专题突破电磁感应中的动力学问题课后练习

合集下载

新教材高中物理第2章电磁感应中的动力学问题课时作业新人教版选择性必修第二册(含答案)

新教材高中物理第2章电磁感应中的动力学问题课时作业新人教版选择性必修第二册(含答案)

新教材高中物理新人教版选择性必修第二册:专项6 电磁感应中的动力学问题1.(多选)如图,两根足够长且光滑平行的金属导轨PP′、QQ′倾斜放置,匀强磁场垂直于导轨平面向上,导轨的上端与水平放置的两金属板M、N相连,板间距离足够大,板间有一带电微粒,金属棒ab水平跨放在导轨上,下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab,则下列说法正确的是( )A.金属棒ab最终可能匀速下滑B.金属棒ab一直加速下滑C.金属棒ab下滑过程中M板电势高于N板电势D.带电微粒不可能先向N板运动后向M板运动2.如图甲所示,PQNM是倾角θ=37°、表面粗糙的绝缘斜面,abcd是匝数n=20、质量m=1kg、总电阻R=2Ω、边长L=1m的正方形金属线框.线框与斜面间的动摩擦因数μ=0.8,在OO′NM的区域加上垂直斜面向上的匀强磁场,使线框的一半处于磁场中,磁场的磁感应强度B随时间t变化的图像如图乙所示.g取10m/s2,sin37°=0.6,cos37°=0.8.下列说法正确的是( )A.0~6s内,线框中的感应电流大小为1AB.0~6s内,线框产生的焦耳热为6JC.t=6s时,线框受到的安培力大小为8ND.t=10s时,线框即将开始运动3.如图所示,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v­t图像中,能正确描述上述过程的是( )[平行固定放置,间距为L,导轨一端通过导线与阻值为R的电阻连接,导轨上放一质量为m 的金属杆.金属杆与导轨的电阻忽略不计,匀强磁场的方向竖直向下.现用与导轨平行的恒定拉力F作用在金属杆上,金属杆最终将做匀速运动,当改变拉力的F大小时,金属杆相对应的匀速运动速度v也会变化,v和F的关系如图乙所示.(取g=10m/s2)(1)金属杆在匀速运动之前做什么运动?(2)若m=0.5kg,L=0.5m,R=0.5Ω,求磁感应强度B和金属杆与导轨间的动摩擦因数μ各为多大?5.如图所示,竖直平面内有足够长的平行金属导轨,间距为0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导体ab的质量为0.2g,垂直纸面向里的匀强磁场的磁感应强度大小为0.2T,且磁场区域足够大,当导体ab自由下落0.4s 时,突然闭合开关S,则:(g取10m/s2)(1)试说出开关S闭合后,导体ab的运动情况;(2)导体ab匀速下落的速度是多少?6.如图所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.2m,电阻R=0.4Ω,导轨上停放一质量m=0.1kg、电阻r=0.1Ω的金属杆,导轨电阻可忽略不计,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下,现用一外力F沿水平方向拉杆,使之由静止开始运动,若理想电压表的示数U随时间t变化的关系如图(b)所示.(1)试分析说明金属杆的运动情况;(2)求第2s末外力F的大小.7.如图甲所示,相距L=1m、电阻不计的两根长金属导轨,各有一部分在同一水平面内,另一部分在同一竖直面内.质量均为m=50g、电阻均为R=1.0Ω的金属细杆ab、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5.整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中,ab杆在水平拉力F作用下沿导轨向右运动,cd杆固定在竖直导轨的某位置,现在释放cd杆并开始计时,以竖直向下为正方向,cd杆的v­t图像如图乙所示,已知在0~1s和2~3s内,图线为直线.g取10m/s2.(1)求在0~1s 内通过cd 杆的电流;(2)若已知ab 杆在1~2s 内做匀加速直线运动,求1~2s 时间内拉力F 随时间t 变化的关系式.专项6 电磁感应中的动力学问题1.答案:BC解析:A 错,B 对:金属棒沿光滑导轨加速下滑,棒中有感应电动势,从而对电容器充电,充电电流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有mg sin θ-ILB >0,金属棒一直加速运动.C 对:由右手定则可知,金属棒a 端电势高,则M 板电势高.D 错:若微粒带负电,则静电力向上,与重力反向,开始时静电力为0,微粒向下加速运动,当静电力增大到大于重力时,微粒的加速度方向向上.2.答案:C解析:由图乙知B =0.1t +0.2(T),ΔBΔt=0.1T/s设线框即将运动的时间为t ,则nBIL =mg sin θ+μmg cos θ,线框未动时,根据法拉第电磁感应定律E =n ·12L 2ΔBΔt=1V由闭合电路欧姆定律得I =E R=0.5A ,解得t =10.4s0~10.4s 内线框处于静止,线框中的感应电流大小为0.5A ,故A 、D 错误;0~6s 内,框产生焦耳热为Q =I 2Rt =0.52×2×6J=3J ,故B 错误;t =6s 时,磁感应强度为B =0.1t +0.2(T)=0.1×6+0.2T =0.8T ,线框受到的安培力大小为F =nBIL =20×0.8×0.5×1N=8N ,故C 正确.3.答案:D解析:导线框进入磁场的过程中,受到向左的安培力作用,根据E =BLv 、I =E R、F 安=BIL ,得F 安=B 2L 2vR,随着v 的减小,安培力F 安减小,根据F 安=ma 知,导线框做加速度逐渐减小的减速运动.整个导线框在磁场中运动时,无感应电流,导线框做匀速运动,导线框离开磁场的过程中,受到向左的安培力,根据F 安=B 2L 2vR=ma 可知,导线框做加速度逐渐减小的减速运动,故选项D 正确.4.答案:(1)加速度减小的加速运动 (2)1T 0.4 解析:(1)根据牛顿第二定律F -F 安-f =ma而F 安=BIL =B 2L 2vR故金属杆在匀速运动之前做加速度减小的加速运动. (2)金属杆产生的感应电动势E =BLv 感应电流I =E R金属杆所受的安培力为F 安=BIL =B 2L 2vR由题意可知金属杆受拉力、安培力和阻力作用,匀速时合力为零,即有F =B 2L 2v R+f所以v =RB 2L 2(F -f ) 从图线可以得到直线的斜率k =2 联立可得RB 2L 2=k 将数据代入可解得B =1T 由f =μmg =2N 得μ=0.4.5.答案:(1)见解析 (2)0.5m/s解析:(1)闭合开关S 之前,导体ab 自由下落的末速度为 v 0=gt =4m/s.开关S 闭合瞬间,导体ab 产生感应电动势,回路中产生感应电流,导体ab 立即受到一个竖直向上的安培力.F 安=BIL =B 2L 2v 0R=0.016N >mg =0.002N.此时导体ab 受到的合力方向竖直向上,与初速度方向相反,加速度的表达式为a =F 安-mg m =B 2L 2v mR -g ,所以导体ab 竖直向下做加速度逐渐减小的减速运动.当F 安=mg 时,导体ab 竖直向下做匀速运动.(2)设导体ab 匀速下落的速度为v m ,此时F 安=mg ,即B 2L 2v m R =mg ,v m =mgR B 2L2=0.5m/s.6.答案:(1)初速度为零的匀加速运动 (2)0.7N解析:(1)杆切割磁感线产生电动势E =BLv 电压表示数为U =IR =BLRR +rv 由图像可知,U 与t 成正比,即v 与t 成正比,故杆做初速度为零的匀加速运动. (2)由运动学规律v =at ,所以U =BLRR +rat =kt 由图线得k =0.4V/s ,即BLRa R +r=0.4V/s ,得a =5m/s 2两秒末速度v =at =10m/s ,F -B 2L 2vR +r=ma解得F =0.7N .7.答案:(1)0.6A (2)F =0.8t +0.13(N) 解析:(1)在0~1s 内,cd 杆的v ­t 图线为倾斜直线,因此cd 杆做匀变速直线运动,加速度为a 1=v t -v 0t=4.0m/s 2,cd 杆受向上的摩擦力作用,其受力分析如图所示. 根据牛顿第二定律,有mg -F f =ma 1,其中F f =μF N =μF A =μBIL ,因此回路中的电流为I =m (g -a 1)μBL=0.6A.(2)在0~1s 内,设ab 杆产生的感应电动势为E ,则E =BLv 1,由闭合电路欧姆定律得I=E 2R ,则ab 杆的速度为v 1=2IRBL=1.2m/s. 在2~3s 内,由题图乙可求出cd 杆的加速度为a 2=-4.0m/s 2,由(1)的分析,同理可得mg -F ′f =ma 2,即mg -μB 2L 2v 22R =ma 2,整理得ab 杆的速度v 2=2m (g -a 2)R μB 2L 2=2.8m/s.在1~2s 内,ab 杆做匀加速直线运动,则加速度a =v 2-v 1t=1.6m/s 2,对ab 杆,根据牛顿第二定律有F -μmg -BI ′L =ma ,ab 杆在t 时刻的速度v =v 1+a (t -1s),回路中的电流I ′=BLv2R,联立可得F =0.8t +0.13(N).。

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

专题30+电磁感应中的动力学问题(精练)-高考物理双基突破(二)+Word版含解析.doc

专题30+电磁感应中的动力学问题(精练)-高考物理双基突破(二)+Word版含解析.doc

1.如图所示,有两根和水平方向成α角的光滑平行金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆(电阻忽略不计)从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则A.如果B增大,v m将变大B.如果α增大,v m将变大C.如果R变小,v m将变大D.如果m变小,v m将变大【答案】B2.如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B。

电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。

现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时A.电容器两端的电压为零B.电阻两端的电压为BLvC .电容器所带电荷量为CBLvD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR【答案】C3.(多选)如图所示,在水平桌面上放置两条相距为l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连。

质量为m 、电阻也为R 的导体棒垂直于导轨放置并可沿导轨自由滑动。

整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。

导体棒的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。

现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则A .电阻R 中的感应电流方向由c 到aB .物块下落的最大加速度为gC .若h 足够大,物块下落的最大速度为2mgR B 2l 2D .通过电阻R 的电荷量为Blh R【答案】AC4.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1。

人教版选修3-2电磁感应中的动力学和能量问题(考前突破)(带答案)

人教版选修3-2电磁感应中的动力学和能量问题(考前突破)(带答案)

电磁感应中的动力学和能量问题(考前突破)1.如图所示,光滑、足够长的平行金属导轨MN、PQ的间距为l,所在平面与水平面成θ角,处于磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中。

两导轨的一端接有阻值为R的电阻。

质量为m、电阻为r的金属棒ab垂直放置于导轨上,且m由一根轻绳通过一个定滑轮与质量为M的静止物块相连,物块被释放后,拉动金属棒ab加速运动H距离后,金属棒以速度v匀速运动。

求:(导轨电阻不计)(1)金属棒αb以速度v匀速运动时两端的电势差U ab;(2)物块运动H距离过程中电阻R产生的焦耳热Q R。

2.如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距L=1m,两轨道之间用R=4Ω的电阻连接,一质量m=1kg的导体杆与两轨道垂直,静止放在轨道上,轨道的电阻可忽略不计.整个装置处于磁感应强度B=4T的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F与导体杆运动的位移s间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m时撤去拉力,导体杆又滑行了一段距离'后停止.已知在拉力F作用过程中,通过电阻R上电量q为1.25C.在滑行'的过程中电阻R上产生的焦耳热为4J.求:v;(1)导体杆运动过程中的最大速度mF;(2)拉力F的最大值m(3)拉力F作用过程中,电阻R上产生的焦耳热.3.如图所示,两根足够长的直金属MN、PQ平行放置在倾角为 的绝缘斜面上,两导轨间距为L。

M、P 两点间接有阻值为R 的电阻。

一根质量为m的均匀直金属杆ab 放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下。

导轨和金属杆的电阻可忽略。

让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)在加速下滑过程中,当ab 杆的速度大小为v 时,ab 杆中的电流及其加速度的大小;(2)求在下滑过程中ab 杆可达到的最大速度。

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

(完整版)高考物理--电磁感应中的动力学问题(习题)

(完整版)高考物理--电磁感应中的动力学问题(习题)

第61课时电磁感应中的动力学问题(题型研究课)[命题者说]电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。

感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。

这类问题能很好地提高学生的综合分析能力。

(一)运动切割类动力学问题考法1单杆模型[例1](2016·全国甲卷)水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。

t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动。

t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。

杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。

重力加速度大小为g。

求(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值。

单杆模型的分析方法(1)电路分析:导体棒相当于电源,感应电动势E=BL v,电流I=ER+r。

(2)受力分析:导体棒中的感应电流在磁场中受安培力F安=BIL,I=BL vR+r,F安=B2L2vR+r。

(3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。

考法2双杆模型[例2](1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。

在t=0时刻,两杆都处于静止状态。

现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。

(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路。

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题(答题时间:30分钟)1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A. 金属棒ab、cd都做匀速运动B. 金属棒ab上的电流方向是由b向aC. 金属棒cd所受安培力的大小等于2F/3D. 两金属棒间距离保持不变2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。

位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg,边长为1 m,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.4。

OO′为AD、BC的中线。

在金属框内有可随金属框同步移动的磁场,OO′CD区域内磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域内磁场如图(c)所示,AB恰在磁场边缘以内(g=10 m/s2)。

若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s23. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是()4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。

高中物理第四章专题课3电磁感应中的动力学及能量问题随堂检测巩固落实练习(含解析)新人教版选修3_2

高中物理第四章专题课3电磁感应中的动力学及能量问题随堂检测巩固落实练习(含解析)新人教版选修3_2

电磁感应中的动力学及能量问题1.如图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可忽略不计.开始时,给ef 一个向右的初速度,则( )A .ef 将减速向右运动,但不是匀减速B .ef 将匀减速向右运动,最后停止C .ef 将匀速向右运动D .ef 将往返运动解析:选A.ef 向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,由F =BIl =B 2l 2v R=ma 知,ef 做的是加速度减小的减速运动,故A 正确.2.(2019·安徽池州一中高二期末)如图1所示,光滑的平行金属导轨(足够长)固定在水平面内,导轨间距为l =20 cm ,左端接有阻值为R =1 Ω的电阻,放在轨道上静止的一导体杆MN 与两轨道垂直,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度大小为B =0.5 T .导体杆受到沿轨道方向的拉力F 做匀加速运动,测得力F 与时间t 的关系如图2所示.导体杆及两轨道的电阻均可忽略不计,导体杆在运动过程中始终与轨道垂直且两端与轨道保持良好接触,则导体杆的加速度大小和质量分别为( )A .10 m/s 2,0.5 kgB .10 m/s 2,0.1 kgC .20 m/s 2,0.5 kgD .20 m/s 2,0.1 kg解析:选B.导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有:v =at ;杆切割磁感线,将产生感应电动势为:E =Blv ;闭合回路中产生的感应电流为:I =E R;杆受到的安培力大小为:F A =BIl ;根据牛顿第二定律,有:F -F A =ma ;联立以上各式得:F =ma +B 2l 2at R;由图线上取两点代入上式,可解得:a =10 m/s 2;m =0.1 kg ,选项B 正确. 3.(2019·山东临沂高二期末)如图所示,水平U 形光滑框架的宽度为1 m ,电阻忽略不计,导体棒ab 质量是0.2 kg ,电阻是0.1 Ω,匀强磁场的磁感应强度B =0.2 T ,方向垂直框架向上,现用1 N 的外力F 由静止拉动ab 杆,求:(1)当ab 的速度达到2 m/s 时,ab 杆产生的感应电动势的大小;(2)当ab 的速度达到2 m/s 时,ab 杆的加速度的大小;(3)ab 杆最终能达到的最大速度.解析:(1)ab 杆产生的感应电动势的大小:E =BLv ①解得:E =0.4 V.(2)感应电流大小:I =E R② ab 杆所受的安培力:F A =BIL ③根据牛顿第二定律:F -F A =ma ④代入数据解得:a =1 m/s 2.(3)将①②③式代入④得:F -B 2L 2v R=ma 当a =0时,v 达到最大v m =FR B 2L 2=2.5 m/s. 答案:(1)0.4 V (2)1 m/s 2 (3)2.5 m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破电磁感应中的动力学问题(答题时间:30分钟)1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A. 金属棒ab、cd都做匀速运动B. 金属棒ab上的电流方向是由b向aC. 金属棒cd所受安培力的大小等于2F/3D. 两金属棒间距离保持不变2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。

位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg,边长为1 m,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.4。

OO′为AD、BC的中线。

在金属框有可随金属框同步移动的磁场,OO′CD区域磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域磁场如图(c)所示,AB恰在磁场边缘以(g=10 m/s2)。

若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s23. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是()4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。

当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。

若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知()A. 小车的水平长度l=15 cmB. 磁场的宽度d=35cmC. 小车的位移x=10 cm时线圈中的电流I=7 AD. 线圈通过磁场的过程中线圈产生的热量Q=1.92J5. 如图甲所示,abcd 是位于竖直平面的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B 的匀强磁场区域,MN 和M ′N ′是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向与线框平面垂直。

现金属线框由距MN 的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的vt 图象。

已知金属线框的质量为m ,电阻为R ,当地的重力加速度为g ,图象中坐标轴上所标出的字母v 1、v 2、v 3、t 1、t 2、t 3、t 4均为已知量。

(下落过程中bc 边始终水平)根据题中所给条件,以下说确的是( )A. 可以求出金属框的边长B. 线框穿出磁场时间(t 4-t 3)等于进入磁场时间(t 2-t 1)C. 线框穿出磁场与进入磁场过程所受安培力方向相同D. 线框穿出磁场与进入磁场过程产生的焦耳热相等6. 如图甲所示,bacd 为导体做成的框架,其平面与水平面成θ角,质量为m 的导体棒PQ 与ab 、cd 接触良好,回路的电阻为R ,整个装置放于垂直框架平面的变化磁场中,磁感应强度B 的变化情况如图乙所示,PQ 能够始终保持静止,则0~t 2时间,PQ 受到的安培力F 和摩擦力F f 随时间变化的图象可能正确的是(取平行斜面向上为正方向)( )7. 如图甲,在虚线所示的区域有垂直纸面向里的匀强磁场,磁场变化规律如图乙所示,面积为S 的单匝金属线框处在磁场中,线框与电阻R 相连。

若金属框的电阻为R 2,则下列说确的是( )A. 流过电阻R 的感应电流由a 到bB. 线框cd 边受到的安培力方向向下C. 感应电动势大小为2B 0S t 0D. ab 间电压大小为2B 0S 3t 08. 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中;左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计。

磁感应强度为B 2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m 、电阻为R 的导体棒此时恰好能静止在导轨上,分析下述判断不正确的有( )A. 圆形线圈中的磁场,可以向上均匀增强,也可以向下均匀减弱B. 导体棒ab 受到的安培力大小为mg sin θC. 回路中的感应电流为mg sin θB 2dD. 圆形导线中的电热功率为m 2g 2sin 2θB 22d2(r +R ) 9. 如图所示,abcd 是一个质量为m ,边长为L 的正方形金属线框。

如从图示位置自由下落,在下落h 后进入磁感应强度为B 的磁场,恰好做匀速直线运动,该磁场的宽度也为L 。

在这个磁场的正下方h +L 处还有一个未知磁场,金属线框abcd 在穿过这个磁场时也恰好做匀速直线运动,那么下列说确的是( )A. 未知磁场的磁感应强度是2BB. 未知磁场的磁感应强度是2BC. 线框在穿过这两个磁场的过程中产生的电能为4mgLD. 线框在穿过这两个磁场的过程中产生的电能为2mgL10. 如图所示,在水平面固定着足够长且光滑的平行金属轨道,轨道间距L =0.40m ,轨道左侧连接一定值电阻R =0.80Ω。

将一金属直导线ab 垂直放置在轨道上形成闭合回路,导线ab 的质量m =0.10kg 、电阻r =0.20Ω,回路中其余电阻不计。

整个电路处在磁感应强度B =0.50T 的匀强磁场中,B 的方向与轨道平面垂直。

导线ab 在水平向右的拉力F 作用下,沿力的方向以加速度a =2.0m/s 2由静止开始做匀加速直线运动,求:(1)5s末的感应电动势大小;(2)5s末通过R电流的大小和方向;(3)5s末,作用在ab金属杆上的水平拉力F的大小。

11. 如图所示,两根平行金属导轨固定在同一水平面,间距为l,导轨左端连接一个电阻。

一根质量为m、电阻为r的金属杆ab垂直放置在导轨上。

在杆的右方距杆为d处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B。

对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v,之后进入磁场恰好做匀速运动。

不计导轨的电阻,假定导轨与杆之间存在恒定的阻力。

求:(1)导轨对杆ab的阻力大小F f;(2)杆ab过的电流及其方向;(3)导轨左端所接电阻的阻值R。

12. 如图所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面。

在水平面a1b1b2a2区域和倾角θ=37°的斜面c1b1b2c2区域分别有磁感应强度B1=0.4 T,方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场。

电阻R=0.3 Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。

一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环。

已知小环以a=6 m/s2的加速度沿绳下滑,K 杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。

不计导轨电阻和滑轮摩擦,绳不可伸长。

取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率。

专题突破电磁感应中的动力学问题1. BC 解析:对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确;因此答案选B 、C 。

2. AD 解析:若金属框固定在绝缘板上,由题意得E =ΔB 1Δt ·12S ABCD =1×12×1×1 V =0.5 V ,I =E R=8 A ,F AB =B 2IL =8 N ,取绝缘板和金属框整体进行受力分析,由牛顿第二定律:F AB -μ1(M +m )g =(M +m )a ,解得a =3 m/s 2,A 对,B 错;若金属框不固定,对金属框进行受力分析,假设其相对绝缘板滑动,F f1=μ2mg =0.4×1×10 N =4 N<F AB ,假设正确。

对金属框应用牛顿第二定律得F AB -F f1=ma 1,a 1=4 m/s 2;对绝缘板应用牛顿第二定律得F f1-F f2=Ma 2,F f2=μ1(M +m )g =2 N ,解得a 2=2 m/s 2,C 错,D 对。

3. ACD 解析:若ab 杆速度为v 时,S 闭合,则ab 杆中产生的感应电动势E =BLv ,ab 杆受到的安培力Rv L B F 22=,如果安培力等于ab 杆的重力,则ab 杆匀速运动,A 项正确;如果安培力小于ab 杆的重力,则ab 杆先加速最后匀速,C 项正确;如果安培力大于ab 杆的重力,则ab 杆先减速最后匀速,D 项正确;ab 杆不可能匀加速运动,B 项错。

4. C 解析:从x =5 cm 开始,线圈进入磁场,线圈中有感应电流,在安培力作用下小车做减速运动,速度v 随位移x 减小,当x =15 cm 时,线圈完全进入磁场,小车做匀速运动。

小车的水平长度l =10 cm ,A 项错;当x =30 cm 时,线圈开始离开磁场,则d =30cm -5cm =25cm ,B 项错;当x =10 cm 时,由图象知,线圈速度v 2=7 m/s ,感应电流R nBhv R E I 2===7A ,C 项正确;线圈左边离开磁场时,小车的速度为v 3=2 m/s ,线圈上产生的电热为Q = 12(M +m )(2221v v -)=5.76J ,D 项错。

5. AC 解析:由线框运动的vt 图象,可知0~t 1线框自由下落,t 1~t 2线框进入磁场,t 2~t 3线框在磁场中只受重力作用加速下降,t 3~t 4线框离开磁场。

线框的边长l =v 3(t 4-t 3),选项A 正确;由于线框离开时的速度v 3大于进入时的平均速度,因此线框穿出磁场时间小于进入磁场时间,选项B 错;线框穿出磁场与进入磁场过程所受安培力方向都竖直向上,选项C 正确;线框进入磁场mgl =Q 1+12mv 22-12mv 21,线框离开磁场mgl =Q 2,可见Q 1<Q 2,选项D 错。

相关文档
最新文档