六年级上册数学知识点梳理及典型题(经典)

合集下载

六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)

六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量(2百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

方法与分数的方法相同。

解法:(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):百分率对应量÷对应百分率= 单位“1”的量5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。

只是结果要写为百分数形式。

看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:(比少):具体量÷(1-百分率)= 单位“1”的量;(比多):具体量÷(1+百分率)= 单位“1”的量6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

用两个数的相差量÷单位“1”的量=百分之几即①求一个数比另一个数多百分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

说明:多百分之几不等于少百分之几,因为单位一不同。

7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a ﹪)(假设原来的价格为“1”。

求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:

六年级数学上册知识点汇总及例题解析

六年级数学上册知识点汇总及例题解析

本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。

(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。

(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。

a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。

(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。

(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。

(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。

小学六年级(上册)数学总复习知识点典型例题

小学六年级(上册)数学总复习知识点典型例题

小学六年级上册数学复习资料第一单元:位置与方向(一) 用数对表示位置 女口:第三列第二行表示为(3, 2)。

一般情况下表示为(列,行)位置与方向(二) 用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北 30°方向上,距离15米。

也可以说成:小明在小华的 ___________________ 方向上,距离。

相对位置:小明在小华的东偏北 30°方向上,距离15米。

小华在小明的 _______________ 方向上,住 ___________ 。

第二单元:分数乘法1、 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

55 5 (如:- >4表示4个—是多少或—的4倍是多少。

)7 7 7 2、 一个数乘分数的意义就是求这个数的几分之几是多少。

3 3 5 2 5 2 (如: 6>—表示6的是多少;>一表示一的一是多少。

)556 56 5分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。

(能约分的先约分)小于1的数,积小于这个数,等于1的数,积等于这个数,大于1的数,积大于这个数。

1的倒数是1, 0没有倒数。

(1) 8 + 8+ 8 + 8 =()>()=()5 2 (2)12 个 6 是( );24 的 3 是( )。

1 、(3) 边长分米的正方形的周长是( )分米。

第三单元:分数除法1、 分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求 另一个因数的运算。

2、 分数除法的计算法则:被除数除以除数( 0除外)等于被除数乘除数的倒数。

13、 一个数除以真分数,商大于这个数(如:4-> 4);23一个数除以大于1的假分数,商小于这个数 (如: 3 —< 3)。

24、 两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

人教版小学六年级上册数学精品讲义第5讲 圆(思维导图 知识梳理 例题精讲 易错专练)(含答案)

人教版小学六年级上册数学精品讲义第5讲 圆(思维导图 知识梳理 例题精讲 易错专练)(含答案)

第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

在任意一个圆中都可以画出无数条半径和无数条直径。

2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。

3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。

知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。

2.测量方法:滚动法、绕绳法、直接测量法。

3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。

C=Πd或2Πr。

已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。

知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。

2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。

3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。

S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。

如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。

(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。

如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。

知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

注意:扇形的大小由圆心角的度数和半径的长短决定。

小学六年级上册数学知识点和题型

小学六年级上册数学知识点和题型

小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

②分数化简的方法是:分子、分母同时除以它们的最大公因数。

③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0). 一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

第2讲 分数混合运算-六年级上册数学讲义(思维导图+知识梳理+例题精讲+易错专练)北师大版(含答案)

第2讲 分数混合运算-六年级上册数学讲义(思维导图+知识梳理+例题精讲+易错专练)北师大版(含答案)

第2讲分数混合运算(思维导图+知识梳理+典型精讲+易错专练)一、思维导图二、知识点梳理知识点一:分数混合运算(一)1.分数混合运算的运算顺序与整数混合运算的运算顺序相同,没有括号的,按从左到右的顺序计算;有括号的,要先算括号里面的,再算括号外面的。

2.“连续求一个数的几分之几是多少”的解题方法:依据分数乘法的意义,用这个数连续乘几分之几。

知识点二:分数混合运算(二)1.“已知一个数比另一个数多(或少)几分之几,求这个数”(1)先根据分数乘法的意义,求出多(或少)的几分之几是多少,再用加(或减)法求这个数;(2)先求出另一个数占单位“1”的几分之几,再根据分数乘法的意义,用乘法计算。

2.“已知总量及一部分量占总量的几分之几,求另一部分量”(1)总量-总量×已知部分量占总量的分率=另一部分量;(2)总量×(1-已知部分量占总量的分率)=另一部分量。

知识点三:分数混合运算(三)1.“已知比一个数多(或少)几分之几的数是多少,求这个数”(1)先求比这个数多(或少)的数占这个数(即单位“1”)的几分之几,再根据分数乘法的意义列方程解答;(2)先求出比这个数(即单位“1”)多(或少)的几分之几是多少,再根据加减关系列方程解答。

2.“已知一部分量占总量的几分之几及另一部分量,求总量”把总量看作单位“1”,可以根据“总量×(1-已知部分量占总量的分率)=另一部分量”列方程解答;也可以根据“总量-总量×已知部分量占总量的分率=另一部分量”列方程解答。

三、典型精讲考点一:分数连乘【典型一】一桶油净重100千克,用去这桶油的以后,又买来这时桶里油的加进桶中,现在桶里还有90千克油.【分析】把油桶内原来油的质量看作单位“1”,用去这桶油的以后,剩下的占原来的(1),再油桶里剩下油的质量看作单位“1”,又买来这时桶里油的加进桶中,根据一个数乘分数的意义,用乘法解答.【解答】解:100×(1)+100×(1)×=100×+100×=60+30=90(千克)答:现在桶里还有90千克油.故答案为:90.【典型二】工程队要修一段400米长的路,第一天修了全长的15,第二天修的是第一天的34,第二天修了多少米?【分析】根据“第一天修了全长的15,第二天修的是第一天的34”可得:第一天修的长度=全长×1 5,第二天修的长度=第一天修的长度×34,代入数据计算即可。

【典例精讲】第7讲 百分数的应用-六年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练)

【典例精讲】第7讲 百分数的应用-六年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练)

第7讲百分数的应用(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:百分数的应用(一)1.确定单位“1”的方法:与哪个量相比,那个量就是单位“1”。

2.求一个数比另一个数多(或少)百分之几的方法:(1)先求一个数比另一个数多(或少)的具体量,再除以单位“1”的量,即两数差量÷单位“1”的量;(2)把另一个数看作单位“1”,即100%。

学问点二:百分数的应用(二)1.求“比一个数增加(削减)百分之几的数是多少”的方法:方法一:先求出增加(削减)部分的具体数量,然后用单位“1”所对应的具体数量加上(减去)增加(削减)部分的具体数量。

方法二:先求出增加(削减)后的数量是单位“1”的百分之几,然后用单位“1”所对应的具体数量乘这个百分数。

2.成数的意义。

在工农业生产和日常生活中经常用到成数,成数可以表示各行各业的进展变化状况。

“几成”就是格外之几,也就是百分之几十。

3.解决成数问题的方法。

解决成数的问题,关键是先将成数转化为百分数,然后依据百分数问题的解法进行解答。

学问点三:百分数的应用(三)1.已知两个部重量的差(和)及两个部重量对应的百分数,求总量,这类问题用方程解有两种方法:(1)A%x±B%x=两个部重量的差(和);(2)(A%±B%)x=两个部重量的差(和)。

(x代表总量;A%代表较大的部重量所占的百分数;B%代表较小的部重量所占的百分数)2.用方程解“已知比一个数增加百分之几的数是多少,求这个数”的问题有两种解答方法:(1)单位“1”的量×(1+比单位“1”多的百分率)=已知量;(2)单位“1”的量+单位“1”的量×比单位“1”多的百分率=已知量。

3.用方程解“已知一个部重量占总量的百分之几及另一个部重量,求总量”的问题有两种解答方法:(1)总量×(1-已知部重量占总量的百分率)=另一部重量;(2)总量-总量×已知部重量占总量的百分率=另一部重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如: 98×75表示求98的75是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

●典型题:(四)分数混合运算的运算顺序和整数的运算顺序相同。

●典型题:(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图。

(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几分之几 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(分率)=分率对应量 ●典型题: 看图列式计算。

解决问题。

1、甲乙两地相距420千米,一辆汽车行驶了全程的75,行驶了多少千米?2、一个果园占地20公顷,其中的52种苹果树,41种梨树,苹果树和梨树各种了多少公顷? 3、某鞋店进来皮鞋600双。

第一周卖出总数的51,第二周卖出总数的83。

⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?4、六年级同学给灾区的小朋友捐款。

六一班捐了500元,六二班捐的是六一班的54,六三班捐的是六二班的89。

六三班捐款多少元? 5、一件西服原价180元,现在的价格比原来降低了51,现在的价格是多少元? 6、希望小学三年级有学生216人,四年级人数比三年级多92,四年级有学生多少人?第二单元位置与方向课前回顾:(1)、用方位词描述物体的大体的位置。

(2)、路程、时间、速度之间的关系。

(3)、画角时注意事项。

概念整理:(1)、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。

以谁为参照物,就以谁为观测点。

(2)、东偏北30度,也可以说成北偏东60度,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

(3)、主方向。

例如“北偏西”中“北”定为主方向(4)、确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

(5)、A 在B 的某个方向,B在A 的相反方向。

(6)、观测点转换。

从一个地点到另一个地点,中间要经过一个或多个地点,那么观测点也依次转换。

例题:1、描述方向时以( )为主方向,用东偏北(南)或西偏北(南)多少度来描述。

2、确定物体位置的两个要素( )和( )。

3、商店在超市的南偏西40度,也可说( )偏()()度。

4、小明家在学校的西偏南,那么学校在小明家的()。

在平面图上画出物体位置的方法:1、确定观测点。

2、画出主方向。

3、并用量角器测量出被观测物体所在的方向(角度);4、绘制平面图时,要根据实际距离确定好单位长度,即线段代表多长距离。

5、画出物体的距离,标上名称。

例题:1、游乐园在公园的东偏南30度,画出游乐园的位置。

注:描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。

两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。

如:游乐园在公园的东偏南30度600米处,那么公园就在游乐场的南偏东30度600米处。

描述物体移动路线的方法及画法:描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。

以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离。

绘制路线图的步骤:1、画出↑北,确定方向标和单位长度比例尺2、确定起点的位置。

3、根据描述,从起点出发,找好方向和距离,一段一段地画。

画每一段都要以每一段新的起点为观测点4、以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。

5、标出数据、名称、角度。

(绘制的路线图只有一条线,所作的线是首尾相连的)例题:“1路公共汽车从起点站向西偏北40°行驶3km后向西行驶_4km,最后向南偏西30°行驶3km到达终点站。

”(1)根据上面的描述,把公共汽车行驶的路线图画完整。

(2)根据路线图,说一说公共汽车沿原路返回时所行驶的方向和程。

第三单元 分数除法倒数:1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

因为1×1=1;0乘任何数都得0, (分母不能为0)4、对于任意数a(a ≠0),它的倒数为a 1;分数b a 的倒数是ab 。

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

典型题:1、(1)、( )的两个数互为倒数。

(2)、65的倒数是( );1.7的倒数是 ( );411的倒数是;( );1的倒数是( );0( )倒数。

(3)、( )×31=6×( )=( )×32=1×( )=a×( )=1(4)、5的倒数与10的倒数比较,( )的倒数大于( )的倒数。

(5)、当a=( )时,a 的倒数与a 的值相等。

真分数的倒数( )1;假分数的倒数( )1;带分数的倒数( )1。

分数除法的意义和计算法则:1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于 0),商大于被除数; (3)、当除数等于1,商等于被除数;4、 分数乘除混合运算顺序:从左到右依次计算。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

典型题:1、填空:(1)2÷65的意义是( )。

(2)根据72×3=76写出两道除法算式( )( )(3) 3÷32 3 31÷85 3158÷1 582、计算: 30÷125 2521÷14367÷94÷2858÷78×143、一张长方形纸的面积是4平方分米,宽是149分米。

这张纸的长是多少分米?4、仓库里有一批稻谷,第一次取出240千克,正好占总数的61。

第二次取出总数的53,第二次取出了多少千克?分数除法解决问题1、已知单位“1”的几分之几是多少,单位“1”的量是要求的问题。

就用除法。

数量关系式和分数乘法解决问题中的关系式相同:(1)、分率前是“的”:单位“1”的量×分率=分率对应量(2)、分率前是“多或少”的意思: 单位“1”的量×(1 +-分率)=分率对应量 2、解法:(建议:最好用方程解答)(1)、方程:根据数量关系式设未知量为X,用方程解答。

(2)、算术(用除法): 分率对应量÷对应分率 = 单位“1”的 3、和(差)倍问题4、工程问题5、求一个数是另一个数的几分之几:就是 一个数÷另一个数 。

6、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数–1 或(大数-小数)÷比后面的数 ②求少几分之几:1 - 小数÷大数或(大数-小数)÷比后面的数。

典型题: 1、填空(1)、“男生占全班人数的95”,把( )看作单位“1”,数量关系式:( )×95=( )。

(2)、“男生比女生多31”,把( )看作单位“1”,数量关系式:( )×(131)=( )。

(3)、甲数是8,乙数是10,甲数是乙数的( ),乙数是甲数的( ),甲数比乙数少( ),乙数比甲数多( )。

2、美术班有男生20人,是女生人数的65。

女生有多少人?3、一台彩电,现价1800元,比原来降低了61。

原来的售价是多少元?第四单元 比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如: 15 :10 = 15÷10 =23 (比值通常用分数表示,也可以用小数或整数表示) 1 5 ∶ 1 0 = 23前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例: 路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、 比和除法、分数的联系:比 : 前 项 比 号 “:” 后 项 比 值除 法 : 被除数 除 号 “÷” 除 数 商分 数: 分 子 分数线 “—” 分 母 分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

(注:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

)(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

相关文档
最新文档