19.1.1 变量与函数(2)
191.1 变量与函数(第2课时)

“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
第十九章
一次函数
19.1 函数
19.1.1 变量与函数 第2课时
活动一:创设情境
问 题 探 究
问题1:在上一节课“活动二”的问题(1)~(4)中,是否都 存在两个变量?请你用所学知识写出能表示同一个问题中的两 个变量之间对应关系的式子. 问题(1)~(4)中都存在两个变量,表示两个变量之间的关 系式分别为: (1)s=60t;(2)y=10x;(3)S=πr² ;(4)y=5-x. 问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
活动四:辨析概念
问 题 探 究
O
问题4:下列曲线中,表示y不是x的函数是( ), 怎样改动这条曲线,才能使y是x的函数?
y y y y
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
解:(1)当0<x≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. (2)当0<x≤3和x>3时,y都是x的函数,因为对于 x的每一个确定的值,y都有唯一确定的值与其对应.
哪些是自变量的函数

以发现,当 t 取定一个值时, S 有唯一确定 的
值与其对应.
合作互助
(2)圆形水波慢慢地扩大,在这一过程中,当 圆的半径为 r 时,面积为 S ;
在这个变化过程中,有 2 个变量, S 随
r 的变化而变化;它们之间的关系式是
当x = 3 时,y= 2 ;当x = 4 时,y= 1 .由此可
以发现,当 x 取定一个值时, y 有唯一确定 的
值与其对应.
合作互助
思考: 在上述三个变化过程中变量之间的关系有什
么共同特点?
归纳: 变化过程中有两个变量,当一个变量取定一
个值时,另一个变量有唯一的值与其对应.
合作互助 问题2 下图是体检时的心电图.其中横坐标x
我要说……
课后作业
同步练习册P33.
.
当r = 10时,S= ;当r= 20 时,S= .由此可
以发现,当 r 取定一个值时, S 有唯一确定 的
值与其对应.
合作互助
(3)用10 m 长的绳子围一个矩形,当矩形的
一边长 为 x 时,它的邻边长为 y;
在这个变化过程中,有 2 个变量, y 随
x 的变化而变化;它们之间的关系式是 y=5- x.
达标测评
1. 下列各图象中,不能表示y是x的函数的 是( )
达标测评
2.自来水的收费标准是每月不超过10吨,每吨
水1.2元,超过部分每吨水1.8元,小王家5月份用
水x吨(x>10),应交水费y元,则y与x的函数关系
式为
.
课堂小结
(1)本节课你有什么收获? (2)本节课运用了什么数学思想? (3)在解决问题时要注意什么?
19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
八年级下册数学第十九章练习册答案

八年级下册数学第十九章练习册答案八年级下册数学练习册第十九章你做好了吗?对照一下正确答案吧。
接下来是店铺为大家带来的八年级下册数学第十九章练习册的答案,供大家参考。
八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;C2、1,8,0.3;n,L3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)S=x(10-x),敞亮是10,变量是x,S(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)W=(n-2)×180°,常量是2,180°,变量是W,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)W=n²+1(3)常量是1,变量是n,W19.1.1变量与函数第2课时答案【基础知识】1、D2、B3、C4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、Q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)Q=1000-60;(2)0≤t≤50/3(3)当t=10时,Q=400(m²)(4)当Q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、C2、D3、A4、D5、Q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、S=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】2、A3、B4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、B2、D3、C4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)C(2)A【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、A2、C3、C4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、B2、C3、C4、D5、D6、(1,2)7、>18、一条直线;09、0.2;增大10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点A在y=5/2x上,点B在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、C2、A3、A4、B5、>-2;一、三;<-2;二、四6、y=50x7、y=4/3x8、m>6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45)19.2.2一次函数第1课时答案【基础知识】1、D2、D3、C4、A5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)S=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、D2、A3、B4、D5、A6、B7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、D2、C3、A4、C5、66、(-3/2,0);x=-3/27、<、>8、x<-19、(1)2(2)2(3)<2(4)y=-x+210、y=-1/2x+3或y=1/2x-3【能力提升】11、A12、313、(1)当通话时间为500分钟时。
19.1.1变量与函数(2)教案

变量与函数(2)知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积y cm2与MA长度x cm之间的函数关系式.解 y 与x 的函数关系式:221x y.二、探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式. 例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为221x y = 当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ; (3)12-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.四、交流反思1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.五、检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .。
初中人教版数学八年级下册:19.1.1 第2课时 函 数 习题课件(含答案)

(2)求距地面 3 km 处的气温 T; (3)求气温为-6 ℃处距地面的高度 h. (2)当 h=3 时,T=24-6×3=6(℃). 答:距地面 3 km 处的气温 T 为 6 ℃. (3)当 T=-6 时,-6=24-6h,解得 h=5. 答:气温为-6 ℃处距地面的高度 h 为 5 km.
方法点拨:在实际问题中,要注意自变量的 取值要符合实际意义.
1.下列几个式子,其中 y 是 x 的函数的是( A )
A.y=2x
B.y2=2x
C.y=±2x D.|y|=2x
2.在函数关系式 y=1x2-1 中,当自变量 x=2-1 C.1 D.2
知识要点 1 函数的概念 函数:在一个变化过程中,有两个变量 x,y,
对于 x 的每一个确定的值,y 都有 唯一 确定的值 与它对应.x 是 自变量 ,y 是 x 的 函数 .
函数值:如果当 x=a 时,y=b,那么 b 叫做当自变 量的值为 a 时的 函数值 . 解题策略:判断变量 y 是否为变量 x 的函数,要抓 住三个特点:①在同一变化过程中;②有两个变量; ③本质上是一种对应关系,给定一个 x 的值,确定 唯一一个 y 的值;而对应 y 的一个值,自变量 x 的 取值不一定只有一个.
例 水箱内原有水 200 升,7:30 打开水龙头,以 2 升/分的速度放水,设经过 t 分钟时,水箱内存水 y 升. (1)求 y 关于 t 的函数关系式和自变量的取值范围; (2)7:55 时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完?
分析:(1)根据水箱内还有的水等于原有水减去放 掉的水列式整理即可,再根据剩余水量不小于 0 列 不等式求出 t 的取值范围;(2)当 7:55 时,55- 30=25(分钟),将 t=25 代入(1)中的关系式即 可;(3)令 y=0,求出 t 的值即可.
2014年春人教版义务教育教科书数学8年级下册19.1.1变量与函数(第2课时)

14.1.1变量与函数(第2课时)导学案学习目标:1.了解函数的概念,弄清自变量与函数之间的关系.2.经历探索函数概念的过程,感受函数的模型思想.3.培养观察、交流、分析的思想意识,体会函数的实际应用价值.学习重、难点与关键:1.重点:认识函数的概念.2.难点:对函数中自变量取值范围的确定.3.关键:从实际出发,由具体到抽象,建立函数的模型.学习过程:一、回顾交流,聚焦问题1.回顾上课(P71)中的4个问题.同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.【学生活动】思考问题,踊跃发言.(先归纳出4个思考题的关系式,•再举例)2.在地球某地,温度T (℃)与高度d (m )的关系可以挖地用T=10-150d 来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量.(2)填写下表. (3)观察两个变量之间的联系,当其中一个变量取定一个值时,•另一个变量就______.3.课本P72-73“思考”.【学生活动】四人小组互动交流,踊跃发言二、讨论交流,形成概念【函数定义】一般地,在一个__________中,如果有____________________,并且对于_____•的每一个确定的值,______都有唯一确定的值与其对应,那么我们就说____是自变量,_____是______的函数.【跟踪训练】课本P74练习第1、2题结合学生练习情况,强调上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?高度d/m 0 200 400 600 800 1000 温度T/℃三、继续探究,感知轻重【学生活动】1、求下列函数的函数值(1)25y x =+ (2)22y x =解:当1x =时,y = , 解:当1x =时,y = ,当3x =时,y = , 当1x =-时,y = ,当3x =-时,y = , 当3x =时,y = ,当10x =时,y = 。
19.1.1变量与函数(第二课时)

变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量 数值发生变化的量 变量
(2)函数的定义:(包括y值的存在性和唯一性)
一般地,在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量,y是x的函数。
(3)函数值的定义: 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值
1.下列关系中,y不是x函数的是(
Байду номын сангаасD)
x A. y 2
B. y x
2
C. y x D. y x
A
y=2x+15
X≥1且为整数
x ≠ -1
3、等腰三角形ABC的周长为10, 底边BC长
为 y , 腰AB长为
x, 求:
(1)y关于 x 的函数解析式; (2)腰长AB=3时,底边的长. (3)自变量的取值范围;
3 x2
n 1
∴自变量 n 的取值范围: n≥1
解: 由n-1≥0得n≥1
解:由x+2 ≠ 0得 x≠-2 (4)h
∴自变量 n 的取值范围: x≠-2
1 k k 1
k≤1且k ≠-1
解:自变量的取值范围是:
1.求下列函数中自变量x的取值范围
(1)y= (3)y=
5x 7 2
;(2)y=x2-x-2; ;(4)y=
年份 1984 人口数(亿) 10.34
1989 1994
1999
11.06 11.76
12.52
是
(5)如图,是体检时的心电图,其中横坐标x表示 时间,纵坐标y表示心脏某部位的生物电流,它 们是两个变量,其中y是x的函数吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材版本 授课教师
19.1.1 变量与函数(第 2 课时)
人教 2011 课标版 授课年级 学校名称 洋贝初级中学
本节课是学生在学习第一课时变量与常量的基础上,继续探究学习在一个变化过程中,
八年级
课时安排
一课时
广东省汕头市潮阳区
黄华如
教材背景 及学情分析
存在两个变化的量, 它们是怎样由一个变量发生变化, 而另一个变量又是如何随之发生变化 的过程,也就是函数关系的确立。函数的概念比较抽象,学生理解起来较为困难,这需要通 过给他们设计大量的实例,不断的进行讨论分析比较,得出一般性的结论。
通过讲练结合,使学生对函数概念 的理解更透彻,同时培养学生的自 学能力和对问题的分析能力
2、判断下列各关系式中的 y 是不是 x 的函数?
①y=x2
②y2=x
自主完成习 题后指名学 作答
强化练习,巩固新知
③y x
④ y x
小组交流讨 论后由学生 代表分享结 果
【过渡语】大家知道,知识是来源于生活的,我们 经历或看到过很多的变化过程,现在请大家来说一 说: 生活中有哪些变化过程是函数关系?和小伙伴们说 说你的发现. 【过渡语】知识来源于生活,最终也是运用到生活 中来,接下来我们利用我们所学的知识来解决生活 中遇到的问题.
教 学 过 程
学生归纳
探究二:
(1)下图是体检时的心电图.其中图上点的横坐标 x 表 示时间,纵坐标 y 表示心脏部位的生物电流,它们是两 个变量.在心电图中,对于 x 的每一个确定的值,y 都有 唯一确定的值与其对应吗? 全班学生观 察分析后作 答 (2)下面的我国人口数统计表中,年份与人口数可以分 别记作两个变量 x 与 y,对于表中每一个确定的年份 (x),都对应着一个确定的人口数(y)吗? 年份 1984 1989 1994 1999 2010 人口数/亿 10.34 11.06 11.76 12.52 13.71 指名学生分 析作答 通过以上几个问题的展示 , 使学生 们初步感受到 : 现实生活中存在大 量的变量间的关系 , 并且一个变量 是随着另一个变量的变化而变化 的;
一、教学目标
1、知识与技能 (1)理解并掌握函数的概念; (2)能正确写出函数的解析式,会求函数值; (3)会求自变量的取值范围. 2、数学思考 经历探究变量之间关系的过程体验函数思想 3、解决问题 经历探究变量之间的关系和确定自变量取值范围时要注意的哪些问题的过程,在观察和 讨论中寻求新知,在探索中培养学生发现问题、解决问题的能力。 4、情感态度 (1)让学生合作交流、探究发现新知,激发学生的学习兴趣,培养学生合作和交流的能力; (2)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.
分析题意, 找 出自变量, 明 确谁是谁的 函数, 并写出 关系式 通过不断给学生设疑,培养他们发 现问题,解决问题的能力,使学生在 深刻理解函数概念及熟练确立函数 关系式基础上,又学会如何确定自 变量取值范围和求函数值的方法
二、新课
探究一:
上面每个问题中有几个变量? 在同一个式子中的变量之间有什么联系? 归纳:上面每个问题中的 个变量 , 当其中一个变量取定一个值时,另一个变量就有 确定的值与其对应. 小组观察讨 论, 学生代表 发言
出示题目 , 同时提出新的问题 , 让学 生在解决旧知的基础上提出问题 , 从而激发学生的学习兴趣 , 并且提 高学生对新知识的求知欲 , 为本节 课的学)函数的概念; (2)自变量取值范围的确定.
三、教学难点:
自变量取值范围的确定
教法与学法
本节课博采启发教学法、引探教学法等诸多方法之长,借助多媒体手段引导学生观察、 交流和探究,促进学生自主学习,努力做到教与学的最优组合.
教师活动
学生活动
设计意图
一、温故知新
写出下列各问题中的关系式,并指出各关系式中的 常量和变量. (1) 寄一封质量在 20g 以内的市内平信, 需邮资 0.80 元,则寄 x 封这样的信所需邮资 y(元)与 x(封) 之间的关系; 解答习题 (2)一支蜡烛原长为 20cm,每分钟燃烧 0.5cm,点 燃 x(分钟)后,蜡烛的长度 y(cm)与 x(分钟) 之间的关系;
培养学生用数学眼光去观察和认识 周围的事物
例题讲解
汽车油箱中有汽油 50 L,如果不再加油,那么油箱 中的油量 y(单位:L)随行驶路程 x(单位:km)
的增加而减少,耗油量为 0.1L/km. (1)写出表示 y 与 x 的函数关系的式子; (学生分析解答后出示函数解析式的定义及书写时 应注意的问题) 在例题中,像 y=50-0.1x 这样,用关于自变量的数学 式子表示函数与自变量之间的关系,是描述函数的 常用方法。这种式子叫做函数的解析式。 提问:题中的函数解析式能否用含 y 的数学式子来 表示 x? (2)汽车行驶 200 km 时,油箱中还有多少汽油? 学生解答后再设问:如果汽车行驶 600km 呢? (3)指出自变量 x 的取值范围; 指出本节课难点:确定自变量的取值范围时,不仅 要考虑使函数关系式有意义,而且还要注意问题的 实际意义! ! !
【过渡语】以上问题中变量间的对应关系便是我们 这节课所要学习的重点内容.
学习概念(函数、自变量、函数值)
一般地,在一个变化过程中,如果有两个变量 x 与 y ,并且对于 x 的每一个确定的值,y 都有唯一确 定的值与其对应, 那么我们就说 x 是自变量, y是x 的函数. 如果当 x=a 时,y=b,那么 b 叫做当自变量的值为 a 时的函数值. 利用新课前的复习题 1 分析、理解函数的概念 分析邮资 y 与信的数量 例如在复习题 1 中, y=0.8x, 会 x 的关系,明 随 的变化而变化, 确谁是自变 所以 是自变量,并且当 x 取定一个值时,y 都有 量, 谁是谁的 一个值与其对应,所以邮资 y 是 x 的函数。x=1 时, 函数, 再根据 其函数值为 ,x=2 时,其函数值为 。 定义算出题 中的函数值 归纳 辨析是否是函数的关键: (1)是否存在着两个变量。 (2)是否符合唯一对应性 。 辨析概念 1、下列各图象中的 y 是不是 x 的函数? 齐读函数概 念, 寻找关键 词