2014-2015高三期中考试数学理科
2014-2015高三期中考试数学理科

2014-2015高三期中考试数学理科D第 2 页共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷第 3 页共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷第 4 页共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷第 5 页共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷第 6 页 共 12 页 2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.△ABC 中,∠A 、∠B 、∠C 的对边分别为c b a ,,,重心为G ,若33=++c b a ,则∠A= .唐山市开滦一中2014—2015学年度第一学期期中考试高三年级数学试卷(理) 二.填空题:本大题4个小题,每小题5分,共20分。
将答案直接填在题中横线上。
13.________________ ;14.________________ 15.________________; 16.________________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) 函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个 实根为2,121=-=x x . (1)求)(x f y =的解析式;(2)求满足不等式()3>x f的解集第 7 页共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷第 8 页 共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷18. (本题满分12分)已知函数y =x +t x 有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质, 求函数f (x )的单调区间和值域;19. (本题满分12分)第 9 页 共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷 已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在△ABC 中,三内角A,B,C 的对边分别为c b a ,,,已知21)(=A f ,c a b ,,成等差数列,且9=⋅,求a 的值.第 10 页 共 12 页2014-2015学年度第一学期唐山市开滦一中高三期中考试数学理科试卷20. (本题满分12分)设函数f (x )=ln x +(x -a )2,a ∈R.(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围;21. (本题满分12分)已知△ABC 的面积S 满足2323≤≤S ,且3=⋅,与BC 的夹角为θ.(1)求θ的取值范围;(2)求函数θθθθθ22cos cos sin 32sin3)(++=f 的最大值及最小值22. (本小题满分12分)设函数1()ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.。
2014-2015学年四川省成都市新津中学高三(上)期中数学试卷和答案(理科)

2014-2015学年四川省成都市新津中学高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合M={y|y=()x,x∈R},N={1,0,﹣1},则M∩N=()A.{1,0,﹣1}B.{1,﹣1}C.{1,0}D.{1}2.(5分)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=()A.B.C.D.4.(5分)若命题p1:y=log2014[(2﹣x)(2+x)]为偶函数;若命题p2:y=log2014为奇函数,则下列命题为假命题的是()A.p1∧p2B.p1∨¬p2C.p1∨p2D.p1∧¬p25.(5分)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.C.10 D.6.(5分)已知正项等比数列{a n}满足a7=a6+2a5.若存在两项a m,a n使得,则的最小值为()A.B.C.D.7.(5分)如图所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合中,给θ取一个值,输出的结果是sinθ,则θ值所在范围是()A.B.C.D.8.(5分)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}9.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是()A.以AB为底边的等腰三角形B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形10.(5分)已知直线(1﹣λ)x+(3λ+1)y﹣4=0(λ∈R)所过定点恰好落在曲线f(x)=上,若函数h(x)=f(x)﹣mx+2有三个不同的零点,则实数m的范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣∞,)∪[1,+∞)D.(,1]二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(1﹣)4展开式中的系数是.12.(5分)已知向量与的夹角为,且,若,则实数λ=.13.(5分)两个等差数列的前n项和之比为,则它们的第7项之比为.14.(5分)函数y=x﹣2sinx在[0,π]上的递增区间是.15.(5分)若a,b是任意非零的常数,对于函数y=f(x)有以下5个命题:①f(x)是T=2a的周期函数的充要条件是f(x+a)=f(x﹣a);②f(x)是T=2a的周期函数的充要条件是f(x+a)=﹣f(x);③若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形关于直线对称;④若f(x)关于直线对称,且f(x+a)=﹣f(x),则f(x)是奇函数;⑤若f(x)关于点(a,0)对称,关于直线x=b对称,则f(x)是T=4(a﹣b)的周期函数.其中正确命题的序号为.三、解答题(共6小题,满分75分.其中16-19每题12分,20题12分,21题14分)16.(12分)已知数列{a n}满足a1=,且a n+1=(n∈N+).(1)证明数列是等差数列,并求数列{a n}的通项公式;(2)设b n=a n a n+1(n∈N+),数列{b n}的前n项和记为T n,证明:T n<.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)求sinBsinC的最大值.18.(12分)某班的数学研究性学习小组有9名成员,在暑假中各自都进行了小课题研究活动,其中参加活动一次的为2人,参加活动两次的为3人,参加活动三次的为4人.(1)从中人选3人,求这3人参加活动次数各不相同的概率;(2)从中任选2人,求这2人参加活动次数之和的随机变量ξ的分布列和期望.19.(12分)如图四棱锥P﹣ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(1)求二面角P﹣BC﹣D的正切值;(2)求直线DP到平面PBG所成角的正弦值;(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.20.(13分)已知椭圆(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.2014-2015学年四川省成都市新津中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合M={y|y=()x,x∈R},N={1,0,﹣1},则M∩N=()A.{1,0,﹣1}B.{1,﹣1}C.{1,0}D.{1}【解答】解:,则M∩N={1}.故选:D.2.(5分)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选:B.3.(5分)设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=()A.B.C.D.【解答】解:由题意可得x<0,r=|OP|=,故cosα==.再由可得x=﹣3,∴tanα==﹣,故选:D.4.(5分)若命题p1:y=log2014[(2﹣x)(2+x)]为偶函数;若命题p2:y=log2014为奇函数,则下列命题为假命题的是()A.p1∧p2B.p1∨¬p2C.p1∨p2D.p1∧¬p2【解答】D解:函数y=log2014[(2﹣x)(2+x)],定义域均为(﹣2,2),对f(x)=log2014[(2﹣x)(2+x)],f(﹣x)=log2014[(2+x)(2﹣x)]=f(x),∴y=log2014[(2﹣x)(2+x)]为偶函数,即命题p1为真命题;对于函数,,∴为奇函数,命题p2为真命题;则有:命题p1∧(¬p2)中,p1为真命题,¬p2为假命题,“且”命题为假命题.故选:D.5.(5分)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.C.10 D.【解答】解:三视图复原的几何体是一个三棱锥,如图,四个面的面积分别为:8,6,,10,显然面积的最大值,10.故选:C.6.(5分)已知正项等比数列{a n}满足a7=a6+2a5.若存在两项a m,a n使得,则的最小值为()A.B.C.D.【解答】解:设等比数列的公比为q(q>0),则∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2﹣q﹣2=0,∴q=2,∵存在两项a m,a n使得,∴a m a n=16a12,∴q m+n﹣2=16,∴m+n=6∴=(m+n)()=(10+)m=1,n=5时,=;m=2,n=4时,=.∴的最小值为,故选:B.7.(5分)如图所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合中,给θ取一个值,输出的结果是sinθ,则θ值所在范围是()A.B.C.D.【解答】解:程序框图的功能是求a,b,c的最大值∵输出的结果是sinθ,∴sinθ最大即解得故选:D.8.(5分)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}【解答】解:令g(x)=e x•f(x)﹣e x,则g′(x)=e x•[f(x)+f′(x)﹣1]∵对任意x∈R,f(x)+f′(x)>1,∴g′(x)>0恒成立即g(x)=e x•f(x)﹣e x在R上为增函数又∵f(0)=2,∴g(0)=1故g(x)=e x•f(x)﹣e x>1的解集为{x|x>0}即不等式e x•f(x)>e x+1的解集为{x|x>0}故选:A.9.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是()A.以AB为底边的等腰三角形B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形【解答】解:设BC的中点为D,∵,∴•(2﹣2)=0,∴•2=0,∴⊥,故△ABC的BC边上的中线也是高线.故△ABC是以BC为底边的等腰三角形,故选:B.10.(5分)已知直线(1﹣λ)x+(3λ+1)y﹣4=0(λ∈R)所过定点恰好落在曲线f(x)=上,若函数h(x)=f(x)﹣mx+2有三个不同的零点,则实数m的范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣∞,)∪[1,+∞)D.(,1]【解答】解:依题意,直线为(x+y﹣4)﹣λ(x﹣3y)=0,联立,解得,故定点为(3,1),log a3=1,∴a=3,.令h(x)=f(x)﹣mx+2=0,故f(x)=mx﹣2.则f(x)的图象与g(x)=mx﹣2的图象有三个不同的交点.作图,得关键点A(0,﹣2),B(3,1),C(4,0),可知g(x)=mx﹣2应介于直线AB与直线AC之间.由k AB=1,,故.故选:A.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(1﹣)4展开式中的系数是﹣16.【解答】解:的通项为,令r=1,可得的系数是﹣16,故答案为:﹣16.12.(5分)已知向量与的夹角为,且,若,则实数λ=1.【解答】解:∵,∴∵∴(2)=2∴2﹣2λ=0∴λ=1故答案为:113.(5分)两个等差数列的前n项和之比为,则它们的第7项之比为3:1.【解答】解:设这两个等差数列的前n项和分别为S n,T n,由题意知===3,故答案为:3:114.(5分)函数y=x﹣2sinx在[0,π]上的递增区间是[,π] .【解答】解:y′=1﹣2cosx,由y′=0解得x=,当0≤x<时,1﹣2cosx<0,∴函数y=x﹣2sinx在[0,]上递减;当<x≤π时,1﹣2cosx>0,∴函数y=x﹣2sinx在[,π]上递增;故答案为:[,π].15.(5分)若a,b是任意非零的常数,对于函数y=f(x)有以下5个命题:①f(x)是T=2a的周期函数的充要条件是f(x+a)=f(x﹣a);②f(x)是T=2a的周期函数的充要条件是f(x+a)=﹣f(x);③若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形关于直线对称;④若f(x)关于直线对称,且f(x+a)=﹣f(x),则f(x)是奇函数;⑤若f(x)关于点(a,0)对称,关于直线x=b对称,则f(x)是T=4(a﹣b)的周期函数.其中正确命题的序号为①④⑤.【解答】解:f(x+a)=f(x﹣a)时,f(x+2a)=f(x),f(x)是T=2a的周期函数f(x)是T=2a的周期函数时,f(x+a)=f(x﹣a)一定成立,故①正确;当f(x+a)=﹣f(x)时,f(x+2a)=f(x),f(x)是T=2a的周期函数f(x)是T=2a的周期函数时,f(x+a)=﹣f(x)不一定成立,故f(x)是T=2a的周期函数的充分条件是f(x+a)=﹣f(x),故②错误;若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形不一定是轴对称图象,故③错误;若f(x)关于直线对称,则f(a+x)=f(x),又由f(x+a)=﹣f(x),可得f (x)=﹣f(﹣x),即f(x)是奇函数,故④正确;函数f(x)是以4(m﹣a)为周期的周期函数.由条件图象关于点(a,0)对称,故﹣f(x)=f(2a﹣x),又图象关于直线x=b对称,f(2b﹣x)=f(x),所以,﹣f(2b﹣x)=f(2b﹣x),即﹣f(x)=f(2a﹣2b+x).由﹣f(x)=f(2a﹣2b+x)得:﹣f(2a﹣2b+x)=f(4a﹣4b+x),∴﹣(﹣f(x))=f(4a﹣4b+x),因此,f[4(a﹣b)+x]=f(x),所以,f(x)是以4(a﹣b)为周期的函数.故⑤正确故答案为:①④⑤三、解答题(共6小题,满分75分.其中16-19每题12分,20题12分,21题14分)16.(12分)已知数列{a n}满足a1=,且a n+1=(n∈N+).(1)证明数列是等差数列,并求数列{a n}的通项公式;(2)设b n=a n a n+1(n∈N+),数列{b n}的前n项和记为T n,证明:T n<.【解答】(1)证明:∵数列{a n}满足a1=,且a n+1=(n∈N+),∴=+3,∴=3,又,∴{}是首项为2,公差为3的等差数列.∴=2+(n﹣1)×3=3n﹣1,∴.(2)b n=a n a n+1==,∴T n===.∴T n<.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)求sinBsinC的最大值.【解答】解:(Ⅰ)∵=﹣,∴由正弦定理可得:=﹣,整理得:cosAsinB+2cosAsinC=﹣sinAcosB,即2cosAsinC=﹣sin(A+B),∴2cosAsinC=﹣sinC,∴cosA=﹣,又A为三角形的内角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc,①由正弦定理得:===,∴sinB=,sinC=,∴sinB•sinC=,②①代入②,sinB•si nC=≤=,当且仅当b=c时,sinBsinC取最大值.18.(12分)某班的数学研究性学习小组有9名成员,在暑假中各自都进行了小课题研究活动,其中参加活动一次的为2人,参加活动两次的为3人,参加活动三次的为4人.(1)从中人选3人,求这3人参加活动次数各不相同的概率;(2)从中任选2人,求这2人参加活动次数之和的随机变量ξ的分布列和期望.【解答】解:(1)从人中任选3人,一共有种不同选法,其中这3人的活动次数各不相同的选法有=24种,∴这3人参加活动次数各不相同的概率p==,(2)由题意知ξ=2,3,4,5,6,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)=,P(ξ=6)==.∴ξ的分布列为:Eξ==.19.(12分)如图四棱锥P﹣ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P﹣BCG的体积为.(1)求二面角P﹣BC﹣D的正切值;(2)求直线DP到平面PBG所成角的正弦值;(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.【解答】解:(1)∵BG⊥GC,GB=GC=2,四面体P﹣BCG的体积为,∴,解得PG=4,设二面角P﹣BC﹣D的大小为θ,∵GB=GC=2,E为中点,∴GE⊥BC,同理PE⊥BC,∴∠PEG=θ,∵BG⊥GC,GB=GC=2,∴EG==,∴tanθ===2.∴二面角P﹣BC﹣D的正切值为2.…(3分)(2)∵GB=GC=2,AG=GD,BG⊥GC,E是BC的中点,∴△BGC为等腰直角三角形,GE为∠BGC的角平分线,作DK⊥BG交BG的延长线于K,∵PG⊥平面ABCD,垂足为G,G在AD上,∴DK⊥面BPG∵∠DGK=∠BGA=45°,DK⊥GK,∴DK=GK,∵AG=GD,∴DK2+GK2=DG2=()2==,∴DK=CK=.∵PG=4,DG==,PG⊥DG,∴=,设直线DP与平面PBG所成角为α∵DK⊥面BPG∴∠DPK=α,∴,∴直线DP与平面PBG所成角的正弦值为.…(8分)(3)∵GB,GC,GP两两垂直,分别以GB,GC,GP为x,y,z轴建立坐标系假设F存在,设F(0,y,4﹣2y)(0<y<2),∵,∴,又直线DF与GC所成的角为60°∴,化简得:不满足0<y<2∴这样的点不存在.…(12分)20.(13分)已知椭圆(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.(Ⅰ)因为椭圆M上一点和它的两个焦点构成的三角形周长为,【解答】解:所以,又椭圆的离心率为,即,所以,…(2分)所以a=3,.所以b=1,椭圆M的方程为.…(3分)(Ⅱ)不妨设直线AB的方程x=ky+m.由消去x得(k2+9)y2+2kmy+m2﹣9=0,…(5分)设A(x1,y1),B(x2,y2),则有,.①…(6分)因为以AB为直径的圆过点C,所以.由,得(x1﹣3)(x2﹣3)+y1y2=0.…(7分)将x1=ky1+m,x2=ky2+m代入上式,得(k2+1)y1y2+k(m﹣3)(y1+y2)+(m﹣3)2=0.将①代入上式,解得或m=3(舍).…(8分)所以,令D是直线AB与X轴的交点,则|DC|=则有=.…(10分)设,则.取得最大值.…(12分)所以当时,S△ABC21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.【解答】解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0,得x=1,当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g(1)=1;(Ⅱ)=﹣lnx+x,设h(x)=g(x)﹣=2lnx﹣x+,则h′(x)=,当x=1时,h(1)=0,即g(x)=,当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1,时,h(x)>h(1)=0,即g(x)>,当x>1,时,h(x)<h(1)=0,即g(x)<,(Ⅲ)满足条件的x0 不存在.证明如下:证法一假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,有,(*)但对上述x0,取时,有lnx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)﹣g(x0)|<成立.证法二假设存在x0>0,使|g(x)﹣g(x0)|成<成立.由(Ⅰ)知,的最小值为g(1)=1.又>lnx,而x>1 时,lnx 的值域为(0,+∞),∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,使g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,故|g(x1)﹣g(x0)|≥1>,与假设矛盾.∴不存在x0>0,使|g(x)﹣g(x0)|<成立.。
2014-2015学年度第一学期期中考试高三数学理科试题

2014-2015学年度第一学期期中考试高三数学试卷(理科)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合13{|()}xM y y ==,2{|log (1)}N x y x ==-,则M R N =( ) A .(0,1) B .(]0,1 C .(1,)+∞ D .(0,+∞)2.若120a b <<<,则( )A .22ab a >B .22ab b >C .2log ()1ab >-D .2log ()2ab <-3.等差数列{}n a 的通项公式是12n a n =-,其前项和为n S ,则数列{}nS n的前11项和为( )A .-44 (B)-66 C .-55 D .554.已知函数2()21(0)f x ax ax a =-+<,若12x x <,120x x +=,则1()f x 与2()f x 的大小关系是( )A .1()f x =2()f xB .1()f x >2()f xC .1()f x <2()f xD .与a 的值有关5.抛物线22y x =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .98B .78C .98-D .78-6.已知向量a 与b 的夹角为o 60,3a =,13a b +=,则b 等于( ) A .1 B .3 C .4 D .57.已知m 、n 是两条直线,,,αβγ是三个平面,给出下列四个命题: ①若,,//,m n m n αβ⊥⊥则//αβ; ②若,,//αγβγαβ⊥⊥则;③若βαβα//,//,,则n m n m ⊂⊂; ④若,m α⊥,n β⊥m n ⊥,则αβ⊥.其中真命题是( )A .①和②B .①和③C .③和④D .①和④8.设函数()y f x =的反函数为()1y f x -=,且()21y f x =+的图像过点()1,2,则()131y f x -=-的图像必过点( )A .()1,3B .()3,1C .()2,3D .()2,19.已知(,1)AB k =,(2,4)AC =,若k 为满足||4AB ≤的一随机整数..,则ABC ∆是直角三角形的概率是( )A . 14B .12C .37 D .3410.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )11.若AB 是过椭圆22221x y a b+=(0)a b >>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,1k ,2k 分别为直线AM ,BM 的斜率(其中222c a b =-),则12k k ⋅=( )A .22c a -B .22c b -C .22b a -D .22a b -12.已知函数3ax y e x =+()a R ∈有大于零的极值点,则( )A .3a >-B .3a <-C .13a >-D .13a <-二、填空题(4×4′=16分):13.在(51)x 展开式中,1x 的系数是: ;14.抛物线C :2y x x =-+与直线l :10x y --=所围成的平面图形的面积是: ;15.过P (-1,2)的直线⎩⎨⎧-=+-=t y tx 4231(t 为参数)与双曲线22(2)1y x --=相交于A 、B 两点,若C 为AB 的中点,则=PC ;E F DIA H GBC EF D AB C侧视 图1图2 BEABEB BECBED16.曲线2cos ρθ=关于直线4πθ=-对称的曲线方程为 .三、解答题(满分74分):17.(12分)在ABC ∆中,内角A ,B ,C ,的对边分别为,,a b c ,已知角3,A a π==B=x ,ABC ∆的周长为y . (1)求函数()y f x =的解析式和定义域; (2)求函数()y f x =的值域.18.(12分)一个口袋中装有编号分别为1,2,3,4,5,6的6个大小相同的球,从中任取3个,用ξ表示取出的3个球中的最大编号.(1)求ξ的分布列;(2)求ξ的数学期望和方差.19.(12分)直三棱柱111ABC-A B C 中,1AC CC 2,AB BC ===,D 是1BA 上一点,且AD ⊥平面1A BC .(1)求证:BC ⊥平面11ABB A ;(2)求异面直线1A C 与AB 所成角的大小; (3)求二面角1A C B A --余弦值的大小.20.(12分)已知中心在原点的双曲线C 的左焦点为)0,2(-,而C 的右准线方程为23=x .(1)求双曲线C 的方程;(2)若过点)2,0(,斜率为k 的直线与双曲线C 恒有两个不同的交点A 和B ,且满足5OA OB ⋅< (其中O 为原点),求实数k 的取值范围.21.(12分)已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,0,,<∈m R n m(1)求m 与n 的关系表达式; (2)求函数)(x f 的单调区间;(3)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围.22.(14分)已知函数()20y x x =≥的图象上有一列点()111,P x y ,()222,P x y ,…,(),n n n P x y ,…,以点n P 为圆心的圆n P 与以点n+1P 为圆心的圆n+1P 外切,且均与x 轴相切.若11x =,且1n n x x +<.(1)求数列{}n x 的通项;(2)圆n P 的面积为n S ,n n T S =+,求证:4n T <.高三数学(理科)参考答案一、选择题BDBCD ADACA CB二、填空题13.-80; 14.43; 15.157; 16.2sin ρθ=-三、解答题17.(1)()263)0,y x x ππ=++∈;(2)(y ∈.18.(1)(2) 214E ξ=; 6380D ξ=.19.(1)略; (2)3π ;.20.(1)2213x y -=;(2)(k ∈.21.(1)36n m =+;(2)单调递减区间()()2,1,1,m -∞++∞;单调递增区间()21,1m +; (3)()43,0m ∈-.22.(1)121n x n =-;(2)1n =时,1n T T =<1n >2n ==<=()111111114223141(1)11n n n n T -⎤<+-+-++-=+-⎤⎦⎦。
赣州市2014—2015学年第二学期高三理科数学期中试题

俯视图(11题图)2014—2015学年第二学期赣州市十二县(市)期中联考高三年级数学(理科)试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设集合{})23lg(x y x A -==,集合{}x y y B -==1,则=B A ( ) A . )23,0[ B . (﹣∞,1] C .D .2.已知向量21,e e 是两个不共线的向量,若212e e a -=与21e e b λ+=共线,则λ的值为 ( ) A. 1- B. 21-C. 1D. 213.直线:1l y kx =+与圆221x y +=相交于A ,B 两点,则“△OAB 的面积为43”是“3=k ” 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.设随机变量ξ服从正态分布N (0,1),若=<<-=>)02(,)2(ξξP p P 则 ( ) A .p +21B .p -1C .p -21D .p 21-5.设y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤+1011y x x y x ,则目标函数2-=x y z 的取值范围为 ( )A .[]3,3-B .[]2,2-C .[]1,1-D .⎦⎤⎢⎣⎡-32,32 6.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=, 则ABC ∆的面积为 ( )A .2B .23C . 22D . 247.定义在R 上的偶函数)(x f 满足:对任意的))(0,(,2121x x x x ≠-∞∈,都有0)()(1212<--x x x f x f .则( )A .)5(log )2()3.0(23.02f f f << B .)3.0()2()5(log 23.02f f f << C .)2()3.0()5(log 3.022f f f << D .)2()5(log )3.0(3.022f f f <<8.5)31(y x --的展开式中不含x 的项的系数和为 ( )A .32B .32-错误!未找到引用源。
【数学】2014-2015年北京市海淀区高三(上)期中数学试卷与答案(理科)

2014-2015学年北京市海淀区高三(上)期中数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分,每小题只有一个选项符合题意)1.(5分)设集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B=()A.[﹣1,+∞)B.(1,+∞)C.(1,2]D.[﹣1,1)2.(5分)已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.33.(5分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=()A.10 B.13 C.20 D.254.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位5.(5分)设a=(),b=log2,c=log23,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a6.(5分)设a,b∈R,则“ab>0,且a>b”是“<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知函数f(x)=,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是()A.[,+∞)B.(0,+∞)C.C(0,1)D.(0,)8.(5分)设等差数列{a n}的前n项和为S n,在同一个坐标系中,a n=f(n)及S n=g (n)的部分图象如图所示,则()A.当n=4时,S n取得最大值B.当n=3时,S n取得最大值C.当n=4时,S n取得最小值D.当n=3时,S n取得最大值二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数z=,则|z|=.10.(5分)已知函数y=2|x+a|的图象关于y轴对称,则实数a的值是.11.(5分)(x+sinx)dx=.12.(5分)为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:h)的变化关系为C=,则经过h后池水中药品的浓度达到最大.13.(5分)如图所示,在△ABC中,D为BC边上的一点,且BD=2DC.若=m+n (m,n∈R),则m﹣n=.14.(5分)已知函数f(x)=Asin(xω+φ)(A,ω,φ是常数,A>0,ω>0)的最小正周期为π,设集合M={直线l|l为曲线y=f(x)在点(x0,f(x0))处的切线,x0∈[0,π)].若集合M中有且只有两条直线互相垂直,则ω=;A=.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sinx﹣sin(x+)(1)求f()的值;(2)求f(x)的单调递增区间.16.(13分)已知{a n}是各项均为正数的等比数列,a1=,且a1,a3,﹣a2成等差数列.(1)求{a n}的通项公式;(2)求数列{a n﹣n}的前n项和S n.17.(13分)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.18.(14分)已知函数f(x)=2alnx﹣x2+1(1)若a=1,求函数f(x)的单调递减区间;(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值;(3)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.19.(13分)已知数列{a n}的前n项和S n=(n=1,2,3,…)(1)求a1的值;(2)求证:(n﹣2)a n+1=(n﹣1)a n(n≥2);﹣1(3)判断数列{a n}是否为等差数列,并说明理由.20.(14分)设函数f(x)=,L为曲线C:y=f(x)在点(﹣1,)处的切线.(1)求L的方程;(2)当x<﹣时,证明:除切点(﹣1,)之外,曲线C在直线L的下方;(3)设x1,x2,x3∈R,且满足x1+x2+x3=﹣3,求f(x1)+f(x2)+f(x3)的最大值.2014-2015学年北京市海淀区高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分,每小题只有一个选项符合题意)1.(5分)设集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B=()A.[﹣1,+∞)B.(1,+∞)C.(1,2]D.[﹣1,1)【解答】解:由题意得,集合A={x∈R|x>1},B={x∈R|﹣1≤x≤2},则A∩B={x∈R|1<x≤2}=(1,2],故选:C.2.(5分)已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.3【解答】解:∵向量=(2,﹣1),=(3,x).•=3,∴6﹣x=3,∴x=3.故选:D.3.(5分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=()A.10 B.13 C.20 D.25【解答】解:由等比数列{a n}满足a1+a3=5,且公比q=2,∴a3+a5=a1q2+a3q2=q2(a1+a3)=20,故选:C.4.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B.5.(5分)设a=(),b=log2,c=log23,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【解答】解:∵0<a=()<1,b=log2<0,c=log23>1,∴c>a>b.故选:B.6.(5分)设a,b∈R,则“ab>0,且a>b”是“<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵a>b,ab>0,∴>,∴>,即<;是充分条件,若<,则﹣<0,∴<0,∴或,不是必要条件,故选:A.7.(5分)已知函数f(x)=,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是()A.[,+∞)B.(0,+∞)C.C(0,1)D.(0,)【解答】解:作出函数f(x)的图象,如右图:作出直线y=a(x+1),则直线恒过(﹣1,0),关于x的方程f(x)=a(x+1)有三个不相等的实数根,即为当直线与曲线y=相交时,与f(x)的图象有三个交点,当直线与曲线y=相切时,设切点为(m,),则y′=,则切线斜率为=a,又a(m+1)=,由此解得,a=(负的舍去),故a的取值范围是(0,).故选:D.8.(5分)设等差数列{a n}的前n项和为S n,在同一个坐标系中,a n=f(n)及S n=g (n)的部分图象如图所示,则()A.当n=4时,S n取得最大值B.当n=3时,S n取得最大值C.当n=4时,S n取得最小值D.当n=3时,S n取得最大值【解答】解:由图象可知可能:①a7=0.7,S7=﹣0.8,a8=﹣0.4,由a7=0.7,a8=﹣0.4,可得d=﹣1.1,a1=7.3.∴S7=>0,与S7=﹣0.8,矛盾,舍去.②a7=0.7,S7=﹣0.8,S8=﹣0.4.由S7=﹣0.8,S8=﹣0.4,可得a8=0.4,∴=﹣0.4,解得a1=﹣0.5,∴a8=﹣0.5+7d,解得d=≠0.4﹣0.7=﹣0.3,矛盾,舍去.③a7=﹣0.8,S7=0.7,a8=﹣0.4.由a7=﹣0.8,S7=0.7,可得=0.7,解得a1=1,∴﹣0.8=1+6d,解得d=﹣0.3,而﹣0.4﹣(﹣0.8)=0.4,矛盾,舍去.④a7=﹣0.8,S7=0.7,S8=﹣0.4.由a7=﹣0.8,S7=0.7,可得,解得a1=1.∴﹣0.8=1+6d,解得d=﹣0.3,∴a8=﹣0.8﹣0.3=﹣1.1,∴S8=0.7﹣1.1=﹣0.4,满足条件.∴a n=a1+(n﹣1)d=1﹣0.3(n﹣1)=1.3﹣0.3n≥0,解得=4+,因此当n=4时,S n取得最大值.故选:A.二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数z=,则|z|=.【解答】解:z==,∴.故答案为:.10.(5分)已知函数y=2|x+a|的图象关于y轴对称,则实数a的值是0.【解答】解:∵函数y=2|x+a|的图象关于y轴对称,∴函数y=2|x+a|为偶函数,∴f(﹣x)=f(x),即2|x+a|=2|﹣x+a|,即|x+a|=|﹣x+a|=|x﹣a|恒成立,故a=0,故答案为:011.(5分)(x+sinx)dx=0.【解答】解:(x+sinx)dx=(﹣cosx)=﹣cosπ﹣[﹣cos (﹣π)]=0故答案为:0.12.(5分)为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg/L)随时间t(单位:h)的变化关系为C=,则经过2h后池水中药品的浓度达到最大.【解答】解:C===5,当且仅当t=2时取等号.因此经过2h后池水中药品的浓度达到最大.故答案为:2.13.(5分)如图所示,在△ABC中,D为BC边上的一点,且BD=2DC.若=m+n (m,n∈R),则m﹣n=﹣2.【解答】解:在△ABC中,∵BD=2DC,∴=,又∵=﹣,∴=+=+=+(﹣),∴=﹣,∴=﹣=﹣+;又∵=m+n,∴m=﹣,n=,∴m﹣n=﹣2.故答案为:﹣2.14.(5分)已知函数f(x)=Asin(xω+φ)(A,ω,φ是常数,A>0,ω>0)的最小正周期为π,设集合M={直线l|l为曲线y=f(x)在点(x0,f(x0))处的切线,x0∈[0,π)].若集合M中有且只有两条直线互相垂直,则ω=2;A=.【解答】解:∵函数f(x)=Asin(xω+φ)的最小正周期为π,∴,即ω=2.∴f(x)=Asin(2x+φ),f′(x)=2Acos(2x+φ),∵曲线y=f(x)在点(x0,f(x0))处的切线x0∈[0,π)]有且只有两条直线互相垂直,∴f′(x)=2Acos(2x+φ)的最大值为1,即A=.故答案为:.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sinx﹣sin(x+)(1)求f()的值;(2)求f(x)的单调递增区间.【解答】解:(Ⅰ)f()=sin﹣sin(+)=1﹣=.(Ⅱ)f(x)=sinx﹣sin(x+)=sinx﹣(sinxcos)=sinx﹣(sinx+cosx)=sinx﹣cosx=sin(x﹣)函数y=sinx的单调递增区间为[2k,2k](k∈Z)由2k≤x﹣≤2k,(k∈Z)得:2kπ(k∈Z)所以f(x)的单调递增区间为[2kπ](k∈Z).16.(13分)已知{a n}是各项均为正数的等比数列,a1=,且a1,a3,﹣a2成等差数列.(1)求{a n}的通项公式;(2)求数列{a n﹣n}的前n项和S n.【解答】解:(1)∵a1,a3,﹣a2成等差数列.∴2a3=a1﹣a2,设等比数列{a n}的公比q>0,则,化为2q2+q﹣1=0,解得q=.∴=.(2)a n﹣n=﹣n.∴其前n项和S n=﹣=﹣.17.(13分)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.【解答】解:(1)因为∠D=2∠B,cos∠B=,所以cosD=cos2B=2cos2B﹣1=﹣.…(3分)因为∠D∈(0,π),所以sinD=.…(5分)因为AD=1,CD=3,所以△ACD的面积S===.…(7分)(2)在△ACD中,AC2=AD2+DC2﹣2AD•DC•cosD=12.所以AC=2.…(9分)因为BC=2,,…(11分)所以=.所以AB=4.…(13分)18.(14分)已知函数f(x)=2alnx﹣x2+1(1)若a=1,求函数f(x)的单调递减区间;(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值;(3)若f(x)≤0在区间[1,+∞)上恒成立,求a的最大值.【解答】解:(Ⅰ)当a=1时,f(x)=2lnx﹣x2+1,f′(x)=,(x>0),令f′(x)<0.∵x>0,∴x2﹣1>0,解得:x>1,∴函数f(x)的单调递减区间是(1,+∞);(Ⅱ)f′(x)=,(x>0),令f′(x)=0,由a>0,解得x1=,x2=﹣(舍去),①当≤1,即0<a≤1时,在区间[1,+∞)上f′(x)≤0,函数f(x)是减函数.所以函数f(x)在区间[1,+∞)上的最大值为f(1)=0;②当>1,即a>1时,x在[1,+∞)上变化时,f′(x),f(x)的变化情况如下表∴函数f(x)在区间[1,+∞)上的最大值为f()=alna﹣a+1,综上所述:当0<a≤1时,函数f(x)在区间[1,+∞)上的最大值为f(1)=0;当a>1时,函数f(x)在区间[1,+∞)上的最大值为f()=alna﹣a+1,(Ⅲ)由(Ⅱ)可知:当0<a≤1时,f(x)≤f(1)=0在区间[1,+∞)上恒成立;当a>1时,由于f(x)在区间[1,]上是增函数,∴f()>f(1)=0,即在区间[1,+∞)上存在x=使得f(x)>0.综上所述,a的最大值为1.19.(13分)已知数列{a n}的前n项和S n=(n=1,2,3,…)(1)求a1的值;(n≥2);(2)求证:(n﹣2)a n+1=(n﹣1)a n﹣1(3)判断数列{a n}是否为等差数列,并说明理由.【解答】(1)解:由S n=,得,解得a1=1;(2)证明:∵S n=,∴.两式作差得:,即(n﹣2)a n+1=(n﹣1)a n﹣1(n≥2);(3)数列{a n}是等差数列.事实上,由S n=,∴..由(2)可得,(n≥3).∴.即(n﹣2)a n﹣2(n﹣2)a n﹣1+(n﹣2)a n﹣2=0.∵n≥3,∴a n﹣2a n﹣1+a n﹣2=0,即a n﹣a n﹣1=a n﹣1﹣a n﹣2(n≥3).∴数列{a n}是以1为首项,a2﹣1为公差的等差数列.20.(14分)设函数f(x)=,L为曲线C:y=f(x)在点(﹣1,)处的切线.(1)求L的方程;(2)当x<﹣时,证明:除切点(﹣1,)之外,曲线C在直线L的下方;(3)设x1,x2,x3∈R,且满足x1+x2+x3=﹣3,求f(x1)+f(x2)+f(x3)的最大值.【解答】(1)解:∵f(x)=,∴,∴.∴L的方程为,即;(2)证明:要证除切点(﹣1,)之外,曲线C在直线L的下方,只需证明∀,恒成立.∵5x2+16x+23>0,∴只需证明∀,5x3+11x2+7x+1<0恒成立即可.设,则g′(x)=15x2+22x+7=(x+1)(15x+7).令g′(x)=0,解得x1=﹣1,.当时,g′(x)>0,g(x)为增函数;当时,g′(x)<0,g(x)为减函数.∴明∀,5x3+11x2+7x+1<0恒成立;(3)①当时,由(2)知,,,.三式相加得:.∵x1+x2+x3=﹣3,∴,当且仅当x1=x2=x3=﹣1时取等号.②当x1,x2,x3中至少有一个大于等于时,不妨设,则,∵,,∴.综上所述,当x1=x2=x3=﹣1时,f(x1)+f(x2)+f(x3)取到最大值.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p)f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
华中师大一附中2014—2015学年度上学期高三期中检测数学(理)试题(参考答案)

华中师大一附中2014——2015学年度上学期期中检测高三数学(理)试题参考答案及评分标准一、选择题:(本大题共10小题,每小题5分,共50分)11. 540- 12. 137OM a b =+u u u u r r r13. 314.(3[3--++U 15. 2 16.三、解答题:(本大题共6小题,共75分) 17.(本小题满分12分)解: (Ⅰ)由题意得0)sin sin (sin )sin (sin 222=-+-=⋅B A B C A n m ,即B A B A C sin sin sin sin sin 222-+=,由正弦定理得ab b ac -+=222,再由余弦定理得212cos 222=-+=ab c b a C ,3,0ππ=∴<<C C Θ.……………6分(Ⅱ))cos ,(cos )12cos 2,(cos 2B A B A =-=+Θ , ∴222222cos cos cos cos ()3s t A B A A π+=+=+-r r41cos(2)1cos 2113cos 221sin(2)122426A A A A A ππ+-+=+=+=--+ 67626,320ππππ<-<-∴<<A A Θ1sin(2)126A π∴-<-≤, 所以21524s t ≤+<r r ,故22s t ≤+<r r .……………………12分 18.(本小题满分12分)解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,由341b b q =,得354272q ==, 从而3q =,因此123n n b -=⋅,又123223361824a a a a b b ++==+=+=, 28a ∴=, 216d a a =-=,故64n a n =- ………………………6分(Ⅱ)14(32)3n n n n c a b n -==⋅-⋅令01221134373(35)3(32)3n n n T n n --=⨯+⨯+⨯++-⨯+-⨯…则12313134373(35)3(32)3nn n T n n -=⨯+⨯+⨯++-⨯+-⨯………………9分两式相减得1217(67)321333333(32)322nnn n n T n ---=+⨯+⨯++⨯--⨯=--… 73(67)44n n n T -∴=+,故nn n S 4T 7(6n 7)3==+-⋅ ………………………12分解:(I )当13t =时,//PA 平面MQB 证明:连AC 交BQ 于N ,连MN .由//AQ BC 可得,ANQ BNC ∆∆∽, 12AQ AN BC NC ∴==,所以13AN AC =.若13t =,即13PM AN PC AC==,//PA MN ∴,由MN ⊂平面PAC ,故//PA 平面MQB .……………………6分 (II )由2PA PD AD ===,Q 为AD 的中点,则PQ AD ⊥又平面PAD ⊥平面ABCD ,所以PQ ⊥平面ABCD ,连BD ,∵四边形ABCD 为菱形,AD AB ∴=, 由60BAD ∠=︒得ABD ∆为正三角形,又Q 为AD 的中点,BQ AD ∴⊥,以Q 为坐标原点,分别以,,QA QB QP 所在的直线为,,x y z 轴,建立如图所示的坐标系,则各点坐标为(1,0,0)A ,(0,3,0)B ,(0,0,0)Q ,(0,0,3)P设平面MQB 的法向量为()z y x n ,,=,可得00,//,00n QB n QB PA MN n MN n PA ⎧⎧⋅=⋅=⎪⎪∴⎨⎨⋅=⋅=⎪⎪⎩⎩r u u u r r u u u r Q r u u u u r r u u u r , ⎪⎩⎪⎨⎧=-=0303z x y 令z=1,解得(3,0,1)n =r ,取平面ABCD 的法向量()3,0,0=QP , 设所求二面角为θ,而θ为锐角,则||1cos 2||||QP n QP n θ⋅==u u u r ru u ur r , 故二面角M BQ C --的大小为60°.…………12分20.(本小题满分12分) 解:(I )系统抽样 ……………………2分 (II )众数的估计值为最高的矩形的中点,即众数的估计值等于97.5,设图中虚线所对应的车速为x ,则中位数的估计值为0.0150.0250.0450.06(95)0.5x ⨯+⨯+⨯+⨯-=,解得97.5x =即中位数的估计值为97.5 ……………………6分 (Ⅲ)从图中可知,车速在[80,85)的车辆数为10.015402m =⨯⨯=(辆), 车速在[85,90)的车辆数为20.025404m =⨯⨯=(辆),∴0,1,2ξ=,2024261(0)15C C P C ξ===,1124268(1)15C C P C ξ===,0224266(2)15C C P C ξ===, ξ的分布列为ξ 0 1 2P115 815 615均值8()01215153E ξ=+⨯+⨯=. ……………………12分化简得 434m k =+ (1)由34OA OB K K ⋅=-知 34222=-k m (2)解(1)(2)知无解,故不存在P 在椭圆上的平行四边形. ……………………13分解:b =1.……………3分 1舍去).则方程()0h x =在即2112m<≤+. ……………………8分∴()00g x '≠.……………………14分(命题人:陈开懋审题人:殷希群 )。
2014-2015年第二学期高三期中数学测试及答案

2014-2015学年第二学期高三期中测试卷科目:理科数学时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={}4,5,7,9,B={}3,4,7,8,9,全集B A U =,则集合()U C A B 中的元素共有 ( )A .3个B .4个C .5个D 6个.2.若复数z 满足i z i 34)43(+=-,则z 的虚部为 ( )A .4-B .54-C . 4D .543.已知55sin =α,则αα44cos sin -的值为 ( ) A .53-B .51- C . 51 D .534.5本不同的书全部分给 4个学生,每个学生至少一本,不同的分法种数为 ( ) A .480种 B .240种 C .120种 D .96种5.一只蚂蚁从正方体 1111D C B A ABCD -的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点1C 处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是 ( )A .(1)(2)B .(1)(3)C .(2)(4)D .(3)(4) 6.若c b a ,,是ABC ∆的三个内角的对边,且B b A a C c sin 3sin 3sin +=,则圆M :1222=+y x 被直线l :0=+-c by ax所截得的弦长为 ( ) A .64 B .62 C .6 D . 57.执行如图所示的程序框图,输出的S 值是 ( ) A .23-B .23C .0D .3 8.在数列}{n a 中,21=a ,)11ln(1++=+na a n n ,则=n a ( ) A .n ln 2+ B .n n ln )1(2-+ C .n n ln 2+ D .n n ln 1++9.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数是 ( )A . 3B .2C .1D .010.若实数y x ,满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则23x y z +=的最小值是 ( )A .0B .1 CD . 911.设21,F F 为椭圆)0(1:22221>>b a by a x C =+与双曲线2C 的公共点左右焦点,它们在第一象限内交于点M ,△21F MF 是以线段1MF 为底边的等腰三角形,且21=MF .若椭圆1C 的离心率83=e ,则双曲线2C 的离心率是 ( ) A .45 B .23 C . D .412.已知圆O 的半径为1,PB PA ,为该圆的两条切线, B A ,为切点,则⋅的最小值为 ( ) A .223+- B .23+- C . 224+- D . 24+-第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分.把答案填在题中横线上)13.n xx )212(-的二项展开式中只有第四项的二项式系数最大,则展开式中的常数项是 (用数字做答).14.若函数1)3(log -+=x y a )1,0(≠>a a 的图像恒过定点A ,P 是直线0543=++y x 上的为任意一点,则PA 最小值为 . 15.若数列{}n a 满足d a a nn =-+111为常数)d N n ,(*∈,则称数列{}n a 为调和数列,已知数列⎭⎬⎫⎩⎨⎧n x 1为调和数列,且2002021=+++x x x ,则=+165x x . 16.已知直线a x =)20(π<<a 与函数x x f sin )(=和函数x x g cos )(=的图像分别交于M ,N 两点,若51=MN ,则线段MN 中点的纵坐标为 . 三、解答题:(本题6道小题共70分.解答应写出文字说明、证明过程、演算步骤)17.(本小题满分12分)如图地平面上一旗杆设定为OP ,为测得它的高度h ,在地平面上取一基线a AB AB =,,在A 处测得P 点的仰角030,在B 处测得P 点的仰角045,又测得θ=∠AOB ,求旗杆的高度h .18.(本小题满分12分)如图,在四棱锥PABCD -中,ABCD 是正方形,PD ⊥平面ABCD, AB PD = ,,E F G 分别是,,PC PD BC 的中点.(1)求证:平面//PAB 平面EFG ;(2)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明;19.某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶) .(1) 指出这组数据的众数和中位数;(2) 若幸福度不低于9.5分,则称该人 的幸福度为“极幸福”.求从这16人中随机 选取3人,至多有1人是“极幸福”的概率;(3) 以这16人的样本数据来估计整个社区的总体数据,若从该社区任选3人, 记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.20.(本小题满分12分)已知中心在坐标原点O 的椭圆C 经过点)3,2(A ,且点)0,2(F 为其右焦点 (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在求出的l 方程;若不存在,说明理由.21.(本小题满分12分)已知函数 ()b xax x f ++=,)0(≠x 其中R b a ∈,. (1)若曲线()x f y =在点))2(,2(f P 处的切线方程为13+=x y ,求函数的解析式; (2)讨论函数()x f 的单调性;(3)若对于任意的]2,21[∈a ,不等式()10≤x f 在]1,41[上恒成立,求b 的取值范围.ABDEF PGCB选考题:(本小题满分10分 请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)22. 选修4-1:几何证明选讲如图, AB 为圆O 的直径, CD 为垂直于AB 的一条弦,垂直为E ,弦BM 与CD 交于点F . (1)证明: M F E A ,,,四点共圆; (2)若44==BF MF ,求线段BC 的长.23.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系, 已知直线l 上两点N M ,的极坐标分别为)0,2(、)2,332(π, 圆C 的参数方程⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数),(1)设为P 线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.24.选修4—5:不等式选讲已知121<-x ,122<-x . (1)求证:6221<+<x x .(2)若1)(2+-=x x x f ,求证:21215)()(x x x f x f -<-.高三期中数学试题参考答案一:选择题:1 .C 2. D 3 .A 4 .B 5.C 6.C 7.B 8.A 9.B 10.C 11.B 12.A 二、填空题: 13. 20- 14.1 15. 20 16.107三、解答题:17.解:(Ⅰ)在PAO Rt ∆和PBO Rt ∆中030=∠PAO ,045=∠PBOh AO 3=,h BO = ………………… …5分在BAO ∆中,θ=∠BOA ,由余弦定理得θcos 32)3(222h h h h a ⋅-+= ……………………… 7分解得θcos 32422-=a hθcos 324-=a h … ………………………12分18.解: (1)因为 ,,E F G 分别是,,PC PD BC 的中点.所以AB DC EF ////,⊂AB 平面PAB ,所以 //EF 平面PAB 同理 //FG 平面PAB ,F EF FG =⊂EF FG ,平面EFG所以 平面//PAB 平面EFG ; ……………………………6分(2)取线段PB 的中点为Q ,则PC ⊥平面ADQ 成立。
山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案

高三教学质量检测考试理科数学2014.11本试卷分为选择题和非选择题两部分,共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集2,{|1},{|20}U R A x x B x x x ==>=->,则()U C AB =( )A .{}|2x x ≤B .{}|1x x ≥C .{}|01x x ≤≤D .{}|02x x ≤≤ 2、下列函数中,在区间(0,)+∞上为增函数的是( )A .2(1)y x =- B .2xy -= C .ln y x = D .y3、已知命题:22;p q ≤ ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4、设函数()()23,(2)f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x +5、如图,AB 是O 的直径,点,C D 是半圆弧AB 上的两个三等分点,,AB a AC b ==,则AD =( )A .12a b + B .12a b - C .12a b + D .12a b - 6、函数(01)xxa y a x=<<的图象的大致形状是( )7、已知角α的终边经过点(3,4)-,则tan2α=( )A .13-B .12- C .2 D .3 8、给出下列四个结论:①函数()2log f x x =是偶函数;②若393,log a x a ==,则x =③若,1x x R e x ∀∈≥+,则0:,1x p x R e x ⌝∀∈≤+;④“3x >”是“21x ->”的充分不必要条件,其中正确的结论的个数是( )A .0B .1C .3D .3 9、已知函数()sin()f x x ϕ=-,且()30f x dx π=⎰,则函数()f x 的图象的一条对称轴是( )A .23x π=B .56x π=C .3x π=D .6x π= 10、设()22x x f x -=-,若当,02πθ⎡⎫∈-⎪⎢⎣⎭时,21()(3)0cos 1f m f m θ-+->-恒成立,则实数m 的取值范围是( )A .(),2-∞-B .()2,1-C .()[),21,-∞-+∞D .(),2(1,)-∞-+∞第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐山市开滦一中2014—2015学年度第一学期期中考试
高三年级数学试卷(理)
一选择题(本大题共12小题,每小题5分,共60分)
1.已知全集U R,A {x|x 0}, B {x|x 1},则集合C u(AUB)
A. {x|x 0}
B. {x|x 1}
C. {x|0 x 1}
D. {x|0 x 1}
2.
设复数z满足(z2i)(2 i)5,则z( )
A. 2 3i
B.23i
C. 3 2i
D. 3 2i
111
3.已知a 2 3,b log 2 ,c log 1—,则()
323
A. a b c
B. a c b
C.c a b
D. c b a
4.4位同学各自在周六、,周日两大中任选
•天参加公益活动,则周六、周日都有冋学参
加
公益活动的概率
13 c 57
A.—
B.
C.- D .
8888
5.由直线x1x 2,曲线y1及x轴所围成图形的面积为
2x
A.㊈B17C1
-ln2 D . 2ln2
442
x y7< 0
6.设x,y满足约束条件x 3y1< 0,则z 2x y的最大值为()
3x y5> 0
A. 10
B. 8
C. 3
D.2
7.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=
A. 0
B. 1
C. 2
D. 3
8.某几何体的三视图如图所示,则该几何体的体积为().
A. 16 + 8 n B . 8+ 8 n C . 16 + 16 n D . 8 + 16 n
第1页共6页
2n 2
n 1
第2页共6页
9•若数列a n 的通项公式为a n 5 2
4 2 n N , a n 的最大项为第x
5
5
项,最小项为第y 项,则x y 等于(
)
A . 3
B . 4
C. 5
D . 6 10.执行下图的程序框图,若输入的 a,b,k 分别为1,2,3,则输出的 M =
10
13. x a 的展开式中,
X 7的系数为15,则a=_
A 3/3 4
B. 9/3
C 63
8
32
D.
9 4
12.设函数f x 3sin
x
.若存在f x m
的极值点 x
0满足x 02
2 n
f 沧 m 2,贝U
m
的取值范围是 ( )
A.
, 6 6, B.
, 4 4,
C . , 2
2,
D. , 1 4,
11.设F 为抛物线C :y 2 3x 的焦点,过F 且倾斜角为30。
的直线交C 于A,B 两点,0为 坐标原
点,则△ OAB 的面积为()
(本大题共4小题,每小题5分,共20分)
14. 函数 f x sin x 2 15. 已知偶函数f x 在0, 是 __________ . 2sin cos x
的最大值为 ___________
单调递减,
2 0.若f x 1 0,则x 的取值范围
16. △ ABC 中,/ A 、 / C 的对边分别为a,b, c ,
重心为G ,若
aGA bGB 3cGC
3
0,则/ A= _____ .
A .20 3
B .16 5
D .15
填空题 C .7
唐山市开滦一中2014—2015学年度第一学期期中考试
高三年级数学试卷(理)
二•填空题:本大题4个小题,每小题5分,共20分。
将答案直接填
在题中横线上。
13. ________________ ;14. _________________
15. _______________ ; 16. ________________ .
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过
程或演算步骤)
17.(本题满分10分)
1 3
函数f(x) ax ( a,b为常数),且方程f(x) x有两个
x b 2
实根为x11, x2 2 .
(1 )求y f (x)的解析式;
(2)求满足不等式fx 3的解集
次
名
级
年
名
姓
级
班
第3页共6页
18. (本题满分12分)
已知函数y = x+ £有如下性质:如果常数t>0,那么该函数在(0, 1]上是减函数,
4X2— 12x—3 在[t,+^ )上是增函数.已知f(x)= —
, x€ [0,1],利用上述性质,w2x+1
求函数f(x)的单调区间和值域;
19. (本题满分12分)
已知函数f(x) sin(2x -) 2cos2x 1(x R)
6
(1 )求f(x)的单调递增区间;
1
(2)在厶ABC中,三内角A,B,C的对边分别为a,b,c,已知f(A) - , b,a,c成等差数
2
列,且AB AC 9,求a的值.
第4页共6页
20. (本题满分12分)
设函数 f (x)=lnx+(x—a)2, a € R.
(I)若a=0,求函数f (x)在[1 , e]上的最小值;
1
(n)若函数f (x)在[-,2]上存在单调递增区间,试求实数a的取值范围;
2
21. (本题满分12分)
、.3 3
已知△ ABC的面积S满足—S -,且AB BC 3, AB与BC的夹角为
(1)求的取值范围;
⑵求函数f() 3sin 2\3sin cos cos 的最大值及最小值
第5页共6页
x1
be
22.(本小题满分12分)设函数f(x) ae x l nx ,曲线y f (x)在点(1, f (1))
x
处的切线为y e(x 1) 2. (i )求a,b ;(n)证明:f (x) 1.
第6页共6页。