初二数学期末考试模拟试卷

合集下载

初二数学模拟试题及答案

初二数学模拟试题及答案

初二数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 3.14C. 0.1010010001…(每两个1之间0的个数逐次加1)D. √22. 一个长方形的长是宽的两倍,如果宽是4cm,那么长是:A. 8cmB. 6cmC. 4cmD. 2cm3. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 64. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 45. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是7. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 2或-2D. 08. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. -2D. -1/29. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 16或-16D. 410. 一个数的立方根是3,那么这个数是:A. 27B. -27C. 27或-27D. 9二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是_______。

12. 如果一个数的绝对值是7,那么这个数可以是_______。

13. 一个数的立方是27,这个数是_______。

14. 一个数的倒数是2,那么这个数是_______。

15. 一个数的平方根是2,那么这个数是_______。

三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。

17. 计算:(-2) × (-3)。

18. 求一个数,它的平方是49。

19. 一个数的立方是-27,求这个数。

20. 一个数的倒数是1/3,求这个数。

答案:一、选择题1. A2. A3. A4. A5. C6. C7. B8. A9. A10. A二、填空题11. ±612. ±713. 314. 1/215. 4三、解答题16. 解:3x - 5 = 103x = 15x = 517. (-2) × (-3) = 618. 一个数的平方是49,这个数是±7。

初二数学测试题及答案

初二数学测试题及答案

八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x= B .()248139x x --= C.1112a a a --= D.()021x +=3、下列说法中错误的是 ( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形 4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差 5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=-- D . 22x y x y x y+=++ 7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( )A .120°B .110°C .100°D .90°8、如图,在□ABCD的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行CQ P B AECBDAyxoyxoyxoyxo使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是 ( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等 D.梯形的底角是60°二、填空题(每小题3分,共30分)11、若分式x 2-4x 2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。

【必考题】初二数学下期末模拟试卷(附答案)

【必考题】初二数学下期末模拟试卷(附答案)

【必考题】初二数学下期末模拟试卷(附答案)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .44.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形5.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .26.若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或7.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲 B .乙C .丙D .丁8.函数的自变量取值范围是( ) A .x ≠0 B .x >﹣3 C .x ≥﹣3且x ≠0 D .x >﹣3且x ≠0 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或710.下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷=11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.若3的整数部分是a,小数部分是b,则3a b-=______.15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

初二数学期末考试卷带答案

初二数学期末考试卷带答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √0答案:A2. 已知x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无法确定答案:C3. 若a > b,则下列不等式中正确的是()A. a² > b²B. a - b > 0C. a + b < 0D. a² + b² > 0答案:B4. 已知三角形ABC的边长分别为3cm、4cm、5cm,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形答案:B5. 若函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 4答案:B6. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A7. 若|a| = 5,则a的值为()A. ±5B. 5C. -5D. 无法确定答案:A8. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C9. 若a > b > 0,则下列各式中正确的是()A. a² > b²B. a - b > 0C. a + b < 0D. a² + b² > 0答案:D10. 在等腰三角形ABC中,若AB = AC,则下列结论正确的是()A. ∠B = ∠CB. ∠B = ∠AC. ∠C = ∠AD. ∠B = ∠C = ∠A答案:A二、填空题(每题5分,共25分)11. 3的平方根是______,-5的立方根是______。

答案:±√3,-∛512. 若x² - 4x + 3 = 0,则x的值为______。

【精选】2019-2020学年八年级数学第二学期期末模拟试卷及答案(共三套)

【精选】2019-2020学年八年级数学第二学期期末模拟试卷及答案(共三套)

2019-2020学年八年级数学第二学期期末模拟试卷及答案(共三套)2019-2020学年八年级数学第二学期期末模拟试卷及答案(一)一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是()A.B.C.D.2.下列图标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.在代数式、、、、、a+中,分式的个数有()A.2个B.3个C.4个D.5个4.为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.抽取的100台电视机的使用寿命D.100台5.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.156.函数(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y17.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=08.若分式方程+1=有增根,则a的值是()A.4 B.0或4 C.0 D.0或﹣49.在△ABC中,∠C=90°,AC,BC的长分别是方程x2﹣7x+12=0的两个根,△ABC内一点P到三边的距离都相等.则PC为()A.1 B.C.D.10.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为()A.(1343,0)B.(1342,0)C.(1343.5,)D.(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式在实数范围内有意义,则x的取值范围是______;若分式的值为0,则x的取值是______.12.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为______.13.某种油菜籽在相同条件下的发芽试验结果如下:每批粒数n 100 300 400 600 1000 2020 3000 发芽的频数m 96 283 344 552 948 1912 2848 发芽的频率0.96 0.94 0.86 0.92 0.95 0.95 0.95由此可以估计油菜籽发芽的概率约为______(精确到0.01),其依据是______.14.若实数a、b、c在数轴的位置,如图所示,则化简=______.15.已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=______.16.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为______.17.如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是______.18.在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y=(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF=24时,点C坐标的坐标为______.三、解答题(本大题共8题,共60分.)19.计算:(1)+|3﹣|﹣()2;(2)•(﹣).20.解方程:(1)x2﹣4x+3=0;(2)﹣=1.21.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.22.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)23.近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失.为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本了解”和“不了解”四个等级.小明根据调查结果绘制了如下统计图,请根据提供的信息回答问题:(1)本次参与问卷调查的学生有______人;扇形统计图中“基本了解”部分所对应的扇形圆心角是______度;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解的概率为______.(2)请补全频数分布直方图.24.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.(1)四边形ABCD是什么特殊的四边形?请证明;(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.25.如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.(1)证明△OCN≌△OAM;(2)若∠NOM=45°,MN=2,求点C的坐标.26.从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标______(用含a的代数式表示);(2)基本经验有利有弊,当基本经验有利于新问题解决的时候,这是基本经验的正迁移;当基本经验所形成的思维定势局限了新问题的思考,让新问题解决不出来的时候,这是基本经验的负迁移.例如,如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、被开方数不同,不是同类二次根式,错误;B、被开方数相同,是同类二次根式,正确;C、被开方数不同,不是同类二次根式,错误;D、被开方数不同,不是同类二次根式,错误;故选B【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.下列图标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.3.在代数式、、、、、a+中,分式的个数有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】根据分式的定义,可以判断出题中六个代数式只有3个为分式,由此得出结论.【解答】解:在代数式、、、、、a+中,分式有,,a+,∴分式的个数是3个.故选B.【点评】本题考查了分式的定义,解题的关键是熟悉分式的定义.本题属于基础题,难度不大,解决该题型题目时,将分式的定义来观察各代数式即可.4.为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.抽取的100台电视机的使用寿命D.100台【考点】总体、个体、样本、样本容量.【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.15【考点】三角形中位线定理;等腰三角形的判定与性质;直角三角形斜边上的中线.【分析】如图,首先证明EF=6,继而得到DE=7;证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,∵∠AFC=90°,AE=CE,∴EF==6,DE=1+6=7;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=14,故选C.【点评】该题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.6.函数(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1【考点】反比例函数图象上点的坐标特征.【分析】先判断出函数反比例函数的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【解答】解:∵a2≥0,∴﹣a2≤0,﹣a2﹣1<0,∴反比例函数的图象在二、四象限,∵点(2,y3)的横坐标为2>0,∴此点在第四象限,y3<0;∵(﹣4,y1),(﹣1,y2)的横坐标﹣4<﹣1<0,∴两点均在第二象限y1>0,y2>0,∵在第二象限内y随x的增大而增大,∴y2>y1,∴y2>y1>y3.故选A.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.7.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0【考点】根的判别式.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.【点评】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.若分式方程+1=有增根,则a的值是()A.4 B.0或4 C.0 D.0或﹣4【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.【解答】解:方程两边同时乘以x﹣3得,1+x﹣3=a﹣x,∵方程有增根,∴x﹣3=0,解得x=3.∴1+3﹣3=a﹣3,解得a=4.故选A.【点评】本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.9.在△ABC中,∠C=90°,AC,BC的长分别是方程x2﹣7x+12=0的两个根,△ABC内一点P到三边的距离都相等.则PC为()A.1 B.C.D.【考点】勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心.【分析】根据AC、BC的长分别是方程x2﹣7x+12=0的两个根,根据根与系数的关系求出.【解答】解:根据“AC,BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7,AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等,即P为△ABC内切圆的圆心,设圆心的半径为r,根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出,AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC==,故选B.【点评】本题中考查了勾股定理和一元二次方程根与系数的关系.本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.10.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为()A.(1343,0)B.(1342,0)C.(1343.5,)D.(1342.5,)【考点】规律型:点的坐标;菱形的性质.【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2015=335×6+5,因此点B5向右平移1340(即335×4)即可到达点B2015,根据点B5的坐标就可求出点B2015的坐标.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2015=335×6+5,∴点B5向右平移1340(即335×4)到点B2014.∵B5的坐标为(2.5,),∴B2014的坐标为(2.5+1340,),∴B2015的坐标为(1342.5,).故选D.【点评】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式在实数范围内有意义,则x的取值范围是x≥5;若分式的值为0,则x的取值是3.【考点】分式的值为零的条件;分式有意义的条件.【分析】①二次根式有意义,被开方数为非负数即可;②分式的值为零,分子为零,分母不等于零,即可.【解答】解:①∵二次根式在实数范围内有意义,∴x﹣5≥0,∴x≥5,②分式的值为0,∴x2﹣9=0,且x+3≠0,∴x=3,故答案为x≥5,3.【点评】此题是分式的值为零,主要考查了二次根式的意义,分式值为零的条件,解本题的关键是掌握二次根式的非负性,和分式值为零的条件.12.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.【考点】一元二次方程的解;一元二次方程的定义.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a 的值.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.【点评】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.13.某种油菜籽在相同条件下的发芽试验结果如下:每批粒数n 100 300 400 600 1000 2020 3000发芽的频数m 96 283 344 552 948 1912 2848发芽的频率0.96 0.94 0.86 0.92 0.95 0.95 0.95由此可以估计油菜籽发芽的概率约为0.95(精确到0.01),其依据是频率的稳定性.【考点】利用频率估计概率;近似数和有效数字.【分析】观察表格得到这种油菜籽发芽的频率稳定在0.95附近,即可估计出这种油菜发芽的概率.【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95,频率的稳定性.【点评】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.14.若实数a、b、c在数轴的位置,如图所示,则化简=﹣a﹣b.【考点】二次根式的性质与化简;实数与数轴.【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b﹣c的符号,再进行计算即可.【解答】解:由数轴可知,c<b<0<a,|a|<|c|,∴a+c<0,b﹣c>0,∴原式=﹣(a+c)﹣(b﹣c)=﹣a﹣b.故答案为:﹣a﹣b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.15.已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=2.【考点】反比例函数图象上点的坐标特征.【分析】利用反比例函数图象上点的坐标性质得出ab=1,再利用分式的混合运算法则求出即可.【解答】解:∵点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,∴ab=1,∴+=+===2.故答案为2.【点评】此题主要考查了反比例函数图象上点的坐标特征以及分式的混合运算,正确化简分式是解题关键.16.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.17.如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是0<x<1或x>8.【考点】反比例函数与一次函数的交点问题.【分析】令y1=y2,得出关于x的一元二次方程,将x=1代入可求出b的值,再将b的值代入一元二次方程中可求出x的值,由此得出B点的横坐标,结合函数图象以及A、B点的横坐标即可得出不等式的解集.【解答】解:令y1=y2,则有﹣x+b=,即x2﹣bx+8=0,∵点A的横坐标为1,∴1﹣b+8=0,解得b=9.将b=9代入x2﹣bx+8=0中,得x2﹣9x+8=0,解得x1=1,x2=8.结合函数图象可知:不等式﹣x+b<的解集为0<x<1或x>8.故答案为:0<x<1或x>8.【点评】本题考查了反比例函数与一次函数的交点问题以及一元二次方程的应用,解题的关键是求出B 点的横坐标.本题属于基础题,难度不大,解决该题型题目时,借助函数图象,由图象的上下位置可直接得出不等式的解集.18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数y=(k >0)在第一象限内过点A ,且与BC交于点F .当F 为BC 的中点,且S △AOF =24时,点C 坐标的坐标为 (10,4) .【考点】反比例函数图象上点的坐标特征;反比例函数系数k 的几何意义;平行四边形的性质.【分析】先设OA=a (a >0),过点F 作FM ⊥x 轴于M ,根据∠AOB=60°,得出AHAH=a ,OH=a ,求出S △AOH 的值,根据S △AOF =24,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出S △OBF =12,最后根据S 平行四边形AOBC =OB •AH ,得出OB=AC=12,即可求出点C 的坐标;【解答】解:设OA=a (a >0),过点F 作FM ⊥x 轴于M , ∵∠AOB=60°,∴AH=a ,OH=a ,∴S △AOH =•a •a=a 2,∵S △AOF =24,∴S 平行四边形AOBC =48,∵F 为BC 的中点,∴S △OBF =12,∵BF=a ,∠FBM=∠AOB ,∴FM=,BM=a,=BM•FM=××a=a2,∴S△BMF=S△OBF+S△BMF=12+a2,∴S△FOM∵点A,F都在y=的图象上,=k,∴S△AOH∴a2=12+a2,∴a=8,∴OA=8,∴OH=4,AH=OH=×4=4,=OB•AH=48,∵S平行四边形AOBC∴OB=AC=6,∴C(10,4).故答案为:【点评】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,要注意运用数形结合的思想,三、解答题(本大题共8题,共60分.)19.计算:(1)+|3﹣|﹣()2;(2)•(﹣).【考点】二次根式的混合运算.【分析】(1)先化简二次根式、取绝对值符号、二次根式的乘方,再合并同类二次根式可得;(2)先化简括号内二次根式,再用乘法分配律去括号计算可得.【解答】解:(1)原式=4+3﹣﹣3=3;(2)原式=•(3﹣)=9﹣2=7.【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的混合运算顺序及二次根式的运算法则与性质是解题的关键.20.解方程:(1)x2﹣4x+3=0;(2)﹣=1.【考点】解一元二次方程-因式分解法;解分式方程.【分析】(1)将原方程分解为(x﹣3)(x﹣1)=0,然后解得方程两个根即可;(2)将原方程去分母得2x+2=x﹣2,然后解得这个一元一次方程,最后检验方程的根即可.【解答】解:(1)∵x2﹣4x+3=0,∴(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,∴x1=3,x2=1;(2)∵﹣=1,∴+=1,∴2x+2=x﹣2,∴x=﹣4,经检验,﹣4﹣2≠0,2﹣(﹣4)≠0,所以x=﹣4是原方程的解.【点评】本题主要考查了熟练掌握并运用因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.还考查了(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.21.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.【考点】分式的化简求值;一元二次方程的解.【分析】先把原式化为最简形式,再利用公式法求出一元二次方程x2﹣2x﹣2=0的根,把正根代入原式计算即可.【解答】解:原式=÷=•=.解方程x2﹣2x﹣2=0得:=1+>0,x2=1﹣<0,x1所以原式==.【点评】本题考查的是分式的化简求值及解一元二次方程,解答此题的关键是把原分式化为最简形式,再进行计算.22.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)【考点】根据实际问题列反比例函数关系式.【分析】(1)设出反比例函数解析式,把A坐标代入可得函数解析式;(2)把v=1代入(1)得到的函数解析式,可得p;(3)把P=140代入得到V即可.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.23.近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失.为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本了解”和“不了解”四个等级.小明根据调查结果绘制了如下统计图,请根据提供的信息回答问题:(1)本次参与问卷调查的学生有400人;扇形统计图中“基本了解”部分所对应的扇形圆心角是144度;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解的概率为.(2)请补全频数分布直方图.【考点】频数(率)分布直方图;扇形统计图;概率公式.【分析】(1)根据“非常了解”的人数与所占的百分比列式计算即可求出参与问卷调查的学生人数;求出“基本了解”的学生所占的百分比,再乘以360°,计算即可得解;求出“不了解”的学生所占的百分比即可;(2)根据学生总人数,乘以比较了解的学生所占的百分比,求出比较了解的人数,补全频数分布直方图即可.【解答】解:(1)80÷20%=400人,×360°=144°,=;故答案为:400,144,;(2)“比较了解”的人数为:400×35%=140人,补全频数分布直方图如图.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.(1)四边形ABCD是什么特殊的四边形?请证明;(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.【考点】菱形的判定与性质;勾股定理.【分析】(1)根据O为AC、BD的中点,可得出四边形ABCD为平行四边形,根据AC=16、BD=12即可得出OA、OB的长度,再结合AB=10即可得出AO2+BO2=AB2,从而得出∠AOB=90°,进而可证出四边形ABCD是菱形;(2)设OQ=x,则AP=2x,OP=8﹣2x,BQ=6+x.根据勾股定理可得出PQ的长度,结合PQ=BQ即可得出关于x的一元二次方程,解方程即可得出结论.【解答】解:(1)四边形ABCD是菱形.∵O为AC、BD的中点,∴OA=OC=AC=8,OB=OD=BD=6.∴四边形ABCD为平行四边形.∵AO2+BO2=100,AB2=100.∴AO2+BO2=AB2.∴∠AOB=90°.∵四边形ABCD为平行四边形,∠AOB=90°,∴四边形ABCD是菱形.(2)设OQ=x,则AP=2x,OP=8﹣2x,BQ=6+x.∵∠POQ=90°,∴PQ2=OP2+OQ2,又∵PQ=BQ,∴PQ2=BQ2,∴(6+x)2=(8﹣2x)2+x2,解得:.又∵8>x>0,∴AP=2x=11﹣.【点评】本题考查了菱形的判定、勾股定理以及解一元二次方程,解题的关键是:(1)熟练掌握菱形的判定定理;(2)根据线段间的关系找出关于x的一元二次方程.本题属于中档题,难度不大,解决该题型题目时,熟练掌握菱形的判定定理是关键.25.如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.(1)证明△OCN≌△OAM;(2)若∠NOM=45°,MN=2,求点C的坐标.【考点】反比例函数综合题.=S△OAM=|k|,【分析】(1)由点M、N都在y=的图象上,即可得出S△ONC再由正方形的性质可得出OC=OA,∠OCN=∠OAM=90°,结合三角形的面积公式即可得出CN=AM,进而即可证出△OCN≌△OAM(SAS);(2)将△OAM绕点O逆时针旋转90°,点M对应M′,点A对应A′,由旋转和正方形的性质即可得出点A′与点C重合,以及N、C、M′共线,通过角的计算即可得出∠M'ON=∠MON=45°,结合OM′=OM、ON=ON即可证出△M'ON≌△MON(SAS),由此即可得出M′N=MN=2,再由(1)△OCN≌△OAM即可得出CN=AM,通过边与边之间的关系即可得出BM=BN,利用勾股定理即可得出BM=BN=,设OC=a,则M′N=2CN=2(a﹣),由此即可得出关于a的一元一次方程,解方程即可得出点C的坐标.【解答】解:(1)∵点M、N都在y=的图象上,=S△OAM=|k|.∴S△ONC∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴OC•CN=OA•AM.∴CN=AM.在△OCN和△OAM中,,∴△OCN≌△OAM(SAS).(2)将△OAM绕点O逆时针旋转90°,点M对应M′,点A对应A′,如图所示.∵OA=OC,∴OA′与OC重合,点A′与点C重合.∵∠OCM′+∠OCN=180°,∴N、C、M′共线.∵∠COA=90°,∠NOM=45°,∴∠CON+∠MOA=45°.∵△OAM旋转得到△OCM′,∴∠MOA=∠M′OC,∴∠CON+∠COM'=45°,∴∠M'ON=∠MON=45°.在△M'ON与△MON中,,∴△M'ON≌△MON(SAS),∴MN=M'N=2.∵△OCN≌△OAM,∴CN=AM.又∵BC=BA,∴BN=BM.又∠B=90°,∴BN2+BM2=MN2,∴BN=BM=.设OC=a,则CN=AM=a﹣.∵△OAM旋转得到△OCM′,∴AM=CM'=a﹣,∴M'N=2(),又∵M'N=2,∴2()=2,解得:,∴C(0,).【点评】本题考查了全等三角形的判定与性质、旋转的性质以及勾股定理,解题的关键是:(1)利用SAS证出△OCN≌△OAM;(2)找出关于a的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边角关系是关键.26.从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标(2+a,a)(用含a的代数式表示);(2)基本经验有利有弊,当基本经验有利于新问题解决的时候,这是基本经验的正迁移;当基本经验所形成的思维定势局限了新问题的思考,让新问题解决不出来的时候,这是基本经验的负迁移.例如,如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.。

初二数学试卷模拟题含答案

初二数学试卷模拟题含答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 下列等式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = ±bC. a² = b²,则a = ±cD. a² = b²,则a = c3. 下列数中,绝对值最小的是()A. -5B. 0C. 5D. -34. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 05. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = x³6. 已知二次函数y = ax² + bx + c(a ≠ 0),若a > 0,则函数的图像()A. 一定开口向上B. 一定开口向下C. 一定过原点D. 一定不过原点7. 在平面直角坐标系中,点A(2,3),点B(-3,2)关于原点对称的点分别是()A. A'(-2,-3),B'(3,-2)B. A'(-2,3),B'(3,2)C. A'(2,-3),B'(-3,-2)D. A'(2,3),B'(-3,2)8. 已知等腰三角形ABC中,AB = AC,AD是底边BC的中线,则AD的长度是BC的()A. 1/2B. 1/3C. 1/4D. 1/59. 下列关于三角形内角的说法中,正确的是()A. 任意三角形内角和为180°B. 等边三角形内角和为360°C. 等腰三角形内角和为360°D. 直角三角形内角和为90°10. 若等差数列{an}中,a1 = 3,d = 2,则第10项an的值为()A. 21B. 23C. 25D. 27二、填空题(每题5分,共20分)11. 若a = -2,b = 3,则a² + b²的值为________。

2024长郡双语中学八年级期末模拟考试数学试卷二

2024长郡双语中学八年级期末模拟考试数学试卷二

八上期末模拟卷姓名_____________班级_________一.选择题(每小题3分,共30分)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2•a4=a8B.(a2)2=a4C.(2a)3=2a3D.a10÷a2=a53.下列等式从左边到右边的变形,属于因式分解的是()A.ax+ay+a=a(x+y)B.(x﹣2)(x+2)=x2﹣4C.m2﹣6m+9=(m﹣3)2D.x2﹣y2+1=(x+y)(x﹣y)+14.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>5.若分式有意义,则x的取值范围是()A.x<2B.x≠0C.x≠1且x≠2D.x≠26.若,则a+b的值为()A.1B.0C.﹣1D.27.下列二次根式中,最简二次根式是()A.B.C.D.8.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°10.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,且BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为()A.7B.8C.10D.12请把选择题答案填在下列表格中:题号12345678910答案二.填空题(每小题3分,共18分)11.已知a m =27,a n =3,则a n -m =.12.计算:﹣|﹣4|=.13.实数0.00000052用科学记数法可表示为.(第14题)14.如图,△ABC ≌△DEC ,点B 的对应点E 在线段AB 上,∠DCA =40°,则∠B 的度数是.15.如图,在△ABC 中,∠C =90°,AC =8,BC =6,D 为AC 上一点,若BD 是∠ABC 的角平分线,则CD =.16.若a 3+3a 2+a =0,求12242+-a a a =.三.解答题(共9题,共72分)(第15题)17.因式分解(每小题3分,共6分):(1)a 3b ﹣ab(2)3ax 2+6axy +3ay 218.计算(每小题4分,共8分):(1)(2)19.解分式方程(每小题4分,共8分)(1)(2)20.(6分)先化简,再求值:(﹣1)÷,其中a=﹣1.21.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.22.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.23.(8分)中国•哈尔滨冰雪大世界,始创于1999年,是由黑龙江省哈尔滨市政府为迎接千年庆典神州世纪游活动,凭借哈尔滨的冰雪时节优势,而推出的大型冰雪艺术精品工程,展示了北方名城哈尔滨冰雪文化和冰雪旅游魅力.2024年在准备冰雪大世界的建造时,需要取冰,现安排甲、乙两个采冰队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队取240立方米的冰比乙队取同样体积的冰少用2天.(1)甲、乙两个采冰队每天能采冰的体积分别是多少立方米?(2)如需40天采冰1840立方米.甲乙共同工作队若干天后,甲另有任务,剩下的由乙队独立完成,为了能在规定的时间内完成任务,至少安排甲队工作多少天?24.(3分+3分+4分)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am +an +bm +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ).(1)①分解因式:ab ﹣a ﹣b +1;②若a ,b (a >b )都是正整数且满足ab ﹣a ﹣b ﹣4=0,求a +b 的值;(2)若a ,b 为实数且满足ab ﹣a ﹣b ﹣4=0,s =a 2+3ab +b 2+3a ﹣b ,求s 的最小值.25.(3分+3分+4分)如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的一点,F 为AB 边上一点,连接CF ,交BE 于点D 且∠ACF =∠CBE ,CG 平分∠ACB 交BD 于点G ,(1)求证:CF =BG ;(2)延长CG 交AB 于H ,连接AG ,过点C 作CP ∥AG 交BE 的延长线于点P ,求证:PB =CP +CF ;(3)在(2)问的条件下,当∠GAC =2∠FCH 时,若S △AEG =3,BG =6,求AC 的长.。

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)及答案解析.

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)及答案解析.

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)一、选择题:(本大题12个小题,每小题4分,共48分),在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的字母填在答题卡上所对应题号下面的表格内.1.(4分)下列计算正确的是()A.(x2)3=x5B.x6+x6=x12C.x2•x3=x5D.(2x)2=2x22.(4分)下列分式的值,可以为零的是()A.B.C.D.3.(4分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.ax+bx+c=x(a+b)+c D.y2﹣1=(y+1)(y﹣1)4.(4分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=3,b=4,c=55.(4分)若则ab的立方根为()A.4B.2C.﹣2D.86.(4分)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.(4分)如图,在Rt△ABC中,∠A=90°,点D是AB上一点,且BD=CD=6,∠DBC=15°,则△BCD的面积为()A.9B.12C.18D.68.(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.(4分)如图,在一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD长为()A.B.C.D.10.(4分)多项式a2﹣2ab+2b2﹣6b+27的最小值为()A.18B.9C.27D.3011.(4分)若关于x的分式方程的解为正整数,且关于x的不等式组有解且最多有6个整数解,则满足条件的所有整数a的值之和是()A.4B.0C.﹣1D.﹣312.(4分)有依次排列的两个整式A=x﹣1,B=x+1,用后一个整式B与前一个整式A作差后得到新的整式记为C1,用整式C1与前一个整式B求和操作得到新的整式C2,用整式C2与前一个整式C1作差后得到新的整式C3,用整式C3与前一个整式C2求和操作得到新的整式C4,……,依次进行作差、求和的交替操作得到新的整式.下列说法:①整式C3=x+1;②整式C5=x+3;③整式C2、整式C5和整式C8相同;④.正确的个数是()A.1B.2C.3D.4二、填空:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.13.(4分)近几年我国芯片产业出现被卡脖子的情况,其实中国半导体的芯片设计能力已经很强,主要问题和难点在制造环节.目前我国只能做到0.000000014米的制程,用科学记数法将0.000000014可表示为.14.(4分)(﹣0.25)2021×(﹣4)2020的结果是.15.(4分)若二次根式有意义,则x的取值范围是.16.(4分)如图,若实数a,b,c在数轴上的对应点如图所示,则化简=.17.(4分)若关于x的方程有增根,则2k+1=;18.(4分)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是.19.(4分)如图,矩形ABCD中,AD=8,AB=6,将矩形ABCD绕点D顺时针旋转得到矩形EFGD,边BC与DE交于点P,延长BC交FG于点Q,若BQ=2BP,则BP的长为.20.(4分)若一个各位数字均不为0的四位数M=(1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数)满足:把M的千位数字作为十位数字,M的十位数字作为个位数字组成的两位数与5的和记作X,M的千位数字与个位数字的2倍的和记作Y,如果X的各位数字之和与(Y﹣1)的和是一个正整数K 的平方,则称这个四位数为“赓续数”,正整数K称“赓续元素”:当c=1,d=9时,最小“赓续数”为;若“赓续数”M满足前两位数字之和a+b与后两位数字之和c+d相等,且为整数,则满足条件的最大M为.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.(6分)计算:(1);(2).22.(8分)如图,在四边形ABCD中,∠A=∠C=90°,DE平分∠ADC,交BC于点E.(1)用直尺和圆规作∠ABC的角平分线,交AD于点F;(保留作图痕迹)(2)求证:BF∥DE.证明:∵∠A+∠ABC+∠C+∠ADC=360°,且∠A=∠C=90°,∴∠ABC+∠ADC=°,∴∠ABC+∠ADC=90°.∵BF平分∠ABC,DE平分∠ADC,∴∠ABF=∠ABC,∠1=,∴+∠1=90°.∵∠A=90°,∴∠ABF+∠AFB=90°,∴∠1=,∴BF∥DE.23.(8分)先化简,再求值:÷(1+)﹣,其中x是不等式组的整数解.24.(8分)如图,已知四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点E.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.25.(8分)重庆某社区去年购买了A、B两种型号的共享单车,购买A种单车共花费15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展•低碳出行”号召,该社区决定今年再买A、B两种型号的单车共60辆,恰逢厂家对A、B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B 种单车售价比去年购买时降低了10%,如果今年购买A、B两种单车的总费用不低于33800不超过34000元,那么该社区今年有几种购买A、B种单车的方案?请具体列出.26.(10分)为实现“绿水青山就是金山银山”的理念,重庆市建了多个湿地公园.如图,某区湿地公园有一个湖泊,沿湖修建了四边形ABCD人行步道,经测量,点B在点A的正东方向.点D在点A的正北方向,AD=200米.点C在点B的北偏东45°,在点D的北偏东60°方向,CD=800米.(1)求步道BC的长度(精确到个位);(2)小王每天步行上学都要从点A到点C.他可以从点A经过点B到点C,也可以从点A经过点D到点C.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)27.(10分)如图,平行四边形ABCD,AB=CD=9,AD=BC=5(AB∥CD,AD∥BC),CE⊥AB于E,并且BE=3.(1)如图1所示在平面直角坐标系中,求出点C、D的坐标.(请写出过程)(2)如图2所示直线PQ是第二、四象限的角平分线,M是直线PQ上一个动点,N为x轴上一点,问平面内是否存在K点,使得以K、M、N、B为顶点构成正方形,若没有请说明理由;若有,直接写成K点的坐标.与BD交于点E.(2)如图2,若∠CAB=45°,延长DA至点F,连接CF交BD于点H,若点H为CF的中点,证明:DH=AF;(3)如图3,若∠CAB=60°,AB=2,将△ADB绕点A逆时针旋转得到△AMN,连接CN,取CN的中点G,连接BG.在△AMN旋转过程中,当BG﹣CN最大时,直接写出△ANC的面积.2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分),在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的字母填在答题卡上所对应题号下面的表格内.1.【分析】根据幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:A、(x2)3=x6,故原题计算错误;B、x6+x6=2x6,故原题计算错误;C、x2•x3=x5,故原题计算正确;D、(2x)2=4x2,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、积的乘方、合并同类项、同底数幂的乘法,关键是掌握各计算法则,不能混淆.2.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:A、分式的值不能为零,故A错误;B、x=﹣1时,分式无意义,故B错误;C、x=﹣1时,分式无意义,故C错误;D、x=﹣1时,分式的值为零,故D正确;故选:D.【点评】本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.【分析】直接利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而分析得出答案.【解答】解:A、x(a﹣b)=ax﹣bx,是整式乘法,故此选项错误;B、x2﹣1+y2=(x﹣1)(x+1)+y2,不是因式分解,故此选项错误;C、ax+bx+c=x(a+b)+c,不是因式分解,故此选项错误;D、y2﹣1=(y+1)(y﹣1),是因式分解,故此选项正确.故选:D.【点评】此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.【分析】根据绝对值及二次根式的非负性得出a﹣2=0及b+4=0,求出a,b的值,再根据立方根的定义即可解决问题.【解答】解:因为,且|a﹣2|≥0,,所以a﹣2=0,b+4=0,解得a=2,b=﹣4,所以ab=﹣8,则ab的立方根为﹣2.故选:C.【点评】本题主要考查了立方根、非负数的性质:绝对值及非负数的性质:算式平方根,熟知绝对值、二次根式的非负性及立方根的定义是解题的关键.6.【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【分析】根据等边对等角结合三角形的外角,求出∠ADC=30°,进而求出AC的长,利用三角形的面积公式求出△BCD的面积即可.【解答】解:∵BD=CD=6,∠DBC=15°,∴∠DCB=∠B=15°,∴∠ADC=∠B+∠BCD=30°,∵∠A=90°,∴,∴△BCD的面积为;故选A.【点评】本题考查等边对等角,三角形的外角,含30度角的直角三角形,三角形的面积,灵活运用这些性质解决问题是解题的关键.8.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE=cm,故选:D.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种计算方法,及菱形的对角线互相垂直且平分.9.【分析】由翻折易得DB=AD,在直角三角形ACD中,利用勾股定理即可求得CD长.【解答】解:由题意得DB=AD;设CD=x,则AD=DB=(8﹣x),∵∠C=90°,∴AD2﹣CD2=AC2(8﹣x)2﹣x2=36,解得x=;即CD=.故选:A.【点评】本题主要考查了折叠问题和勾股定理的综合运用.本题中得到BD=AD是关键.10.【分析】将原式利用完全平方公式变形后,根据偶次幂的非负性即可求得答案.【解答】解:a2﹣2ab+2b2﹣6b+27=a2﹣2ab+b2+b2﹣6b+9+18=(a2﹣2ab+b2)+(b2﹣6b+9)+18=(a﹣b)2+(b﹣3)2+18∵(a﹣b)2≥0,(b﹣3)2≥0,∴(a﹣b)2+(b﹣3)2+18≥18,即原式的最小值为18,故选:A.【点评】本题考查代数式求值,结合已知条件将原式变形整理得(a﹣b)2+(b﹣3)2+18是解题的关键.11.【分析】依据关于x的分式方程的解为正整数,即可得到a的值,再根据关于x的不等式组有解且最多有6个整数解,即可得到a的取值范围,即可得出满足条件的所有整数a的值之和.【解答】解:由分式方程,去分母可得(3+a)x=8,当a≠﹣3时,x=,∵该分式方程的解为正整数,且x≠2,∴a=﹣2,﹣1或5,解不等式组,可得,又∵该不等式组有解且最多有6个整数解,∴﹣2<a<5,∴a的值为﹣1,∴满足条件的所有整数a的值之和是﹣1,故选:C.【点评】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a的范围是解题的关键.12.【分析】根据依次进行作差、求和的交替操作可判断即可①②③,根据C2=C5.C4=C7,C6=C9,⋯C2020=C2023,C2024=C2023+C2022进而得出,C2021+2C2023=C2022+C2023即可判定④.【解答】解:由题意依次计算可得:C1=(x+1)﹣(x﹣1)=2,C2=2+(x+1)=x+3,C3=x+1,C4=2x+4,C5=x+3,C6=3x+7,C7=2x+4,C8=5x+11,C9=3x+1,⋯,根据6个一循环的规律可得:C2021=x+3,C2023=2,C2024=x+3,因此,所以①、②、④正确,故选:C.【点评】本题考查整式的加减,正确理解题意和熟练进行整式的运算是关键.二、填空:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【解答】解:0.000000014=1.4×10﹣8.故答案为:1.4×10﹣8.【点评】本题考查用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.14.【分析】先将(﹣0.25)2021化成(﹣0.25)2020×(﹣0.25)再逆用积的乘方运算法则计算即可.【解答】解:(﹣0.25)2021×(﹣4)2020=(﹣0.25)2020×(﹣0.25)×(﹣4)2020=[﹣0.25×(﹣4)]2020×(﹣0.25)=﹣0.25,故答案为:﹣0.25.【点评】本题考查同底数幂的乘法逆用,以及积的乘方运算的逆用,逆用积的乘方运算法则是解题的关键.15.【分析】根据二次根式的被开方数为非负数、分式的分母不等于零,得出x﹣3≥0,4﹣x>0,计算即可得出答案.【解答】解:∵二次根式有意义,∴x﹣3≥0,4﹣x>0,解得:3≤x<4,故答案为:3≤x<4.【点评】本题考查了二次根式有意义的条件、分式有意义的条件,熟练掌握二次根式被开方数不小于零的条件和分母不为零的条件是解题的关键.16.【分析】由数轴可知:a<b<0<c,|a|>|b|>|c|,然后根据绝对值的性质和二次根式的性质化简即可.【解答】解:由图可知:a<b<0<c,|a|>|b|>|c|,∴a﹣b<0,a+b﹣c<0,∴=﹣b﹣(b﹣a)﹣(c﹣a﹣b)=﹣b﹣b+a﹣c+a+b=2a﹣b﹣c,故答案为:2a﹣b﹣c.【点评】本题主要考查了二次根式和绝对值的性质,解题关键是熟练掌握绝对值和二次根式的性质,注意利用数形结合的数学思想解决问题.17.【分析】先确定增根,再将分式方程化成整式方程,然后再将增根代入求得k的值,然后代入2k+1求解即可.【解答】解:由方程的增根为x=3,,给方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程的增根x=3,∴k+2(3﹣3)=4﹣3,解得:k=1,∴2k+1=2×1+1=3.故答案为:3.【点评】本题主要考查了分式方程的增根问题,解决增根问题的步骤如下:①让最简公分母为0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的=S△AOP+S△DOP=OA•PE+OD•PF求得答案.面积,然后由S△AOD【解答】解:连接OP,过点P作PE⊥AC于E,作PF⊥BD于F,∵矩形的两条边AB、BC的长分别为6和8,=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴S矩形ABCD∴OA=OD=5,=S矩形ABCD=24,∴S△ACD=S△ACD=12,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,∵S△AOD解得:PE+PF=,故答案为【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.19.【分析】作PH⊥FG于点H,设PC=x,则BP=8﹣x,通过HL可证明Rt△CDQ≌Rt△GDQ,得QG =CQ=8﹣2x,再通过AAS证明△PHQ≌△DCP,得PC=HQ=x,则PD=8﹣x,在Rt△PCD中,利用勾股定理列出方程即可解决问题.【解答】解:作PH⊥FG于点H,连接DQ,则PH=EF=AB=6,EP=FH,设PC=x,则BP=8﹣x,∵BQ=2BP,∴P为BQ的中点,∴CQ=PQ﹣PC=8﹣x﹣x=8﹣2x,在Rt△CDQ和Rt△GDQ中,,∴Rt△CDQ≌Rt△GDQ(HL),∴QG=CQ=8﹣2x,∴FQ=2x,∵FG∥ED,∴∠FQP=∠CPD,在△PHQ和△DCP中,,∴△PHQ≌△DCP(AAS),∴PC=HQ=x,∴EP=FH=x,∴PD=8﹣x,在Rt△PCD中,由勾股定理得:即(8﹣x)2=x2+62,解得:x=,∴BP=PQ=8﹣x=,故答案为:.【点评】本题主要考查了矩形的性质,旋转的性质,全等三角形的判定与性质,勾股定理等知识,运用勾股定理列方程是解题的关键.20.【分析】根据题意得出a,b的值,由此可得出答案.由于1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数,根据为整数,得出a=8,b=1,c=2,d=7,即可得出答案.【解答】解:∵M=,当c=1,d=9时,该四位数X=10a+1+5=10a+6,Y=a+2×9=a+18,∵a,b,c,d≥1,当a=1时,X=11+5=16,各位数字和为7,Y=1+18=19,Y﹣1=1017,K=52,∴最小的赓续数为1119.∵a+b=c+d,=为整数,∴11a与2b的和为9的倍数,∵M是“赓续数”,1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数,∴最大时,11a=88,b=1,c=2,d=7,∴a=8,∴M为8127.故答案为:1119,8127.【点评】本题主要考查对于因式分解的应用,将题目中的已知条件运用到等式中,理解题意十分重要.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.【分析】(1)先把括号内的1写成分母是a+3的分式,再按照同分母的分式相减法则进行计算,然后将除法转化为乘法,进行约分即可化简;(2)根据二次根式的乘法法则计算,最后进行化简合并即可得出答案.【解答】解:(1)====;(2)===.【点评】本题考查了分式和二次根式的混合运算,解此题的关键是熟练掌握分式的通分与约分和二次根式的乘法法则.22.【分析】(1)利用基本作图作∠ABC的平分线即可;(2)先利用四边形内角和得到∠ABC+∠ADC=180°,再根据角平分线的定义得到∠ABF=∠ABC,∠1=∠ADC,则∠ABF+∠1=90°,然后证明∠1=∠AFB,从而可判断BF∥DE.【解答】(1)解:如图,BF为所作;(2)证明:∵∠A+∠ABC+∠C+∠ADC=360°,且∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴∠ABC+∠ADC=90°.∵BF平分∠ABC,DE平分∠ADC,∴∠ABF=∠ABC,∠1=∠ADC,∴∠ABF+∠1=90°.∵∠A=90°,∴∠ABF+∠AFB=90°,∴∠1=∠AFB,∴BF∥DE.故答案为:180,∠ADC,∠ABF,∠AFB.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了平行线的判定.23.【分析】先对题目中的分式进行约分化简,然后根据x是不等式组的整数解,求出x 的值,代入化简后的式子即可解答本题.【解答】解:÷(1+)﹣====,解不等式组得,1≤x<3,∵x是不等式组的整数解,∴x=1或x=2,∴当x=1时,原式=﹣1;当x=2时,原式无意义.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.24.【分析】(1)由菱形的性质得出AO=CO,AD∥BC,推出∠OCF=∠OAE,再利用“ASA”即可证明△AOE≌△COF;(2)根据菱形的性质得出,AC⊥BD,AD=4,再根据含30°角的直角三角形的性质结合勾股定理得出,,求出∠AEO=90°,从而得出,AE=3,再由全等三角形的性质得出CF=AE=3,,∠CFO=∠AEO=90°,最后由勾股定理计算即可得出答案.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OCF=∠OAE,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:∵四边形ABCD是边长为4的菱形,∠BAD=60°,∴,AC⊥BD,AD=4,∴,∴,∵∠EOD=30°,∴∠AOE=90°﹣∠DOE=60°,∴∠AEO=180°﹣∠OAE﹣∠AOE=90°,∴,∴,∵△AOE≌△COF,∴CF=AE=3,,∠CFO=∠AEO=90°,∴,∴.【点评】本题考查了菱形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、勾股定理,熟练掌握以上知识点并灵活运用是解此题的关键.25.【分析】(1)设去年A种单车购买单价为x元,则B种单车购买单价为(x+200)元,根据题意列出方程求解即可,注意分式方程需要检验;(2)先根据题意求出今年各种单车购买单价,再设今年购买A种单车y辆,则今年购买的B种单车有(60﹣y)辆,根据题意列出不等式,求出y的取值范围,再根据y的取值一一讨论方案即可.【解答】解:(1)设去年A种单车购买单价为x元,则B种单车购买单价为(x+200)元,根据题意有:,解得:x=500,经检验,x=500是原方程的解,500+200=700(元),∴去年购买一辆A种和一辆B种单车各需要500元和700元;(2)由题可得今年A种单车购买单价为500×(100%+10%)=550元,B种单车购买单价为700×(100%﹣10%)=630元,设今年购买A种单车y辆,则今年购买的B种单车有(60﹣y)辆,根据题意可得:33800≤550y+630(60﹣y)≤34000,解得:47.5≤y≤50,∴y的取值可以为48,49,50,∴有3种方案,方案一:购买A种单车48辆,则购买的B种单车60﹣48=12辆;方案二:购买A种单车49辆,则购买的B种单车60﹣49=11辆;方案三:购买A种单车50辆,则购买的B种单车60﹣50=10辆.【点评】本题考查了分式方程的实际应用和一元一次不等式组的实际应用,解题的关键是熟练掌握并运用相关知识.26.【分析】(1)过点C作CE⊥A交AD的延长线于点E,过点B作BG⊥CE于点G,则四边形ABGE是矩形,得EG=AB,BG=AE,由含30°角的直角三角形的性质得DE=400米,则BG=AE=600米,再由等腰直角三角形的性质即可得出结论;(2)由(1)可知,CE=400米,CG=BG=600米,则EG=AB=CE﹣CG≈93米,再求出AB+BC 和AD+DC的长度,比较即可.【解答】解:(1)如图,过点C作CE⊥A交AD的延长线于点E,过点B作BG⊥CE于点G,则∠CED=∠CGB=90°,四边形ABGE是矩形,∴EG=AB,BG=AE,∵∠CDE=60°,∴∠DCE=90°﹣∠CDE=30°,∴DE=CD=×800=400(米),∴BG=AE=AD+DE=200+400=600(米),∵∠CBG=45°,∴△BCG是等腰直角三角形,∴BC=BG=600≈848(米),答:步道BC的长度约为848米;(2)小王从点A经过点B到点C较近,理由如下:由(1)可知,CE=DE=400(米),CG=BG=600米,∴EG=AB=CE﹣CG=400﹣600≈693﹣600=93(米),∴AB+BC≈93+848=941(米),∵AD+DC=200+800=1000(米)>941米,∴AD+DC>AB+BC,∴小王从点A经过点B到点C较近.【点评】本题考查了解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.27.【分析】(1)根据题意得到AE,利用勾股定理得到CE,即可得到点C的坐标,再利用平行四边形性质,即可得到点D的坐标;(2)根据题意画出草图,结合角平分线性质,等腰直角三角形性质,以及正方形性质求解,即可解题.【解答】解:(1)∵AB=CD=9,BE=3,∴AE=9﹣3=6,∵AD=BC=5,CE⊥AB于E,∴,∴点C的坐标为(﹣6,4),∵AB∥CD,﹣6+9=3,∴点D的坐标为(3,4);(2)存在,∵直线PQ是第二、四象限的角平分线,M是直线PQ上一个动点,N为x轴上一点,以K、M、N、B 为顶点四边形为正方形,∴有以下几种情况,①作BM⊥x轴交直线PQ于点M,MK⊥y轴于点k,此时N与A重合,如图所示:有∠MNB=∠NMB=45°,∠MNK=∠NMK=45°,∴BN=BM=KN=KM=AB=9,即四边形KNBM为正方形,∴K点的坐标为(0,9),②K、N点在MB左侧时,构成KNBM为正方形,如图所示:∵NB=AB=9,∴AN=18,此时K点的坐标为(﹣18,9),③作BM⊥PQ于点M,∴∠BAM=∠MBA=45°,∴MB=MA,此时N与A重合,如图所示:∵四边形KNMB为正方形,连接MK交BN于点J,∵BN=9,∴,∴K点的坐标为;④取AB的中点N,过N作MN⊥x轴,交PQ于点M;过M作MK∥x轴,交过B作x轴的垂线于K点,∵N是AB中点,AB=9,∴AN=BN=,∵∠PAB=45°,MN⊥AB,∴MN=AN=BN=,∵MN⊥AB,MK∥AB,KB⊥AB,∴MNBK为正方形,∴KB=MN=,∴K点坐标为:(﹣9,).综上所述,K点的坐标为(0,9)或(﹣18,9)或或(﹣9,).【点评】本题考查坐标与图形,勾股定理,平行四边形性质,角平分线性质,等腰直角三角形性质,以及正方形性质,解题的关键在于利用数形结合的思想解决问题.28.【分析】(1)过点E作EF⊥AB,垂足为F,证△CBE是等边三角形,利用特殊角三角函数求出BC边即可;(2)过点C作CQ∥FD,交BD于点Q,根据ASA证明△FDH≌△CQH,△BAD≌△CBQ,利用等式的性质证明即可;(3)如图3,取AC中点O,连接BM,BG,MG,BO,由“SAS”可证△ABM≌△OBG,可得BM=BG,∠ABM=∠OBG,由三角形的三边关系可得BG﹣NC=MG﹣NG<MN,则当点N在线段MG上时,BG﹣NC有最大值,由勾股定理可求CN的长,即可求解.【解答】解:(1)如图1,过点E作EF⊥AB,垂足为F,∵∠EBA=∠EAB=30°,AD=2,∴EA=EB,AF=FB,AB=AD÷sin30°=4,设BC=x,则AC=2x,∴AB===x,即x=4,解得x=4,∴BC=4,∵∠EBA=∠EAB=30°,∴∠EBC=∠ECB=60°,∴△CBE是等边三角形,∴CE=BC=4;(2)过点C作CQ∥FD,交BD于点Q,∴∠DFH=∠QCH,∠FDH=∠CQH,又∵FH=CH,∴△DFH≌△QCH(ASA),∴DH=HQ,FD=CQ,∵∠ABD=30°,∴∠DAB=∠QBC=60°,∠QCB=30°,∴∠ABD=∠BCQ,∵∠CAB=45°=∠BCA,∴BA=CB,∴△BAD≌△CBQ(ASA),∴AD=BQ,BD=CQ,∴BD=FD,∴BD﹣BQ=FD﹣AD,即DQ=AF,∴DH+HQ=AF,∴2DH=AF,∴DH=AF;(3)∵∠ADB=90°,∠ABD=30°,∴∠DAB=60°,AC=2AB=4,∵∠CAB=60°,∴点D在线段AC上,∵AB=2,∠ABD=30°,∴AD=1,BD=AD=,∵将△ADB绕点A逆时针旋转得到△AMN,∴AM=AD=1,MN=BD=,AN=AB=2,∠ADB=∠AMN=90°,∠MAN=∠DAB=60°,如图3,取AC中点O,连接BM,BG,MG,BO,∵∠ABC=90°,点O是AC的中点,∴AO=BO=CO=2=AB,∴△AOB是等边三角形,∴∠AOB=60°=∠ABO,∴∠COB=120°,∵点G是CN的中点,点O是AC的中点,∴GO∥AN,GO=AN=1=AM,∴∠NAC=∠GOC,∴∠MAN+∠CAB+∠NAC=120°+∠NAC=∠GOC+∠COB,∴∠MAB=∠GOB,∴△ABM≌△OBG(SAS),∴BM=BG,∠ABM=∠OBG,∴∠ABO=∠MBG=60°,∴△BMG是等边三角形,∴MG=BG,∴BG﹣NC=MG﹣NG<MN,此时,如图4,∵CM===,∴CN=CM﹣MN=﹣,=×NC×MA=×1×(﹣)=.∴S△ANC【点评】本题是几何变换综合题,考查全等三角形的判定和性质,等边三角形的判定和性质,旋转的性质,勾股定理等知识点,确定BG=CN的最大值是解题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学期末考试模拟试卷
一.选择题(共10小题)
1.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()
A.B.C.D.
2.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm
3.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是() A.1 B.2 C.3 D.4
4.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°
5.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形 6.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=+.其中正确结论的序号是()”A.①③④B.①②③C.②③④D.①②④
7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()
A.
8.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()
A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)
9.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C
10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系图象是()
A.B.C. D.
二.填空题(共6小题)
11.将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab= .
12.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t= s 时,△PAB为等腰三角形.
13.已知实数a,b满足a2﹣a﹣6=0,b2﹣b﹣6=0(a≠b),则a+b= .
14.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为.
15.如图,四边形ABCD为
矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,
E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为.16.甲、乙两人骑车从学校出发,先上坡到距学校6千米的A地,再下坡到距学校16千米的B地,甲、乙两人行程y(千米)与时间x(小时)之间的函数关系如图所示.若甲、乙两人同时从B地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变.则下列结论:①乙往返行程中的平均速度相同;②乙从学校出发45分钟后追上甲;③乙从B地返回到学校用时1小时18分钟;④甲、乙返回时在下坡路段相遇.其中正确的结论有
三.解答题(共10小题)
17.解方程:3x(x﹣1)=2(x﹣1). 18.解方程:3x2+4x﹣7=0.
19.已知关于x的一元二次方程 x2+3x﹣m=0有实数根.
(1)求m的取值范围
(2)若两实数根分别为x1和x2,且,求m的值.
20.如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆
时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.
21.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,
4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,
并直接写出C1点的坐标;(2)作出△ABC绕点A顺时针方向旋转90°后得
到的△A2B2C2,并直接写出C2点的坐标;(3)作出△ABC关于原点O成中心
对称的△A3B3C3,并直接写出B3的坐标.
22.某校为了进一步改进本校七年级数学教学,提高学
生学习数学的兴趣,校教务处在七年级所有班级中,每
班随机抽取了6名学生,并对他们的数学学习情况进行
了问卷调查.我们从所调查的题目中,特别把学生对数
学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
23.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,
(1)求AC所在直线的解析式;
(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸
片重叠部分的面积.(3)求EF所在的直线的函数解析式.
24.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;
(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?
25.阅读与理解:
图1是边长分别为a和b(a>b)的两个等边三角
形纸片ABC和C′DE叠放在一起(C与C′重合)
的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?
26.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t 秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。

相关文档
最新文档