(R3 r R2 )
qq
E3 0
(R1 r R2 )
VO
E4
2q
4π 0r
2
(R1 r)
E dl
0 R3
0
E1
dl
R2 R3
E2
dl
R3
R2 R1
R1 R2
E3
dl
R1 E4 dl
VO
q
4π 0
1 ( R3
1 R2
2 )

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

高中物理竞赛电磁学专题练习20题(带答案详解)

高中物理竞赛电磁学专题练习20题(带答案详解)

高中物理竞赛电磁学专题练习20题(带答案详解)一、解答题1.如图所示,长直螺旋管中部套有一导线围成的圆环,圆环的轴与螺旋管的轴重合,圆环由电阻不同的两半圆环组成,其阻值1R 、2R 未知.在两半圆环的结合点A 、B 间接三个内阻均为纯电阻的伏特表,且导线0A V B --准确地沿圆环直径安放,而1A V B --、2A V B --分置螺旋管两边,长度不拘,螺旋管中通有交流电时发现,0V 、1V 的示数分别为5V 、10V ,问:1V 的示数为多少?螺旋管外的磁场及电路的电感均忽略不计2.图1、2、3所示无限长直载流导线中,如果电流I 随时间t 变化,周围空间磁场B 也将随t 变化,从而激发起感应电场E .在载流导线附近空间区域内,B 随t 的变化,乃至E 随t 的变化可近似处理为与I 随时间t 变化同步.距载流导线足够远的空间区域,B 、E 随t 的变化均会落后于I 随t 的变化.考虑到电磁场变化传播的速度即为光速,如果题图讨论的空间区域线度尽管很大,题图讨论的空间区域线度尽管很大,即模型化为图中即模型化为图中x 可趋向无穷,可趋向无穷,但这一距离造成的但这一距离造成的B 、E 随t 的变化滞后于I 随t 变化的效应事实上仍可略去.在此前提下,求解下述问题(1)系统如图1、2所示,设()I I t =①通过分析,判定图1的xOy 平面上P 处感应电场场强P E 的三个分量Px E 、Py E 、PzE中为零的分量中为零的分量②图2中12l l ⨯长方形框架的回路方向已经设定,试求回路电动势ε③将图1中的P 、Q 两处感应电场场强的大小分别记为P E 、Q E ,试求P Q -E E 值 (2)由两条无限长反向电流导线构成的系统如图3所示,仍设()I I t =,试求P 处感应电场场强P E 的方向和大小3.现构造如图1所示网络,该网络为无穷正方形网络,以A 为原点,B 的坐标为()1985,930.现在两个这样的网络C C A B 和L L A B ,其单位长度上所配置的电学元件分别为电容为C 的电容器及电感为L 的线圈,且网络中的电阻均忽略不计,并连接成如图2所示的电路S 为调频信号发生器,可发出频率()0,f Hz ∈+∞的电学正弦交流信号.即()0sin 2πS U U ft =,0U 为一已知定值,R 为一已知保护电阻为一已知保护电阻试求干路电流达到最大时,S 的频率m f 以及此时干路的峰值电流max I4.在空间中几个点依次放置几个点电荷1q ,2q ,3q ,4q ,…,n q ,对于点i ,其余1n -个点电荷在这一点上的电势和为i U ,若在这n 个点上换上另n 个点电荷1q ',2q ',3q ',…,n q ',同理定义()1,2,,i U i n '=L(1)证明:()112nni i i i i i qU q U n ==''=≥∑∑(2)利用(1)中结论,证明真空中一对导体电容器的电容值与这两个导体的带电量无关.(这对导体带等量异号电荷)(3)利用(1)中的结论,中的结论,求解如下问题:求解如下问题:求解如下问题:如图所示,如图所示,如图所示,正四面体正四面体ABCD各面均为导体,但又彼此绝缘.已知带电后四个面的静电势分别为1ϕ、2ϕ、3ϕ和4ϕ,求四面体中心O点的电势O ϕ5.有七片完全相同的金属片,有七片完全相同的金属片,面积为面积为S ,放置在真空中,放置在真空中,除除4和5两板间的间距为2d 外,其他相邻两板间距均为d ,且1和5、3和7用导线相连,试求:(1)4与6两板构成的电极的电容(2)若在4和6间加上电压U ,求各板的受力.6.如图所示,一电容器由一圆形平行金属板构成,金属板的半径为R ,间距为d ,现有一点P ,在两金属板的中位面(即平行于两板,且平分两极板所夹区域的平面)上,P 到两中心O 的距离为()0R r r +>R ,已知极板所带的面电荷密度为σ±,且R r d ??,试求P 点的场强大小P E7.在一环形铁芯上绕有N 匝外表绝缘的导线,导线两端接到电动势为ε的交流电源上,一电阻为R 、自感可略去不计的均匀细圆环套在这环形铁芯上,细圆环上a 、b 两点间的环长(劣弧)为细圆环长度的1n.将电阻为r 的交流电流计G 接在a 、b 两点,有两种接法,分别如图1、图2所示,试分别求这两种接法时通过G 的电流8.有一个平面正方形无限带电网络,每个格子边长均为r ,线电荷密度为()0λλ>,有一带电电量为()0Q Q >、质量为m 的粒子恰好处于一个格子的中心,若给它某个方向的微扰,使其位移d ,d r =.试求它受到电场力的大小,并描述它以后的运动.(提示:可能用到的公式2222π11116234=++++L )9.(1)一维电磁驻波()()sin x E x A k x =在x 方向限制在0x =和x a =之间.在两个端点处驻波消失,求x k 的可能值.的可能值.(2)弦理论认为物理空间多于三维,多出的隐藏维空间像细圆柱的表面一样卷了起来,如图中y 坐标所示,设圆柱的半径为()b a =,在圆柱面上电磁波的形式为()()(),sin cos x y E x y A k x k y =,其中y 是绕圆柱的折叠空间的坐标.求y k 的可能值.的可能值.(3)光子能量222πx yhc W k k =+,其中()1239hc eV nm =⨯,eV 表示1电子伏特,1nm 等于910m -.目前人类能产生的最高能量的光子大约为121.010eV ⨯.如果该能量能够产生一个折叠空间的光子,b 的值满足什么条件?10.在图1所示的二极管电路中,所示的二极管电路中,从从A 端输入图2所示波形的电压,所示波形的电压,若各电容器最初都若各电容器最初都没有充电,试画出B 、D 两点在三个周期内的电压变化.将三极管当作理想开关,B 点电压的极限是多少?电压的极限是多少?11.理想的非门可以视为一个受控电压源:理想的非门可以视为一个受控电压源:当输入端电压小于当输入端电压小于6C U V =时,输出端相当于和地线之间有一个理想电压源,电源电压012U V =;当输入端电压大于C U 时,输出端相当于和地线之间短路.出端相当于和地线之间短路.等效电路图如图等效电路图如图1所示.不同非门中接地点可以视为是同一个点,我们利用非门、电容和电阻能够做成一个输出方波信号的多谐振荡器.给出图2电路中02U 随着时间的变换关系.提示:如图3的RC 电路,从刚接通电路开始,电容上的电压随时间变化规律为()()01t RC U t U e -=- 12.如图所示,在圆形区域中(足够大),有垂直于纸面向内随时间均匀增加的磁场B kt∆=∆.在与圆心O 距离为d 的位置P 处有一个钉子,钉住了一根长度为l ,质量为m 的均匀绝缘棒的中心,绝缘棒能在平面内自由无摩擦地自由转动.绝缘棒能在平面内自由无摩擦地自由转动.绝缘棒上半截均匀带绝缘棒上半截均匀带正电,电量为Q ,下半截均匀带负电,电量为Q -.初始时刻绝缘棒垂直于OP(1)计算在P 点处钉子受到的压力(2)若绝缘棒受到微小扰动,在平面内来回转动起来(速度很小,洛仑兹力可以忽略),求证此运动是简谐振动,并计算周期.(绝缘棒绕质心的转动惯量为2112I ml =)13.如图1所示的电阻网络中,图中各段电阻的阻值均为r(1)试求AB R 、AC R(2)现将该网络接入电路中,如图2所示.AC 间接电感L ,A 、B 间接一交流电源,其角频率为ω,现为提高系统的动率因数,在A 、B 间接一电容C ,试求使功率因数为1的电容C ,已知rL αω=14.两个分别绕有1N 和2N 匝的圆线圈,半径分别为1r ,2r 且21r r =,设大圆的电阻为R ,试求:(1)两线圈在同轴共面位置的互惑系数(2)在小线圈中通以稳恒电流I ,并使之沿轴线以速度v 匀速运动.始终保持二者共轴,求两线圈中心相距为x 时,大线圈中的感生电动势(3)若把小线圈从共面移到很远处,求大线圈中通过的感生电量.(忽略所有自感) 15.如图所示为一两端无限延伸的电阻网络,设每小段电阻丝电阻均为1Ω,试问:A 、B 间等效电阻AB R 为多少?(结果保留三位有效数字)为多少?(结果保留三位有效数字)16.如图a 所示,电阻101k R R ==Ω,电动势6V E =,两个相同的二极管D 串联在电路中,二极管D 的D D I U -特性曲线如图b 所示.试求: (1)通过二极管D 的电流;的电流; (2)电阻1R 消耗的功率.17.如图甲所示,两台发电机并联运行,共同供电给负载,负载电阻24R =Ω.由于某种原因,两台发电机的电动势发生差异,1130V ε=、11r =Ω、2117V ε=、20.6r =Ω.求每台发电机中的电流和它们各自发出的功率.18.如图1所示的无限旋转内接正方形金属丝网络由一种粗细一致、所示的无限旋转内接正方形金属丝网络由一种粗细一致、材料相同的金属丝材料相同的金属丝构成,其中每一个内接正方形的顶点都在外侧正方形四边中点上.其中每一个内接正方形的顶点都在外侧正方形四边中点上.已知与最外侧正方形已知与最外侧正方形边长相同的同种金属丝A B ''的电阻为0R ,求网络中 (1)A 、C 两端间等效电阻AC R ; (2)E 、G 两端间等效电阻EC R .19.正四面体框架形电阻网络如图所示,其中每一小段的电阻均为R,试求:(1)AB两点间的电阻;(2)CD两点间的电阻.20.在如图所示的网络中,仅知道部分支路上的电流值及其方向、某些元件参数和支路交点的电势值(有关数值及参数已标在图甲上),请你利用所给的有关数值及参数求出含有电阻x R的支路上的电流值x I及其方向.参考答案1.220V U V =或0. 【解析】【解析】 【详解】因螺旋管中通有交流电,故回路中产生的电动势也是交变的,但可以仅限于某确定时刻的感生电动势、电压和电流的瞬时值,这是因为在无电感、电容的情况下,各量有效值的关系与瞬时值的关系相同.(1)当12R R <,取A B U U >时,回路中的电流如图所示,则时,回路中的电流如图所示,则0001102V I R I R ε+-=,0100102V V I R I R ε'+-=,2202V I R I R ε-+=,0200202V V I R I R ε'-+=.整理可得0120001202V V V V I R I R I R I R ε''=+=-.所以,2201201220V V V V U I R I R I R V ''==+=(2)当12R R >,取A B U U <时,0I 反向,其他不变,则1020010202V V V V I R I R I R I R ε''=-=+所以,221021020V V V V U I R I R I R ''==-=(此时20R =,即2R 段为超导体,10R ≠) 综上所述,220V U V =或02.(1)①0PzE =②012d ln2πd l x l l t x με+⎛⎫= ⎪⎝⎭ ③02d ln 2πd P Q x l I E E t x μ+⎛⎫-= ⎪⎝⎭(2)()0d ln 2πd P I d x E x t x μ-⎛⎫= ⎪⎝⎭,基准方向取为与y 轴反向轴反向 【解析】 【详解】(1)①若0Pz E ≠,则在过P 点且与xOy 坐标面平行的平面上,取一个以x 为半径,以y 轴为中央轴的圆,设定回路方向如题解图所示.由系统的轴对称性,回路各处感应电场E 的角向分量与图中Pz E 方向一致地沿回路方向,且大小相同,由E 的回路积分所得的感应电动势0ε≠.另一方面,电流I 的磁场B 在该回路所包围面上磁通量恒为零,磁通量变化也为零,据法拉第电磁感应定律应有0ε=.两者矛盾,故必定是0Pz E =.若0Py E ≠,由系统的轴对称性,在题解图1的圆柱面上各处场强E 的y 方向分量方向、大小与图中Py E 方向、大小相同.若取一系列不同半径x 的同轴圆柱面,每个圆柱面上场强E 的y 方向分量方向相同、方向分量方向相同、大小也相同,但大小应随大小也相同,但大小应随x 增大而减小.这将使得题文图2中的矩形回路感生感应电动势0ε≠,与法拉第电磁感应定律相符,因此允许0Py E ≠若0Px E ≠,由轴对称性,题解图1的圆柱面上各处场强E E 的径向分量方向与Px E 对应的径向方向一致,两者大小也相同.将题解图1中的圆柱面上、下封顶,成为一个圆筒形高斯面,上、下两个端面d ⋅E S 通量积分之和为零,侧面d ⋅E S 通量积分不为零,这与麦克斯韦假设所得1d d 0se sV V ρε⋅==⎰⎰⎰⎰⎰ÒE S矛盾,故必定是0Px E =②据法拉第定律,参考题文图2,有()21d d d x l xB x l x t ε+=--⎰,其中()02πI B x x μ= 所以,001221d d ln ln d 2π2πd Il x l x l l l t x t x μμε++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭③据麦克斯韦感应电场假设,结合(1.1)问解答,有)问解答,有 ()()121=d LE l E x l E x l l ε⋅=-+⎰Ñ结合①②问所得结果,有()()012121d ln 2πd l x l I E x l E x l l t x μ+⎛⎫-+= ⎪⎝⎭ ()()022d ln 2πd x l IE x E x l t xμ+⎛⎫-+= ⎪⎝⎭ 即得()()022d ln2πd P Q x l I E E E x E x l t x μ+⎛⎫-=-+=⎪⎝⎭ (2)从物理上考虑,远场应()220l E x l →∞+→代入上式,得()202d ln 2πd Pl x l I E E xt x μ→∞+⎛⎫==→∞⎪⎝⎭为行文方便,将P E 改述为()02d ln2πd z PP l x l IE E xt x μ→∞+⎛⎫→=→∞⎪⎝⎭()P E x 为发散量,系因模型造成,并非真实如图所示,由左侧变化电流贡献的()P x 左E 和右侧变化电流贡献的()P x 右E合成的()PE x ,基准方向取为与y 轴反向.轴反向.即有()()()P P P E x E x E x =-左右()()00d d ln ln 2πd 2πd P x d x lx l I I E x t x t x μμ∞+-++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭左右()()()00d d ln ln 2πd 2πd P d x l d x x lI I E x t d x t d x μμ∞-+-++⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭右左 使得()()0d ln 2πd P I d x E x E x t xμ-⎛⎫== ⎪⎝⎭3.0maxU I R =,12π2πm f LCω== 【解析】【解析】 【详解】不妨设电感网络等效电感AB L L α=,则其阻抗L αω=Z j (j 为单位虚根)为单位虚根) 又由于C C A B 与L L A B 的结构相同,故在阻抗上形式具有相似性,故在阻抗上形式具有相似性,有有1C C αω=⋅Z j ,从而总阻抗11LCRR L RL C C αωααωωω⎛⎫⎛⎫=++=+-=+- ⎪ ⎪⎝⎭⎝⎭ZZZZj j j 又峰值0U I =Z ,所以,1222001I U R L C ααω-⎡⎤⎛⎫⎥=⋅+- ⎪⎢⎝⎭⎣⎦所以,当10L Cωω-=,即1LCω=时,0I 最大 此时,0maxU I R =,而12π2πm f LCω== 4.(1)证明见解析(2)证明见解析(3)12344Oϕϕϕϕϕ+++=【解析】 【详解】(1)设i 点对j 点所产生的电势为ij i a q ,同理易知j 点对i 点产生电势为ji j a q ,而对于此二点系统,我们有ij j ji i U q U q =,即ij i j ji j i a q q a q q = 所以,ij ji a a =,易知ij a 为只与位置有关的参量.又1231231n ni i i i i n ij j j U a q a q a q a q a q ==++++=∑L (令0ii a =)则1231231n nii i i i nij j j U a q a q a q a q a q =''''''=++++=∑L(ij a 只与位置有关)所以,111,1111nnn n n nn i i i ij j ij i j i ij j i i i i j i j i j i qU q a q a q q q a q q U =======⎛⎫⎛⎫'''''==== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑∑所以原式(格林互易定理)成立(2)分别设两导体前后所带静电分别为1Q ±,2Q ±,其对应的电容分别为1C 、2C则由(1)知,()121122121221ni i i qU QU QU Q U U ='=-=-∑(其中21U ,22U 为带2Q ±时两导体电势)同样()211212211121ni i i q U Q U Q U Q U U ='=-=-∑(其中11U ,12U 为带1Q ±时两导体电势)时两导体电势)由(1)知二者相等,则()()1212221112Q U U Q U U -=-所以,121211122122Q Q C C U U U U ===--即与导体带电量多少无关.即与导体带电量多少无关.(3)由题意,设四个面与中心O 的电荷量分别为1q 、2q 、3q 、4q 、0 同时,四个面与中心的电势分别为1ϕ、2ϕ、3ϕ、4ϕ、O ϕ.现将外面四个面接地,中心放一个电量为Q 的点电荷,中心电势为U ,而四个面产生的感应电荷都相等,为4Q-,则此时四个面与中心O 的电荷和电势分别为4Q -、4Q -、4Q -、4Q-、Q ;0、0、0、0、U由格林互易定理可得123404444O Q Q Q Q U ϕϕϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫⋅-+⋅-+⋅-+⋅-+⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可得12344O ϕϕϕϕϕ+++=5.(1)04616161919S C C d ε==(2)24232361U S F d ε=,方向向上;25213722U S F dε=,方向向下;206216722U S F d ε=,方向向上;207281722U SF d ε=,方向向上【解析】 【详解】【详解】(1)由4与6两板构成的电极的电容结构可等效为图所示的电容网络,其中图101223345667SC C C C C C dε======,04522SC C dε==.由图可知,各电容器所带的电量满足342356Q Q Q =+,451267Q Q Q +=,2312Q Q =. 各支路的电压满足如下关系:各支路的电压满足如下关系:3456Q Q U C C +=,45672Q Q U C C +=,23566712Q Q Q Q C C C C+=-. 由上述各式解得1223119Q Q CU ==,341019Q CU =,45619Q CU =,56919Q CU =,67719Q CU =,则344504616161919Q Q S C C U dε+===.为求4、6端的电容,我们也可通过先求如图左所示的电阻网络的阻值,进而求得电容.将图中O ABC -的Y 形接法部分转化为△接法,得到图2右所示电路,其阻值如图所示,进而易得到进而易得到461916R R =. 直流电路的电阻、电压、电流之间有U I R=. 由电容组成的电路的电容、电压、电量之间有Q CU =. 类比有1C R~.且上述的电阻电路与电容电路匹配,所以,46461C R ~,即有04616161919S C C dε==.(2)由于各板的受力为系统中其他板上的电荷在该板处产生的电场对其板上电荷的作用力,故而通过高斯定理易求得各板处的场强,进而求得各板的受力为2121111202722U S Q F E Q Q dεε==⋅=,方向向下,在原系统中. (1E 求法:1板上侧面不带电,下侧面带电12Q ,正电,即011219USQ Q dε==,由电荷守恒知,27~板带电总量为1Q ,为负电,将27~视为整体,由高斯定理易得到1102Q E ε=)下面符号i Q 表示第i 块板所带的总电量.2220F E Q ==.(该板显然有20Q =)2456701233332009922722Q Q Q Q U S Q Q F E Q Q d εεε⎛⎫++++==-⋅= ⎪⎝⎭,方向向下.,方向向下.式中00033423109191919US US US Q Q Q d d d εεε=-+=-+=-,0434451619US Q Q Q d ε=+=, 054556319US Q Q Q d ε=-+=,656671619US Q Q Q d ε=--=-, 0767719USQ Q d ε=-=-.同理可得:24232361U S F d ε=,方向向上;,方向向上;205213722U SF d ε=,方向向下; 206216722U S F dε=,方向向上; 27281722U SF dε=,方向向上.6.02πP dE rσε=【解析】【解析】 【详解】我们用磁场来类比,引入假想的磁荷1m q 、2m q ,且定义,且定义123014πm m q q r μ==F r ,且1213014πm m q q r μ==F H r . 下面我们通过磁偶极子与环电流找到联系:下面我们通过磁偶极子与环电流找到联系:对于一1m ±q 的磁偶极子,磁矩m m q =p l ,而对于一个电流为I 的线圈,磁矩0m I μ'=p S ,当m m '=p p 时,有0m q I μ=l S .对于此题,我们认为上、下两极板带磁荷面密度为m σ±,则对于S ∆面积中的上、下磁荷,我们看作磁偶极子,则若用环电流代替,有0m Sd I S σμ∆=∆,所以,0m dI σμ=.于是,该两带电磁荷板可等效为许多小电流元的叠加,该两带电磁荷板可等效为许多小电流元的叠加,而这样的电流源会在内部抵消,而这样的电流源会在内部抵消,而这样的电流源会在内部抵消,最后最后只剩下最外层一大圆,且0mdI σμ=.在P 点处的磁场强度,由于R r,故可认为由一距P 距离为r 的无限长通电导线所产生,且其中的电流为I ,则002π2πm Pd B IH r r σμμ===. 由于电、磁场在引入磁荷后,在形式上完全一样,则02πP d E rσε=7.()21n N n R n r ε⎡⎤-+⎣⎦ 【解析】 【详解】【详解】解法(1):细圆环中的电动势为R Nεε=.细圆环上ab 段的电阻为段的电阻为劣弧ab R R n=. 优弧()1ab n R R n-'=.如题图1中接上G 后,G 的电阻r 与ab R 并联,然后再与ab R '串联,这时总电阻便为串联,这时总电阻便为()11ab ab abn RrR rRR R r R nr R n -'=+=+++.于是,总电流(通过优弧ab R '的电流)为()1111RI n R R NrR nr R nεε==⋅-++.(请读者自行推导此式)则通过G 的电流为()11121RR nn i I I Rnr R N n R n r rnε===+⎡⎤-+⎣⎦+.(请读者自行推导此式)解法(2):如题图2中接上G 后,G 的电阻r 与abR '并联,然后再与ab R 串联,这时总电阻便为()()211ab ab abn rRrR R R R nr n Rnr R '-=+=++-'+.于是,总电流(通过劣弧ab R 的电流)为()()22111RI n rR R N R nr n R n εε==⋅-++-,则通过G的电流为()()2211n n i N n R n r ε-=⎡⎤-+⎣⎦8.故对于一微扰位移为d 的粒子,有()20π02Q Q r λλε=->F d ,粒子做简谐振动,20π2Q r mλωε= 【解析】 【详解】引理:线电荷密度为()0λλ>的无限长带电线,其在距带电线r 处产生的场强大小为02πE r λε=,方向垂直于带电线向外.,方向垂直于带电线向外. 证明略.证明略.对于本题所给的模型,对于本题所给的模型,建立图示坐标.建立图示坐标.建立图示坐标.因粒子在因粒子在x 轴方向上的受力只与粒子x 方向上的微扰有关,在y 方向上的受力,也只与y 方向上的微扰有关,设粒子在x 方向上有微扰位移x d ,则110021212π2πd 22xi i x Q Q F i i d r x r λλεε∞∞==∆=---⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭∑∑. 又由于x d r =,则()()110022*********π2π22xxx i i d d Q Q F i r i r i r i r λλεε∞∞==⎡⎤⎡⎤∆≈--+⎢⎥⎢⎥--⎛⎫⎛⎫⎣⎦⎣⎦-- ⎪ ⎪⎝⎭⎝⎭∑∑()()22221100441ππ2121x xi i Q d Q d r i r i λλεε∞∞===-=---∑∑.又22222222221111111111113523456246⎛⎫⎛⎫+++=-++++++-+++ ⎪ ⎪⎝⎭⎝⎭LL L222222221111111111234564123⎛⎫⎛⎫=++++++-+++ ⎪ ⎪⎝⎭⎝⎭L L 223ππ468=⨯=,所以,2π2x x Q F d rλε∆=-.同理,20π2y y Q F d rλε∆=-. 故对于一微扰位移为d 的粒子,有()20π02Q Q rλλε=->F Fd , 故粒子做简谐振动,20π2Q r mλωε=9.(1)πx n k a =,1n =,2,3,… (2)y mk b=,1m =,2,3,…(3)12101239102102πb nm nm -->⨯≈⨯【解析】【解析】 【详解】(1)要使得电磁波在两端形成驻波,则长度应是半波长的整数倍,相位满足:πx k a n =,即πx nk a=,1n =,2,3,….(2)要使得电磁波在y 方向上的形式稳定为()()(),sin cos x y E x y A k x k y =,则圆柱的周长应为波长的整数倍,相位满足:2π2πy k b m =,即y mk b=,1m =,2,3,…. (3)由222πx yhc W k k =+得22121239π102πn m a b ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭, 所以,121239102πm m b <,即12101239102102πb nm nm -->⨯≈⨯10.02U 【解析】【解析】 【详解】将过程分为三个阶段,记为α、β、γ.在第一个14周期内,A U 增加,0A D U U >>,因此二极管2D 截止;又因0DB U ≥,二极管1D 保持导通,等效电路如图1所示,在此阶段2D B A U U U ==,记为α然后A U 开始减小,但AD U 保持不变,最初D U 仍然大于零,因此,2D 依然截止.不过D U 正在逐渐减小,所以1D 截止.由于电容上的电荷无处可走,B U 保持不变,AD U 也保持不变.这个阶段一直持续到0D U =,这一过程等效电路如图2所示,记为β.不过,0D U <是不可能的,所以0D U =直至0A U U =-.这一过程等效电路如答图3所示,记为γ.下面A U 又从0U -开始增加,然后AD U 又保持在0U -不变(再次处于β阶段),而B D U U >停留在02U ,直到D U 升至B U .当D B U U =时β阶段结束.阶段结束. 而后新的α阶段又开始了.每个周期均按αβγβ---的次序通过各个阶段,但是电路并不是随时间周期变化的,这可以从图4中看出.B U 等比地趋近于02U ,即是说00322B U U U -→,034U ,038U ,0316U ,….这个电路称为电压倍增器 11.见解析.见解析 【解析】 【详解】将多谐振荡器电路等效为图示电路,可见电流只在0102U R C U ---回路中流动.假设系统存在稳态,则电容电量为常数,因而电阻上电流为0,则1G 输入电压等于输出电压,这显然矛盾,因而系统不存在稳态.不失一般性,电容初态电压为0,系统初态010U =,因而0212U V =,电路沿顺时针给电容充电(电阻上的电流I 从下向上为正,电容电量Q 右边记为正).从0C Q Q CU ==时起,图中i U 的大小开始小于6V ,门反转,将此后直到门再次反转的过程记为过程I :此时0112U V =,020U =,由于电容上电量不突变,所以,006iQ U V C=-=-.因而电路沿逆时针给电容反向充电,新充入电量为Q ∆.120Q Q V IR C +∆-=--,即18Q VIR C∆=--.i U 不断上升,到达6C U V =时,10C Q Q Q CU =+∆=-时,门反转,此后进入过程Ⅱ.设过程Ⅰ历时t Ⅰ,将18QV IR C ∆=--与题目中的RC 电路满足的0Q U IR C∆=+类比,过程Ⅰ满足的018U V =,()12Q U t V C∆==,则由电容上的电压随时间变化规律()()01t RCU t U e-=-可得:ln 3tRC =Ⅰ. 对于过程Ⅱ,此时010U =,0212UV =,由于电容上电量不突变,所以,11218i Q U V C=-=.因而电路沿顺时针给电容正向充电,新冲入电量为Q '.1012Q Q V IR C '+∆-=--,即18Q V IR C'∆=+. i U 不断上升,到达6C U V =时,210C Q Q Q CU Q '=+∆==,门再次反转,此后又进入过程Ⅰ.同理可得:1ln 3t RC =. 过程Ⅰ、Ⅱ循环进行.因此得方波的信号周期为2ln3T RC =. 12.(1)4klQ (2)2π2π3d m mlT K k Q== 【解析】 【详解】设由变化的磁场产生的涡旋电场大小为E ,则有22ππB E r r t∆⋅=∆,得到2rE k =⋅,方向垂直于与O 的连线.则杆上场强分量为2x k E y =-⋅,2y kE d =-⋅.(1)由于上下电量相反,y 方向的场强为定值,故钉子在y 方向不受力.在x 方向上,其所受电场力(考虑到上下对称)为202d 224l k Q klQ F y y l ⎛⎫=⨯-⋅⋅=⎪⎝⎭⎰. 故钉子压力为4klQ .(由于电场和y 坐标成正比,因而也可以使用平均电场计算电场力)坐标成正比,因而也可以使用平均电场计算电场力)(2)设绝缘棒转过一微小角度θ,此时,y 方向的电场力会提供回转力矩.(由于力臂是一阶小量,横坐标变化引起的电场力改变也是一阶小量,横坐标变化引起的电场力改变也是一阶小量,忽略二阶以上小量,忽略二阶以上小量,忽略二阶以上小量,因而不必计算电因而不必计算电场力改变量产生的力矩.由于电场几乎是均匀的,所以正电荷受力的合力力臂为4lθ⋅)244k l kdlQM d Q θθ=-⋅⋅⋅⋅=-,而M I θ=,则04kdlQ Iθθ+=.这是简谐方程,故绝缘棒的运动是简谐运动,其周期为2π2π3d m mlT K k Q==. 13.(1)12AB R r =,78AC R r =(2)241916C rααω=+【解析】 【分析】【分析】 【详解】(1)将题图1所示的电阻网络的A 、B 两点接入电路时,可以发现D 、E 等势点,于是DC 、DE 、CE 可去掉.所以,12AB R r =.将A 、C 接入电路时,将原电路进行等效变化,如图甲所示.接入电路时,将原电路进行等效变化,如图甲所示.11711283122AC R r r r r =+=+.(2)将题图1等效为图所示三端网络.等效为图所示三端网络.由(1)知1122AB R R r ==,1278AC R R R r +==,解得114R r =,258R r =.所以图所示虚线框内的等效阻抗为121211121324154496448i Z r r r i L αααω-⎛⎫ ⎪++=++= ⎪+ ⎪+⎝⎭.电路的总复导纳()()()()()22222222214964213244964111213216213216Y i C i C Z r r ααααωωαααα⎛⎫+++ ⎪=+=⋅+-⋅ ⎪++++⎝⎭为使功率因数为1,则复导纳虚部为0.所以,()()2222244964141916213216C r rαααωαωαα+=⋅=⋅+++14.(1) 201221211π2I N r I r μΦ= (2) ()2201212522213π2N N r r Ivx r xμε=+ (3) 201221π2N N r IQ r Rμ=【解析】【解析】 【详解】6.【解析.如图所示,半径为a 的线圈中通以I 的电流,则中轴线上距圆心x 处的磁感强度为()22π00322222022d d 4π2a a II l a B B a x a x a x μμ==⋅=+++⎰⎰P(1)两线圈在同轴共面位置时,1a r =,0x =,当大线圈中通有1I 的电流时,有010112I B N r μ=⋅因为21r r =,所以,212022πB N r Φ=⋅,则201221211π2I N r I r μΦ=(2)当两环中心相距x 时,有()220121211232221π2N N r r I r x μΦ=+,121M I Φ=,12MI Φ=,()22012122121522213πd d d d d d 2N N r r Ivxx t x tr x μεΦΦ=-=-⋅=+(3)d d q I t =220122012211ππ1d 1d d d d 0d 22N N r IN N r I Q q I t t t R R t R rr R μμε⎛⎫Φ⎛⎫====-⋅=-= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰ 15.112310.465AB I R I I I '⨯==Ω'''++ 【解析】【解析】【分析】 【详解】将该网络压扁,如图1所示,除AB ,BC ,CD ,DA 间各边电阻为1Ω外,其余电阻为12Ω现在我们讨论MNPQ 的内部电阻我们将RSTL 的内部电阻等效为图2所示电路,其中a ,b 为待定值,由于RSTL 与MNPQ全等,则有如图所示的等价关系,此等价关系即1212MQ MQ MP MP R R R R =⎧⎪⎨=⎪⎩下标的1代表图3,2代表图4(1)MP R 的分析的分析①1MP R ,由对称性,去掉NS ,SL ,LQ 得1112112MP ab a b R ab a b ⎛⎫+⋅ ⎪+⎝⎭=⎛⎫++⎪+⎝⎭ ②2MP R ,由对称性,去掉NQ ,得2MP ab R a b=+,从而112112ab ab a b ab a b a b ⎛⎫+⋅ ⎪+⎝⎭=+⎛⎫++ ⎪+⎝⎭,解得312ab a b -=+ (2)MQ R 的分析的分析①1MQ R .如图5所示,取回路MNPQM ,MRLQM ,RSTLR ,RLTR ,QLTPQ 得()()13412255256452566225643301110222334001110222I I I I I I aI I I I I I aI a I I I bI I a I I I I I -+=⎧⎪⎪---=⎪⎪-++-=⎨⎪----=⎪⎪+----=⎪⎩解得1626364655166721162582482562376252222531332225b ab a b aI I a b a b a I I a b ab a b a I I a b a a I I a b b a I I a ⎧++++⎪=⎪+⎪+++⎪=⎪+⎪⎪⎪++++⎨=⎪+⎪⎪++⎪=⎪+⎪⎪++⎪=⎪+⎩ 故1122316167211626016246460MQ b ab a b I a R b I I I ab a b a++++==++++++ ②2MP R 如图6所示,由回路MNPQM ,MQPM 得()79878930I I I aaI bI aI⎧--=⎨--=⎩,解得7898322a bI Iaa bI Ia+⎧=⎪⎪⎨+⎪=⎪⎩,故()27789344MQa b aaIR I I I a b+==+++.于是有()166721163604416246460312bab a ba b a aba bab a baaba b⎧++++⎪+=⎪+⎪++++⎨⎪-⎪=⎪+⎩⑧⑨令1xa=,由,由⑨⑨得()131xb=--⑩由⑩代入代入⑧⑧化简有2210x x--=.则12x=±又0a>,则0x>,所以,21x=+,所以,()()2132ab⎧=-Ω⎪⎨=+Ω⎪⎩于是ABCD如图7所示,同上步骤可得:所示,同上步骤可得:1618.93I I ''=,2614.55I I ''=,367.19I I ''=,462.64I I ''=,5610.57I I ''=.则112310.465ABI R I I I '⨯==Ω'''++ 16.(1) 2mA D I = (2) 211116mW U P R ==【解析】 【详解】(1)设每只二极管两端的电压为D U ,通过二极管的电流为D I ,则有,则有1222D D DU U I R R ε⎛⎫=-+ ⎪⎝⎭ 代入题设数据得代入题设数据得()31.50.2510V DDU I =-⨯这是一个在图c 上横轴截距为1.5,纵轴截距为6,斜率为一4的直线方程,绘于c 图可获一直线一直线(称为二极管的负载线).因D U 、D I 还受二极管D 的伏安线限制,故二极管必然工作在负载线与伏安曲线的交点P 上,如图c 所示.此时二极管两端的电压和电流分别为1VDU =,2mA DI =.(2)电阻1R 上的电压124V D U U ε=-=.其功率211116mW U P R==.【点睛】对于非线元件的伏安特性曲线,一般无法用函数方式表述,用图解的方式确定其静态工作点应该是不二的选择.应该是不二的选择.物理问题中涉及非线性元件或过程时,物理问题中涉及非线性元件或过程时,物理问题中涉及非线性元件或过程时,通过图解法来确定其工作点,通过图解法来确定其工作点,通过图解法来确定其工作点,应应该是这类问题的通行做法.17.110A I =(方向为11I 的方向),25A I =(方向为21I 的方向);11200W P =,2600W P =-. 【解析】 【分析】 【详解】【详解】这个电路的结构,不能简单地等效为一个串联、并联电路.要计算这种较复杂的电路,可有多种解法.下面提供两种较为常用的方法.方法一:用基尔霍夫定律解.方法一:用基尔霍夫定律解.如图乙所示,设各支路的电流分别为1I 、2I 、3I . 对节点1:1230I I I --+=. ① 对回路1:112212I r I r εε-=-. ② 对回路2:2232I r I R ε+=.③解①②③式求得()2121122110A r R RI rrr R r R εε+-==++,()121212215A r R RI r r r R r Rεε+-==-++,2112312215A r r I r r r R r Rεε-==++.2I 为负值,说明实际电流方向与所设方向相反.为负值,说明实际电流方向与所设方向相反. 各发电机输出的功率分别为2111111200W PI I r ε=-=, 221111600W P I I r ε=-=-.这说明第二台发电机不仅没有输出功率,而且还要吸收第一台发电机的功率. 方法二:利用电源的独立作用原理求解.当只考虑发电机1ε的作用时,原电路等效为如图丙所示的电路,的作用时,原电路等效为如图丙所示的电路,由图可知()2111122182A r RI rrr R r R ε+==++,2111280A RI I r R==+. 当只考虑发电机2ε的作用时,原电路等效为如图丁所示的电路. 由图可知由图可知将()1222122175A r RI r r r R r Rε+==++122172A RI I r R ==+两次求得的电流叠加,可得到两台发电机的实际电流分别为两次求得的电流叠加,可得到两台发电机的实际电流分别为11112827210A I I I =-=-=(方向为11I 的方向),2212280755A I I I =-=-=(方向为21I 的方向).同理,可解得各发电机的输出功率同理,可解得各发电机的输出功率 11200W P =,2600W P =-.【点睛】(1)从本题计算结果看出,将两个电动势和内电阻都不同的电源并联向负载供电未必是好事,这样做会形成两电源并联部分的环路电流,使电源发热.(2)运用基尔霍夫定律解题时,对于一个复杂的含有电源的电路,如果有n 个节点、p 条支路所组成,我们可以对每一支路任意确定它的电流大小和方向,我们可以对每一支路任意确定它的电流大小和方向,最后解出值为正说明所设电流最后解出值为正说明所设电流方向与实际方向一致,所得值为负则说明所设电流方向与实际方向相反.这个电路中共有p 个待求电流强度.个待求电流强度.在n 个节点中任意选取其中()1n -个节点,根据基尔霍夫第一定律,列出节点电流方程组,再选择()1m p n =--个独立回路,根据基尔霍夫第二定律,列出回路电压方程组,个独立回路,根据基尔霍夫第二定律,列出回路电压方程组,从而得从而得到p 个方程即可求解.(3)处理复杂的电路的方法有很多,各种方法的优点与不足是在比较中领会的,对于某一道具体的试题,该用何种方法,取决于你的经验与临场的判断.事实上,这些方法也不存在优劣之分,只是在具体的过程中可能存在繁易的差别.18.(1) 00.659AC R R = (2)0321321EG R R -+++=【解析】【分析】【分析】【详解】(1)先考察B 、D 连线上的节点.由于这些节点都处于从A 到C 途径的中点上,在A 、C 两端接上电源时,这些节点必然处在一等势线上.因此可将这些节点“拆开”,将原网络等效成如图2所示网络.所示网络.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清北书院中学生物理竞赛讲义—电磁学总论物理规律的得到—-格物致理(复杂的问题抽象出简单的本质及规律);反之,物理规律的应用-—关键是图景要清晰,并且具有和谐、对称、统一的美。

数学王后抽象奇思妙想可幻想,不一定有解物理国王直观图景构建大自然提出的问题,有解解题策略构建图景→正确关联物理定理或律→数学描述与表达→严密计算→系统回顾→得出结论注意事项:系统回顾→得出结论。

未给定的条件,应全面考察各种情况,极限情况、任意情况(最后推广到极限情况)高中物理主干知识与核心知识电磁①两种场:电场和磁场②稳恒电流③电磁感应哪些知识需要加深拓宽?如何加深拓宽?电磁中要适当加宽的内容点电荷电场的电势公式(不要求导出)电势叠加原理均匀带电球壳壳内和壳外的电势公式(不要求导出)电容电容器的连接平行板电容器的电容公式(不要求导出)电容器充电后的电能ﻫ电介质的极化介电常数ﻫ一段含源电路的欧姆定律基尔霍夫定律惠斯通电桥补偿电路液体中的电流法拉第电解定律气体中的电流被激放电和自激放电(定性)ﻫ真空中的电流示波器ﻫ半导体的导电特性P型半导体和N型半导体晶体二极管的单向导电性三极管的放大作用(不要求机理)超导现象ﻫ感应电场(涡旋电场)自感系数整流、滤波和稳压三相交流电及其连接法感应电动机原理第一章 真空中的静电场例题1如图所示,电荷量为q1的正点电荷固定在坐标原点O 处,电荷量为q 2的正点电荷固定在x 轴上,两电荷相距l .已知q 2=2q1.(i)求在x 轴上场强为零的P 点的坐标。

(ii)若把一电荷量为q 0的点电荷放在P 点,试讨论它的稳定性(只考虑q0被限制在沿x 轴运动和被限制在沿垂直于x 轴方向运动这两种情况)。

【解答例示】(i)通过对点电荷场强方向的分析,场强为零的P 点只可能位于两点电荷之间。

设P点的坐标为x 0,则有201x q k=202)(x l q k - (1) 已知q2=2q1 (2)由(1)、(2)两式解得x 0=l )12(- (3)(ii )先考察点电荷q 0被限制在沿x 轴运动的情况。

q1、q 2两点电荷在P 点处产生的场强的大小分别为E 10=201x q kE 20=202)(x l q k -,且有E 10=E 20,二者方向相反.点电荷q 0在P 点受到的合力为零,故P点是q 0的平衡位置。

在x 轴上P 点右侧x=x 0+△x 处,q 1、q2产生的场强的大小分别为: E′1=201)(x x q k∆+<E 10 方向沿x 轴正方向E′2=202)(x x l q k∆-->E 20 方向沿x 轴负方向由于E′2>E′1,x=x 0+△x 处合场强沿x 轴的负方向,即指向P 点。

在x 轴上P 点左侧x=x 0-△x 处,q 1、q 2的场强的大小分别为E″1=201)(x x q k∆->E 10 方向沿x轴正方向 E″2=202)(x x l q k∆+-<E 20 方向沿x 轴负方向 由于E″2〈E″1,x=x 0-△x 处合场强的方向沿x 轴的正方向,即指向P 点。

由以上的讨论可知,在x 轴上,在P 点的两侧,点电荷q1和q 2产生的电场的合场强的方向都指向P 点,带正电的点电荷在P 点附近受到的电场力都指向P点,所以当q0〉0时,P 点是q 0的稳定平衡位置。

带负电的点电荷在P 点附近受到的电场力都背离P点,所以当q0〈0时,P 点是q0的不稳定平衡位置。

再考虑q 0被限制在沿垂直于x 轴的方向运动的情况。

沿垂直于x轴的方向,在P 点两侧附近,点电荷q1和q2产生的电场的合场强沿垂直x 轴分量的主向都背离P 点,因而带正电的点电荷在P 点附近受到沿垂直x 轴的分量的电场力都背离P 点。

所以,当q 0>0时,P点是q0的不稳定平衡位置。

带负电的点电荷在P 点附近受到的电场力都指向P 点,所以当q 0〈0时,P点是q 0的稳定平衡位置。

电场线(电力线) 电通量 高斯定理为了形象地描述电场分布,我们在电场中做出许多曲线,使这些曲线上每一点的切线方向和该点场强方向一致,这样的曲线叫做电场的电场线。

在电场中任一点取一小面元S ∆,使其与该点场强方向垂直,穿过S ∆的电场线有N ∆根,让比值/N S ∆∆与该点场强大小成正比,取适当单位,使比例常数为1,则有NE S∆=∆。

这样电场线就既表示了空间各点电场强度的方向,也表示了其大小。

电场线是有头(正电荷)有尾(负电荷)的非封闭曲线,电场线不相交,无电荷处不中断。

电通量为穿过电场中某一个曲面的电场线数,当面元S ∆垂直于场强时,穿过S ∆的电通量为e E S ∆Φ=∆。

当面元S ∆不与场强E 垂直时(图10—2),则穿过S ∆的电通量cos e E S θ∆Φ=∆,θ为S ∆的法线与场强E 的夹角.应注意的是,对于封闭曲面,每个小面元法线总是取它的外法线。

这样,在电场线进入曲面的地方090θ>,e ∆Φ为正。

一个封闭曲面的电通量与它所包围的电荷有什么关系呢?我们先看一个点电荷置于一半径为R 的球面的球心处时的例子。

球面上的各点2QE K R =,各处S ∆的法线与E 的方向相同,00θ=,cos 1θ=。

2244e Q ES KR KQ RππΦ==⋅= 若考虑到014K πε=,则有0e QεΦ=。

由于无电荷处电场线不会中断,那上面的结论与球面半径R 无关,与包围点电荷Q 的封闭曲面的形状也无关。

高斯定理:通过一个任意闭合曲面的电通量e Φ,等于该闭合曲面所包围的所有电荷量的代数和4K π倍(或1ε倍),与闭合曲面外的电荷无关。

高斯定理说明静电场是有源场,高斯定理有重要的实际意义,利用高斯定理可以求某些具有对称性电场的电场强度.应该注意的是,根据高斯定理,虽然通过闭合曲面的电通量只与曲面内的电荷有关,但电通量却是总场强E 的通量,而E 应包括闭合曲面内外所有电荷共同产生的电场的场强。

电势一、电场力做功与电势差电场力和重力一样是保守力,即电场力做功与始末位置有关,与具体路径无关.因此,我们把在电场中的两点间移动电荷所做的功与被移动电荷量的比值,叫做这两点间的电势差,即/AB AB U W q =。

这反映了电场力做功的能力,电势差仅由电场本身性质决定,与被移动电荷的电荷量无关。

即使不移动电荷,这两点间的电势差依然存在.二、电势如果我们在电场中选定一个参考位置,规定它为电势零点(常取大地或无穷远处),则电场中的某点跟参考位置间的电势差就叫做该点的电势。

电势是标量,但有正负之分,单位是伏特(V).电势反映了电场能的属性,电量为q 的电荷放在电场中电势为U 的某点,所具有的电势能表示为E Uq =1. 点电荷周围任一点的电势可表示为:Q U Kr= 式中Q 为场源电荷的电量,r 为该点到点电荷的距离。

2. 对于半径为R 、均匀带电量为Q 的球壳(以及实心导体球),在壳外距球心r 处的电势为r>R QU K r=外()在壳内电势处处相等,且等于球壳表面的电势,即Q U KR=内第二章ﻬ静电场中的导体和电介质例题1在静电平衡条件下,下列说法正确的是( )A.导体上所有的自由电荷都分布在导体的表面上 B.导体表面附近的场强垂直于该处表面C.导体壳所带的电荷只能分布在导体的外表面上,内表面上没有电荷D.接地的导体上所带电荷一定为零例题3如图3所示,O 为半径等于R 的原来不带电的导体球的球心,O 1、O 2、O 3为位于球内的三个半径皆为r 的球形空腔的球心,它们与O 共面,已知2321ROO OO OO ===.在OO1、O O2的连线上距O 1、O 2为2r的P1、P 2点处分别放置带电量为q 1和q 2的线度很小的导体(视为点电荷),在O 3处放置一带电量为q 3的点电荷,设法使q 1、q2和q 3固定不动.在导体球外的P 点放一个电量为Q 的点电荷,P点与O 1、O 2、O 3共面,位于O O 3的延长线上,到O 的距离R OP 2=。

1.求q 3的电势能。

2.将带有电量q 1、q2的小导体释放,当重新达到静电平衡时,各表面上的电荷分布有何变化? 此时q3的电势能为多少?例题2导体球不带电,距球心 r 处放一点电荷q ,求导体电势。

导体为等势体,能求得球心o 处的电势即可。

导体上感应电荷都在球表面,距球心R000444io q q q U rRrπεπεπε∆=+=∑电荷守恒isq ∆=∑解:图3解析:1.空腔内有电荷存在时,由于静电感应,空腔1、2及3的表面将分别感应出电量为1q -、2q -和3q -的电荷.由电荷守恒定律可知,在导体球的外表面也必然感应出等量的同种电荷,所以,导体球的外表面的感应电荷总量为321q q q ++。

由于静电屏蔽,点电荷q 1及感应电荷(1q -)在空腔外产生的电场为零;点电荷q2及感应电荷(2q -)在空腔外产生的电场为零;点电荷q 3及感应电荷(3q -)在空腔外产生的电场为零。

因此,在导体球外没有电荷时,导体球外表面的电量321q q q ++应作球对称分布。

当球外P 点处放置电荷Q 后,由于导体球不接地,所以,球面上的总电量不变,仍为()321q q q ++,但由于静电感应,这些电荷在球面上将不再均匀分布,由球外的Q和重新分布在球面上的电荷()321q q q ++在导体球内各点产生的合场强为零.O 3处的电势应由位于P 点处的Q 、导体球表面的电荷()321q q q ++及空腔3表面的感应电荷(3q -)共同产生。

无论()321q q q ++在球面上如何分布,球面上的电荷到O 点的距离都是R ,因而在O 点产生的电势为R q q q k321++, Q在O 点产生的电势为RQk 2,这两部分电荷在O 3点产生的电势U '与它们在O 点产生的电势相等,即有⎪⎭⎫⎝⎛+++=⎪⎭⎫ ⎝⎛+++='R q q q Q k R Q R q q q k U 22222321321(1)因q 3放在空腔3的中心处,其感应电荷3q -在空腔3壁上均匀分布.这些电荷在O3点产生的电势为rq kU 3-='' ﻩ(2) 根据电势叠加定理,O 3点的电势为⎪⎭⎫⎝⎛-+++=''+'=r q R q q q Q k U U U 33212222 (3)故q 3的电势能为⎪⎭⎫⎝⎛-+++==r q R q q q Q kq U q W 3321332222 (4)·2.由于静电屏蔽,空腔1外所有电荷在空腔1内产生的合电场为零,空腔1内的电荷q1仅受到腔内壁感应电荷1q -的静电力作用,因q 1不在空腔1的中心O 1点,所以感应电荷1q -在空腔表面分布不均匀,与q1相距较近的区域电荷面密度较大,对q 1的吸力较大,在空腔表面感应电荷的静电力作用下,q 1最后到达空腔1表面,与感应电荷1q -中和.同理,空腔2中q2也将在空腔表面感应电荷2q -的静电力作用下到达空腔2的表面与感应电荷2q -中和。

相关文档
最新文档