高考物理--电磁感应中的动力学问题(习题)

合集下载

2025高考物理 电磁感应中的动力学、能量和动量问题

2025高考物理  电磁感应中的动力学、能量和动量问题

2025高考物理电磁感应中的动力学、能量和动量问题一、单选题1.如图所示,两条光滑的平行导轨水平放置,导轨间接有一个定值电阻R,金属杆垂直于导轨放置且与导轨接触良好,匀强磁场的方向竖直向下。

若金属杆与导轨之间的摩擦及金属杆与导轨的电阻均忽略不计,现给金属杆一个向右的初速度0v,则金属杆在磁场中的运动速度v与时间t的关系图象正确的是()A.B.C.D.二、多选题2.如图,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab在一水平恒力F作用下由静止向右运动,则()A.随着ab运动速度的增大,其加速度减小B.外力F对ab做的功等于电路中产生的电能C.当ab做匀速运动时,外力F做功的功率大于电路中的电功率D.无论ab做何运动,它克服安培力做的功一定等于电路中产生的电能三、单选题3.如图1所示,光滑的平行导电轨道水平固定在桌面上,轨道间连接一可变电阻,导体杆与轨道垂直并接触良好(不计杆和轨道的电阻),整个装置处在垂直于轨道平面向上的匀强磁场中。

杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,两次运动中拉力大小与速率的关系如图2所示。

其中,第一次对应直线①,初始拉力大小为F0,改变电阻阻值和磁感应强度大小后,第二次对应直线①,初始拉力大小为2F0,两直线交点的纵坐标为3F0。

若第一次和第二次运动中的磁感应强度大小之比为k、电阻的阻值之比为m、杆从静止开始运动相同位移的时间之比为n,则k、m、n可能为()A.k= 2、m= 2、n= 2B.2k m n、===C.3===k m n、k m n===、D.62四、多选题4.如图所示,竖直固定的光滑圆弧形金属导轨PQ半径为r,O为圆心,P、O之间用导线连接阻值为R的电阻。

粗细均匀的轻质金属棒的一端通过铰链固定在O点,另一端连接质量为m 的金属小球,小球套在导轨PQ 上。

初始时刻金属棒处于水平位置,小球、金属棒与导轨始终接触良好。

过圆心O 的水平线下方分布着磁感应强度大小为B 、方向垂直纸面向里的匀强磁场。

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

最新电磁感应中的动力学问题专题练习(含解析)

最新电磁感应中的动力学问题专题练习(含解析)

电磁感应中的动力学问题专题练习(含解析)1. 如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab,cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则下列说法正确的是( A )A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2. 如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一稳定速度过一会后突然撤去外力.不计摩擦,则ab以后的运动情况可能是( C )A.减速运动到停止B.来回往复运动C.匀速运动D.加速运动3. 如图所示,导线MN可无摩擦地沿长直导轨滑动,导轨位于水平方向的匀强磁场中,回路电阻是R,将MN由静止开始释放后的一段时间内,MN运动的加速度将( B )A.保持不变B.逐渐减小C.逐渐增大D.先增大后减小4. 如图所示,光滑平行导轨竖直放置,匀强磁场垂直导轨平面向里,导体棒ab与导轨接触良好,回路的总电阻保持为R不变.当ab以初速度v0沿导轨竖直下滑时,其运动情况是( D )A.做a=g的匀加速运动B.做a<g的变加速运动C.先做加速运动,后做匀速运动D.由于不知v0,B,L,R,m的具体值,因此无法确定其运动状态5. 如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直于导轨所在的平面向里,金属棒ab可沿导轨自由滑动,导轨一端跨接一个定值电阻R,导轨电阻不计,现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v时,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率恒定,当速度为v时,加速度为a2,最终也以速度2v做匀速运动,则( C )A.a2=a1B.a2=2a1C.a2=3a1D.a2=4a16. (多选)如图所示,矩形线框A在竖直平面内从静止开始下落,匀强磁场B方向水平且垂直于线框所在的平面,当线框的下边进入磁场而上边尚未进入磁场的过程中,线框A可能做( ABC )A.匀速下落运动B.加速下落运动C.减速下落运动D.匀减速下落运动7. (2016杭州高二检测)(多选)如图所示,磁感应强度为B的匀强磁场有理想界面,用力F将矩形线圈从磁场中匀速拉出.在其他条件不变的情况下( ABC )A.速度越大时,拉力做功越多B.线圈边长L1越大时,拉力做功越多C.线圈边长L2越大时,拉力做功越多D.线圈电阻越大时,拉力做功越多8. (2016茂名高二检测)(多选)如图,固定在水平面上的U形金属框上,静止放置有一金属杆ab,整个装置处于竖直向上的磁场中.当磁感应强度B均匀减小时,杆ab总保持静止,则在这一过程中( AD )A.杆中的感应电流方向是从b到aB.杆中的感应电流大小均匀增大C.金属杆所受安培力水平向左D.金属杆受到的摩擦力逐渐减小9. (多选)光滑无电阻水平导轨上有两相同金属棒a,b垂直于导轨放置,匀强磁场方向如图所示.现给a一向右初速v,则其后a,b的运动情况是( BD )A.a做匀加速运动,b做匀减速运动,最终两者速度相等B.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者速度相等C.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者加速度相等(不为零)D.开始一段时间两者的距离逐渐减小,最终两者距离不变10. 如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度B的大小;(2)电流稳定后,导体棒运动速度v的大小;(3)流经电流表电流的最大值I m.11.如图(甲)所示,两根足够长的直金属导轨MN,PQ平行放置.两导轨间距为L,M,P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图(乙),在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑时,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.12. 均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界平行.当cd边刚进入磁场时,(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h.13. U形金属导轨abcd原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc等长的金属棒PQ平行bc放在导轨上,棒左边靠着绝缘的固定竖直立柱e,f.已知磁感应强度B=0.8 T,导轨质量M=2 kg,其中bc段长0.5 m,电阻r=0.4 Ω,其余部分电阻不计,金属棒PQ质量m=0.6 kg、电阻R=0.2 Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F=2 N 的水平拉力,如图所示.求导轨的最大加速度、最大电流和最大速度(设导轨足够长,g取10 m/s2)1、解析:ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL==ma知,ef做的是加速度减小的减速运动,故选项A正确.2、解析:用外力使金属杆ab在匀强磁场中沿垂直磁场方向运动时,金属杆产生感应电动势,对电容器充电,设棒向右,根据右手定则判断可知:ab中产生的感应电流方向从b到a,电容器上极板带正电,下极板带负电;稳定后速度不变,电容器充电结束,电流为零;“外力”和安培力均为零;“外力”撤去后ab保持向右匀速.故选项C正确.3、解析:导体MN速度逐渐增大,产生电流增大,MN受的安培力逐渐增大,加速度逐渐减小,选项B正确.4、解析:若v0很大,安培力很大,加速度有可能大于g,且为减速运动,故选项A,B,C均错.D正确.5、解析:按第一种模式拉动时,设恒力为F,由于最终速度为2v,即匀速,有F=BI1L,I1所以当速度是v时ab棒所受安培力为F1.同理可得F1此时的加速度为a1.由牛顿第二定律得F-F1=ma1.联立以上各式得a1按第二种模式拉动时,设外力的恒定功率为P,最终的速度也是2v,由能量关系可知速度为v时,ab棒所受的外力为F2,有P=F2v,此时的加速度为a2,ab棒所受的安培力仍为F1,根据牛顿第二定律得F2-F1=ma2,联立有关方程可以解得a2所以有a2=3a1.选项C正确.6、解析:线框下边刚进入磁场时,由于其做切割磁感线运动而产生感应电流.容易判知,此感应电流将使线框下边受到向上的安培力F安作用.由于下落高度即线框进入磁场时的速度大小不确定,因此F安可能大于、等于或小于线框重力G,故A,B,C三种情况都有可能.但线框不可能做匀减速运动.7、解析:用力F匀速拉出线圈的过程中所做的功为W=FL2,又F=F安=IBL1所以可知选项A,B,C正确,D错误.8、解析:磁感应强度B减小时,由楞次定律知,感应电流由b到a,选项A正确;由=n知,B均匀减小时,电动势E不变,电流不变,选项B错误;由左手定则知,ab所受安培力水平向右,选项C错误;由F=BIL知,I,L不变,B减小,安培力减小;ab杆静止,安培力等于摩擦力,所以摩擦力减小,选项D正确.9、解析:a受安培力向左,b受安培力向右,a减速,b加速,回路中电流I=逐渐减小,加速度都变小,当加速度等于零时,两棒匀速运动,距离不变,故选项B,D正确.10、解析:(1)电流稳定后,导体棒做匀速运动,受力平衡,有F安=G,即BIL=mg,解得(2)由法拉第电磁感应定律得导体棒产生的感应电动势E=BLv,闭合电路中产生的感应电流I=解得(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m,=mgh,感应电动势的最大值E m=BLv m.感应电流的最大值I m解得I m答案:(1)11、解析: (1)如图所示,重力mg,竖直向下;支持力F N,垂直斜面向上,安培力F,沿斜面向上.(2)当ab杆速度为v时,感应电动势E=BLv,此时电路中电流ab杆受到安培力根据牛顿运动定律,有ma=mgsin θ-F=mgsin θa=gsin θ(3)当a=0时,即gsin θ时,杆达到最大速度v m,则v m答案:(1)见解析图gsin θ12、解析:(1)cd边刚进入磁场时,线框速度线框中产生的感应电动势(2)此时线框中的电流cd切割磁感线相当于电源,cd两点间的电势差即路端电压U=I(3)安培力F安根据牛顿第二定律mg-F安=ma,由a=0,解得下落高度答案13、解析:刚拉动导轨时,I感=0,安培力为零,导轨有最大加速度a m2=0.4 m/s2.随着导轨速度的增大,感应电流增大,加速度减小,当a=0时,速度最大.设速度最大值为v m,电流最大值为I m,此时导轨受到向右的安培力F安=BI m L,F-μmg-BI m L=0,I m代入数据得I mI=m答案:0.4 m/s2 2 A 3 m/s。

高考物理复习专题检测试题及解析电磁感应中的动力学与能量问题

高考物理复习专题检测试题及解析电磁感应中的动力学与能量问题

专题练习(二十九) 电磁感应中的动力学与能量问题1.如图所示,在磁感应强度B =0.50 T 的匀强磁场中,导体PQ 在力F 作用下在U 形导轨上以速度v =10 m/s 向右匀速滑动,两导轨间距离L =1.0 m ,电阻R =1.0 Ω,导体和导轨电阻忽略不计,则以下说法正确的是( )A .导体PQ 切割磁感线产生的感应电动势的大小为5.0 VB .导体PQ 受到的安培力方向水平向右C .作用力F 大小是0.50 ND .作用力F 的功率是25 W2.如图所示,在光滑的水平面上,一质量为m ,半径为r ,电阻为R 的均匀金属环,以初速度v 0向一磁感应强度为B 的有界匀强磁场滑去(磁场宽度d >2r ).圆环的一半进入磁场历时t 秒,这时圆环上产生的焦耳热为Q ,则t 秒末圆环中感应电流的瞬时功率为( )A.4B 2r 2v 20RB.4B 2r 2⎝⎛⎭⎫v 20-2Q m RC.2B 2r 2⎝⎛⎭⎫v 20-2Q m RD.B 2r 2π2⎝⎛⎭⎫v 20-2Q m R 解析:t 秒末圆环中感应电动势为E =B ·2r ·v ,由能量守恒知,减少的动能全部转化为焦耳热:Q =12m v 20-12m v 2,t 秒末圆环中感应电流的功率为P =E 2R =4B 2r 2⎝⎛⎭⎫v 20-2Q m R . 答案:B3.(2013·浙南、浙北部分学校联考)如图所示,在磁感应强度为B 的水平匀强磁场中,有两根竖直放置的平行金属导轨,顶端用一电阻R 相连,两导轨所在的竖直平面与磁场方向垂直.一根金属棒ab 以初速度v 0沿导轨竖直向上运动,到某一高度后又向下运动返回到原出发点.整个过程中金属棒与导轨保持垂直且接触良好,导轨与棒间的摩擦及它们的电阻均可忽略不计.则在金属棒整个上行与整个下行的两个过程中,下列说法不.正确的是()A.回到出发点的速度v等于初速度v0B.上行过程中通过R的电荷量等于下行过程中通过R的电荷量C.上行过程中R上产生的热量大于下行过程中R上产生的热量D.上行的运动时间小于下行的运动时间4.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量解析:棒受重力G、拉力F和安培力F安的作用,由动能定理得W F+W G+W安=ΔE k,所以W F+W安=ΔE k+mgh,即力F做的功与安培力做的功的代数和等于机械能的增加量,A正确.答案:A5.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2.不计空气阻力,则()A.v1<v2,Q1<Q2B.v1=v2,Q1=Q2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2解析:两线圈在未进入磁场时,都做自由落体运动,从距磁场上界面h 高处下落,由动能定理知两线圈在进入磁场时的速度相同,设为v ,线圈Ⅰ所受安培力F 1′=BI 1L =B 2L 2v R 1,而R 1=ρ电4L S 1,S 1=m 1ρ·(4L ),故F 1′=B 2L 2v m 116ρ电ρL 2=B 2v m 116ρ电ρ,所以此时a 1=m 1g -F 1′m 1=g -B 2v 16ρ电ρ同理,可得a 2=g -B 2v16ρ电ρ,加速度与线圈的质量无关,即两线圈进入磁场时的加速度相同;当两线圈全部进入磁场后加速度也相同,a =g ,两线圈同步运动,因此落地时速度相等,即v 1=v 2.又由于线圈Ⅱ质量大,机械能损失多,产生的热量也多,即Q 2>Q 1.故D 正确.答案:D6.如图所示,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( )A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d 解析:从a 到b 线圈做自由落体运动,线圈全部进入磁场后,穿过线圈的磁通量不变,线圈中无感应电流,因而也不受磁场力,即F c =0.从b 到d 线圈继续加速,因bd >ab ,且线圈上下边距离很短,故v d >v b ,当线圈在进入和离开磁场时,穿过线圈的磁通量变化,线圈中产生感应电流,受磁场力作用,其大小F =BIl =B Bl v R ·l =B 2l 2v R,因v d >v b ,所以F d >F b >F c ,D 正确.答案:D7.两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m ,电阻也为R 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好.导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除金属棒和电阻R 外,其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .金属棒向下运动时,流过电阻R 的电流方向为a →bB .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RC .最终弹簧的弹力与金属棒的重力平衡D .从开始释放到最终金属棒稳定的过程中,金属棒与电阻构成的回路产生的总热量小于金属棒重力势能的减少量解析:金属棒向下运动时,由右手定则,可判断流过电阻R 的电流方向为由b 到a ;金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v 2R;金属棒最终静止,受到的重力和弹力相等;由能量守恒知,减少的重力势能等于产生的热量和弹簧增加的弹性势能.答案:CD8.如图所示,电动机牵引一根原来静止的、长L 为1 m 、质量m 为0.1 kg 的导体棒MN 上升,导体棒的电阻R 为1 Ω,架在竖直放置的框架上,它们处于磁感应强度B 为1 T 的匀强磁场中,磁场方向与框架平面垂直.当导体棒上升h =3.8 m 时,获得稳定的速度,导体棒上产生的热量为2 J ,电动机牵引棒时 ,电压表、电流表的读数分别为7 V 、1 A ,电动机内阻r 为1 Ω,不计框架电阻及一切摩擦,则以下判断正确的是( )A .导体棒向上做匀减速运动B .电动机的输出功率为7 WC .导体棒达到稳定时的速度为v =2 m/sD .导体棒从静止至达到稳定速度所需要的时间为1 s9.(2011·福建高考)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( )A .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v Rsin θ 解析:流过ab 棒某一横截面的电荷量q =I t =B ΔS Rt t =BLx R ,ab 棒下滑的位移x =qR BL,B 正确.ab 棒的平均速度v =x t,而棒下滑过程中做加速度减小的加速运动,只有在匀变速运动中平均速度才等于初末速度的平均值,故棒运动的平均速度不等于12v ,A 错误.由能量守恒得mgx sin θ=Q +12m v 2,故产生的焦耳热Q =mgx sin θ-12m v 2=mg qR BL sin θ-12m v 2,C 错误.当mg sin θ=B 2L 2v R 时v 最大,安培力最大,即F 安m =mg sin θ或B 2L 2v R,D 错误. 答案:B10.(2012·山东高考)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( )A .P =2mg v sin θB .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 解析:当速度为v 时:mg sin θ-B 2L 2v R=0 ①设所加拉力为F ,受力分析如图所示,导体棒将继续加速下滑,由牛顿第二定律得F +mg sin θ-B 2L 2v 棒R=ma ②P =F v 棒③当加速度再次为零时匀速运动,此时F 0+mg sin θ-B 2L 2·2v R=0 ④ P =F 0·2v ⑤11.导体棒的电阻R =2 Ω,质量m =0.1 kg ,长L =0.5 m ,导体棒MN 架在光滑的金属框架上,金属框架与水平面的夹角为30°,如图所示,它们处于磁感应强度B 为1 T 的匀强磁场中,磁场方向与框架平面垂直.1 s 后导体棒沿斜面向上滑行的距离是3 m 时,MN 刚好获得稳定的速度,电动机牵引棒时,电压表、电流表的读数分别为5 V 、1 A ,电动机内阻r 为1 Ω,不计框架电阻及一切摩擦,求:(1)导体棒能达到的稳定速度;(2)导体棒上产生的热量.解析:(1)电动机的机械功率P =UI -Ir 2=4 W导体棒在斜面上受力如图所示,导体棒在拉力F 的作用下做加速度越来越小的加速运动,当导体棒达到稳定速度时,受力平衡,则mg sin α+F A =F ,即mg sin α+B 2L 2v R=P v解得v =4 m/s.(2)在导体棒上升的过程中能量守恒Pt =mgs sin α+12m v 2+Q ,Q =1.7 J. 答案:(1)4 m/s (2)1.7 J12.(2011·四川高考)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑,K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q 杆所受拉力的瞬时功率.。

高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(练)(含解析)

高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(练)(含解析)

专题46 电磁感应中的动力学和能量问题1.如图所示,光滑的金属导轨间距为L ,导轨平面与水平面成α角,导轨下端接有阻值为R 的电阻.质量为m 的金属细杆ab 与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k ,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B .现给杆一沿导轨向下的初速度v 0,杆向下运动至速度为零后,再沿导轨平面向上运动达最大速度v 1,然后减速为零,再沿导轨平面向下运动,一直往复运动到静止(金属细杆的电阻为 r ,导轨电阻忽略不计).试求:(1)细杆获得初速度的瞬间,通过R 的电流大小; (2)当杆速度为v 1时,离最初静止位置的距离L 1;(3)杆由v 0开始运动直到最后静止,电阻R 上产生的焦耳热Q .【答案】(1)rR BLv I +=00(2))(1221r R k v L B L +=(3))(220r R Rmv Q R +=所以:)(22r R Rmv Q R +=【名师点睛】本题是导体棒在导轨上滑动的类型,分析杆的状态,确定其受力情况是关键.综合性较强.2.如图所示,一对平行光滑轨道水平放置,轨道间距L =0.20 m ,电阻R =10 Ω,有一质量为m =1kg 的金属棒平放在轨道上,与两轨道垂直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂直轨道平面竖直向下的匀强磁场中,磁感应强度B=5T ,现用一拉力F 沿轨道方向拉金属棒,使之做匀加速运动,加速度a =1m/s 2,试求: (1)力F 随时间t 的变化关系。

(2)F =3N 时,电路消耗的电功率P 。

(3)若金属棒匀加速运动的时间为T 时,拉力F 达到最大值F m =5N ,此后保持拉力F m =5N 不变,求出时间T ,并简述在时间T 前后,金属棒的运动情况。

【答案】(1)F =0.1t+1(2)40W (3)40s 前,金属棒以加速度1m/s 2做匀加速直线运动; 40s 后,金属棒做加速度逐渐减小、速度逐渐增大的变加速直线运动,直到速度达到50 m/s 时,金属棒的加速度减小到0,金属棒做匀速直线运动3.如图,两条间距L =0.5m 且足够长的平行光滑金属直导轨,与水平地面成30°角固定放置,磁感应强度B =0.4T 的匀强磁场方向垂直导轨所在的斜面向上,质量、的金属棒ab 、cd 垂直导轨放在导轨上,两金属棒的总电阻r =0.2Ω,导轨电阻不计。

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

(完整版)高考物理--电磁感应中的动力学问题(习题)

(完整版)高考物理--电磁感应中的动力学问题(习题)

第61课时电磁感应中的动力学问题(题型研究课)[命题者说]电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。

感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。

这类问题能很好地提高学生的综合分析能力。

(一)运动切割类动力学问题考法1单杆模型[例1](2016·全国甲卷)水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。

t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动。

t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。

杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。

重力加速度大小为g。

求(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值。

单杆模型的分析方法(1)电路分析:导体棒相当于电源,感应电动势E=BL v,电流I=ER+r。

(2)受力分析:导体棒中的感应电流在磁场中受安培力F安=BIL,I=BL vR+r,F安=B2L2vR+r。

(3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。

考法2双杆模型[例2](1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。

在t=0时刻,两杆都处于静止状态。

现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。

(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路。

高中物理(新人教版)选择性必修二同步习题:电磁感应中的动力学问题(同步习题)【含答案及解析】

高中物理(新人教版)选择性必修二同步习题:电磁感应中的动力学问题(同步习题)【含答案及解析】

第二章电磁感应专题强化练5 电磁感应中的动力学问题一、选择题1.()如图所示,ab和cd是位于水平面内的平行金属轨道,间距为l,其电阻可忽略不计,a、c之间连接一阻值为R的电阻,ef为一垂直于ab和cd的金属杆,它与ab和cd接触良好并可沿轨道无摩擦地滑动,电阻可忽略。

整个装置处在匀强磁场中,磁场方向竖直向下,磁感应强度大小为B。

当施加外力使杆ef以速度v向右匀速运动时,杆ef所受的安培力为( )A.B 2l2vRB.BlvRC.B2lvRD.Bl2vR2.(2020辽宁盘锦高二上期末,)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。

金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。

现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是( )A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小3.(2020四川广安中学高二上月考,)如图,足够长的U形光滑金属导轨平面与水平面成θ角(0°<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计。

金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的有效电阻为R,当通过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大小为12vB.下滑的位移大小为qRBLC.产生的焦耳热为qBLvD.受到的最大安培力大小为B 2L2vRsin θ4.(2020河北张家口高三上摸底,)如图所示,在光滑水平面上有宽度为d的匀强磁场区域,边界线MN、PQ平行,磁场方向垂直平面向下,磁感应强度大小为B。

边长为L(L<d)的正方形金属线框,电阻为R,质量为m,在水平向右的恒力F作用下,从距离MN为d2处由静止开始运动,线框右边到MN时的速度与到PQ时的速度大小相等,运动过程中线框右边始终与MN平行,则下列说法正确的是( )A.线框在进磁场和出磁场的过程中,通过线框横截面的电荷量不相等B.线框的右边刚进入磁场时所受安培力的大小为B 2L2R√FdmC.线框进入磁场过程中一直做加速运动D.线框右边从MN运动到PQ的过程中,线框中产生的焦耳热小于Fd5.()(多选)如图所示,质量为m=0.04 kg、边长l=0.4 m 的正方形导体线框abcd放置在一光滑绝缘斜面上,线框用一平行于斜面的细线系于O点,斜面倾角为θ=30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第61课时 电磁感应中的动力学问题(题型研究课)[命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。

感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。

这类问题能很好地提高学生的综合分析能力。

(一) 运动切割类动力学问题考法1 单杆模型[例1] (2016·全国甲卷) 水平面(纸面)间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。

t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。

t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。

杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。

重力加速度大小为g 。

求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。

单杆模型的分析方法(1)电路分析:导体棒相当于电源,感应电动势E =BLv ,电流I =ER +r。

(2)受力分析:导体棒中的感应电流在磁场中受安培力F 安=BIL ,I =BLv R +r ,F 安=B 2L 2vR +r。

(3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。

考法2 双杆模型[例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。

在t =0时刻,两杆都处于静止状态。

现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。

(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab 和cd ,构成矩形回路。

在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd 静止,棒ab有指向棒cd的初速度。

若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。

两类双杆模型对比类型模型运动图像运动过程分析方法不受外力杆MN做变减速运动,杆PQ做变加速运动;稳定时,两杆以相等的速度匀速运动将两杆视为整体,不受外力,最后a=0 受到恒力开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀加速运动将两杆视为整体,只受外力F,最后a=F2m考法3 含电容器问题[例3] (2013·全国卷Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。

导轨上端接有一平行板电容器,电容为C。

导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。

在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。

已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。

忽略所有电阻。

让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系。

这类题目易出现的错误是忽视电容器充电电流,漏掉导体棒所受的安培力,影响加速度的计算和导体棒运动情况的判断。

[集训冲关]1.如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面,相距为L。

一质量为m的导体棒cd垂直于MN、PQ放在轨道上,与轨道接触良好。

轨道和导体棒的电阻均不计。

(1)如图1所示,若轨道左端M、P间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。

请通过公式推导证明:在任意一段时间Δt,拉力F所做的功与电路获得的电能相等。

(2)如图2所示,若轨道左端接一电动势为E、阻为r的电源和一阻值未知的电阻。

闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m,求此时电源的输出功率。

(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。

电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。

求导体棒运动过程中受到的水平拉力大小。

2.(2017·松江区期末)如图所示,两根粗细均匀的金属杆AB和CD的长度均为L,电阻均为R,质量分别为3m和m,用两根等长的、质量和电阻均不计的、不可伸长的柔软导线将它们连成闭合回路,悬跨在绝缘的、水平光滑的圆棒两侧,AB和CD处于水平。

在金属杆AB的下方有高度为H的水平匀强磁场,磁感强度的大小为B,方向与回路平面垂直,此时CD 处于磁场中。

现从静止开始释放金属杆AB,经过一段时间(AB、CD始终水平),在AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD还处于磁场中,在此过程中金属杆AB上产生的焦耳热为Q。

重力加速度为g,试求:(1)金属杆AB即将进入磁场上边界时的速度v1;(2)在此过程中金属杆CD移动的距离h和通过导线截面的电量q;(3)设金属杆AB在磁场中运动的速度为v2,通过计算说明v2大小的可能围。

(二) 变化磁场类动力学问题[典例] 电磁弹射是我国最新研究的重大科技项目,原理可用下述模型说明。

如图甲所示,虚线MN右侧存在一个竖直向上的匀强磁场,一边长为L 的正方形单匝金属线框abcd 放在光滑水平面上,电阻为R ,质量为m ,ab 边在磁场外侧紧靠 MN 虚线边界。

t =0时起磁感应强度B 随时间t 的变化规律是B =B 0+kt (k 为大于零的常数),空气阻力忽略不计。

(1)求t =0时刻,线框中感应电流的功率P ;(2)若线框cd 边穿出磁场时速率为v ,求线框穿出磁场过程中,安培力对线框所做的功W 及通过导线截面的电荷量q ;(3)若用相同的金属线绕制相同大小的n 匝线框,如图乙所示,在线框上加一质量为M 的负载物,证明:载物线框匝数越多,t =0时线框加速度越大。

磁场变化类电磁感应问题的解题方法(1)用法拉第电磁感应定律计算感应电动势,用楞次定律判断方向。

(2)用闭合电路欧姆定律计算回路中电流。

(3)分析计算感应电流所受安培力,研究导体受力情况和运动情况。

(4)根据牛顿第二定律或平衡条件列出方程。

[集训冲关]如图所示,粗糙斜面的倾角θ=37°,半径r =0.5 m 的圆形区域存在着垂直于斜面向下的匀强磁场。

一个匝数n =10匝的刚性正方形线框abcd ,通过松弛的柔软导线与一个额定功率P =1.25 W 的小灯泡A 相连,圆形磁场的一条直径恰好过线框bc 边。

已知线框质量m =2 kg ,总电阻R 0=1.25 Ω,边长L >2r ,与斜面间的动摩擦因数μ=0.5。

从t =0时起,磁场的磁感应强度按B =2-2πt (T)的规律变化。

开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。

设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8。

求: (1)小灯泡正常发光时的电阻R ;(2)线框保持不动的时间,小灯泡产生的热量Q 。

[课时达标检测] 一、选择题1.如图所示,有两根和水平方向成α角的光滑平行金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻忽略不计)从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 变小,v m 将变大 D.如果m 变小,v m 将变大2.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。

电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。

现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR3.(多选)(2017·二模)如图所示,在水平桌面上放置两条相距为l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连。

质量为m 、电阻也为R 的导体棒垂直于导轨放置并可沿导轨自由滑动。

整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。

导体棒的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。

现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则( ) A.电阻R 中的感应电流方向由c 到a B.物块下落的最大加速度为gC.若h 足够大,物块下落的最大速度为2mgRB 2l2D.通过电阻R 的电荷量为Blh R4.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1。

用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A.金属棒ab 、cd 都做匀速运动B.金属棒ab 上的电流方向是由b 向aC.金属棒cd 所受安培力的大小等于2F3 D.两金属棒间距离保持不变二、计算题5.如图所示,L 1=0.5 m ,L 2=0.8 m ,回路总电阻为R =0.2 Ω,M =0.04 kg ,导轨光滑,开始时磁场B 0=1 T 。

现使磁感应强度以ΔBΔt=0.2 T/s 的变化率均匀地增大。

试求:当t 为多少时,M 刚好离开地面?(g取10 m/s2)6.如图所示,在水平平行放置的两根光滑长直导电轨道MN与PQ上,放着一根直导线ab,ab与导轨垂直,它在导轨间的长度为20 cm,这部分的电阻r=0.02 Ω。

导轨部分处于方向竖直向下的匀强磁场中,磁感应强度B=0.20 T,电阻R=0.08 Ω,其他电阻不计,ab的质量为0.02 kg。

(1)打开开关S,ab在水平恒力F=0.01 N的作用下,由静止沿轨道滑动,求经过多长时间速度才能达到10 m/s?(2)当ab的速度达到10 m/s时,闭合开关S,为了保持ab仍能以10 m/s的速度匀速运动,水平拉力应变为多少?7.平行水平长直导轨间的距离为L,左端接一耐高压的电容器C。

相关文档
最新文档