2015广工操作系统实验报告(文档最后含源码下载地址)
操作系统实验报告(全)

操作系统实验报告书院系名称:电子工程学院电子指导教师:班级:学号:学生姓名:实验题目一:进程一、实验目的通过观察、分析实验现象,深入理解进程及进程在调度执行和内存空间等方面的特点,掌握在POSIX 规范中fork和kill系统调用的功能和使用。
二、实验内容(1)补充POSIX 下进程控制的残缺版实验程序(2)回答下列问题:1. 你最初认为运行结果会怎么样?2. 实际的结果什么样?有什么特点?试对产生该现象的原因进行分析。
3. proc_number 这个全局变量在各个子进程里的值相同吗?为什么?4. kill 命令在程序中使用了几次?每次的作用是什么?执行后的现象是什么?5. 使用kill 命令可以在进程的外部杀死进程。
进程怎样能主动退出?这两种退出方式哪种更好一些?三、实验步骤1.根据题意进入DOC环境中编写程序。
2.编译,链接,运行程序,进行调试。
3.分析实验结果及回答问题。
四、调试情况,回答问题及体会1、对自己设计进行评价,指出合理和不足之处,提出改进的方案。
2、在设计过程中的感受。
调试情况:回答上述实验内容中的问题1.预期结果:会持续输出0-9号进程,直到输入数字键+回车,则会杀死该进程,接下来的输出将不会有该进程号,当输入q+回车,则退出程序。
2.实际结果:与预期差不多,因输入进程总数20大于设定的最大进程数,因此按进程数10来处理。
随机输出0-9号进程,sleep(SLEEP_INTERV AL),循环输出,直到输入数字键,则会杀死该数字对应的进程,直到输入q退出循环,然后杀死本组所有进程。
分析:每创建一个子进程时,将其pid存储在pid[i]中,i存储在proc_number,然后调用死循环函数do_something(),输出该进程的代号proc_number;当输入数字键时,主进程会执行kill(pid[ch-'0'],SIGTERM),从而杀死(ch-‘0’)号进程。
2015广工编译原理课程设计报告(文档最后含源码下载地址)

课程设计课程名称___编译原理__________题目名称___PL/0编译器的扩充 __ 学生学院___计算机学院_________专业班级_计算机科学与技术13(9)学号学生姓名指导教师___林志毅________________ 2016 年1 月2 日一、 已完成的内容:(1) 扩充赋值运算:*= 和 /=(2) 扩充语句(Pascal 的FOR 语句)FOR <变量>:=<表达式>STEP<表达式>UNTIL<表达式>Do<语句>(3) 增加类型:①字符类型;②实数类型。
(4) 增加注释; 多行注释由/*和*/包含,单行注释为//二、 实验环境与工具(1)计算机及操作系统:PC 机,Windows7(2)程序设计语言:C++(3)使用软件Borland C++ Builder 6.0(4)教学型编译程序:PL/0三、 具体实现:1. 扩充赋值运算:*= 和 /=(1) 语法树(2) 修改GetSym()方法(写出修改的代码)else if(CH=='*') {GetCh();if(CH=='=') { SYM=TIMESBECOMES; GetCh(); }else SYM=TIMES;} else if(CH=='/') {GetCh();if(CH=='=') { SYM=SLASHBECOMES; GetCh(); }(3) 修改STATEMENT ()方法(写出修改的代码)case IDENT:i=POSITION(ID,TX); if (i==0) Error(11);else if (TABLE[i].KIND==VARIABLE || TABLE[i].KIND==FLOATTYPE) { /*ASSIGNMENT TO NON-VARIABLE*/GetSym();if (SYM==BECOMES|| SYM==TIMESBECOMES || SYM==SLASHBECOMES||SYM==PLUSBECOMES||SYM==MINUSBECOMES) {RELOP=SYM;if(SYM!=BECOMES) { //若为除等于(或其他类似符号)则先把符号左边的变量值放入栈中GEN(LOD,LEV-TABLE[i].vp.LEVEL,TABLE[i].vp.ADR);}GetSym();} else Error(13);EXPRESSION(FSYS,LEV,TX);if(RELOP==TIMESBECOMES) {GEN(OPR,0,4);} else if(RELOP==SLASHBECOMES) {GEN(OPR,0,5);} else if(RELOP==PLUSBECOMES) {GEN(OPR,0,2);} else if(RELOP==MINUSBECOMES) {GEN(OPR,0,3);}GEN(STO,LEV-TABLE[i].vp.LEVEL,TABLE[i].vp.ADR);}(4)运行测试(测试的PL0源码扩充单词的测试并贴运行结果截图)PL0源码:PROGRAM EX01;VAR A,B,C,D;BEGINA:=16;A/=2;WRITE(A); //结果为8B:=4;B*=2;WRITE(B); //结果为8C:=6;C+=2;WRITE(C); //结果为8D:=10;D-=2;WRITE(D); //结果为8END.(5)运行结果:(6)出现的问题及解决开始时在实现/=和*=操作时,*=的实现很顺利,而/=却一直没有得到理想的结果,通过与同学的讨论得知代码中除号指令的解析中,其实为除余操作,于是将%改为/,但是结果还是错误,经过调试发现是两个相除的数在栈中的位置相反了,正确的状态应该是除数位于次栈顶,而被除数位于栈顶。
《操作系统》实验报告

《操作系统》实验报告一、实验目的操作系统是计算机系统中最为关键的组成部分之一,本次实验的主要目的是深入理解操作系统的基本原理和功能,通过实际操作和观察,熟悉操作系统的核心概念,包括进程管理、内存管理、文件系统和设备管理等,提高对操作系统的实际应用能力和问题解决能力。
二、实验环境本次实验在以下环境中进行:操作系统:Windows 10开发工具:Visual Studio 2019编程语言:C++三、实验内容1、进程管理实验进程是操作系统中最基本的执行单元。
在这个实验中,我们使用C++编写程序来创建和管理进程。
通过观察进程的创建、执行和结束过程,理解进程的状态转换和资源分配。
首先,我们编写了一个简单的程序,创建了多个子进程,并通过进程标识符(PID)来跟踪它们的运行状态。
然后,使用等待函数来等待子进程的结束,并获取其返回值。
在实验过程中,我们发现进程的创建和销毁需要消耗一定的系统资源,而且进程之间的同步和通信需要谨慎处理,以避免出现死锁和竞争条件等问题。
2、内存管理实验内存管理是操作系统的核心功能之一,它直接影响系统的性能和稳定性。
在这个实验中,我们研究了动态内存分配和释放的机制。
使用 C++中的 new 和 delete 操作符来分配和释放内存。
通过观察内存使用情况和内存泄漏检测工具,了解了内存分配的效率和可能出现的内存泄漏问题。
同时,我们还探讨了内存分页和分段的概念,以及虚拟内存的工作原理。
通过模拟内存访问过程,理解了页表的作用和地址转换的过程。
3、文件系统实验文件系统是操作系统用于管理文件和目录的机制。
在这个实验中,我们对文件的创建、读写和删除进行了操作。
使用 C++的文件流操作来实现对文件的读写。
通过创建不同类型的文件(文本文件和二进制文件),并对其进行读写操作,熟悉了文件的打开模式和读写方式。
此外,还研究了文件的权限设置和目录的管理,了解了如何保护文件的安全性和组织文件的结构。
4、设备管理实验设备管理是操作系统与外部设备进行交互的桥梁。
广工操作系统2015的实验报告材料

实验报告课程名称操作系统实验学生学院计算机学院专业班级计算机科学与技术学号学生姓名指导教师孙为军2015 年 12 月30日实验一进程调度一、实验目的编写并调试一个模拟的进程调度程序,以加深对进程的概念及进程调度算法的理解.二、实验内容1.采用“短进程优先”调度算法对五个进程进行调度。
每个进程有一个进程控制块( PCB)表示。
进程控制块可以包含如下信息:进程名、到达时间、需要运行时间、已用CPU时间、进程状态等等。
2.每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。
每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。
重复以上过程,直到所要进程都完成为止。
三、实现思路先考虑实现进程调度所需要的数据结构,然后根据所需要的算法进行设计。
四、主要的数据结构进程控制块PCB:struct pcb {char name[10];char state;int ntime;int rtime;struct pcb* link;}*ready=NULL,*p;五、算法流程图六、运行与测试输入进程信息:输入完毕,显示当前运行以及就绪的进程:优先运行短进程七、改进的方向界面比较难看,可以中文化信息。
实验二作业调度一、实验目的用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。
二、实验内容1.写并调试一个单道处理系统的作业等待模拟程序。
2.作业等待算法:分别采用先来先服务(FCFS)、响应比高者优先(HRN)的调度算法。
3.由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的 CPU时限等因素。
4.每个作业由一个作业控制块JCB表示,JCB可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。
广东工业大学 操作系统实验报告

char state;
int super;
int ntime;
int rtime;
struct pcb* link;
}*ready=NULL,*p;
typedef struct pcb PCB;
//////////////////////////////////////////////////////////////
}
}
//////////////////////////////////////////////////////////////
input()/* 建立进程控制块函数*/
{
int i,num;
system("cls");
printf("\n 请输入进程号?");
scanf("%d",&num);
for(i=0;i<num;i++)
printf("%s\t",pr->name);
printf("%c\t",pr->state);
printf("%d\t",pr->super);
printf("%d\t",pr->ntime);
printf("%d\t",pr->rtime);
printf("\n");
}
////////////////////////////////////////////////
while(second!=NULL)
{
if((p->super)>(second->super))
操作系统课程设计实验报告(附思考题答案)

操作系统课程设计实验报告(附思考题答案)课程设计(综合实验)报告( 2015 -- 2016 年度第 1 学期)名称:操作系统综合实验题目:oslab综合实验院系:计算机系班级:学号:学生姓名:指导教师:设计周数:分散进行成绩:日期:2015 年10 月29 日一、综合实验的目的与要求1. 理解和掌握操作系统的基本概念、基本组成与工作原理;2. 理解和掌握操作系统中主要功能模块的工作原理及其实现算法;3. 掌握软件模块设计技能;熟悉并能较好地利用软件开发环境独立编程、调试和分析程序运行情况,逐渐形成创新思维和从事系统软件的研究和开发能力。
二、实验正文实验1:实验环境的使用1.1实验目的:1.熟悉操作系统集成实验环境OS Lab 的基本使用方法。
2.练习编译、调试EOS 操作系统内核以及EOS 应用程序。
1.2实验内容:1.启动OS Lab2.学习OS Lab 的基本用法● 新建 Windows 控制台应用程序项目(1)在“文件”菜单中选择“新建”,然后单击“项目”。
(2)在“新建项目”对话框中,选择项目模板“控制台应用程序(c)”。
(3)在“名称”中输入新项目使用的文件夹名称“oslab ”。
(4)在“位置”中输入新项目保存在磁盘上的位置“C:\test ”。
(5)点击“确定”按钮。
● 生成、执行项目●3.EOS 内核项目的生成和调试● 新建 EOS 内核项目并按F7生成项目● 调试项目● 查看软盘镜像文件中的内容、EOS SDK (Software Development Kit )文件夹4.EOS 应用程序项目的生成和调试● 新建 EOS 应用程序项目● 修改 EOS 应用程序项目名称使用断点中断执行查看变量的值5.退出OS Lab6.保存EOS内核项目1.3思考与练习●在实验1中,生成EOS SDK文件夹的目的和作用是什么?答:SDK文件夹中提供了开发EOS应用程序需要的所有文件。
debug文件夹是在使用debug配置生成项目时生成的,其中存放了调试版本的EOS二进制文件。
操作系统文件系统实验报告后附源代码

目录1 课程设计简介 (1)1.1 课程设计的目的 (1)1.2 课程设计内容 (1)2 数据结构的设计 (2)2.1 预定义 (2)2.2 结构体 (2)2.3 全局变量和函数 (2)3 功能模块(或算法)描述 (5)3.1 模块划分 (4)3.2 模块流程图 (6)4 程序运行结果 (8)5心得体会 (9)参考文献 (10)附源代码 (11)1 课程设计简介1.1 课程设计的目的课程设计目的使学生熟悉文件管理系统的设计方法;加深对所学各种文件操作的了解及其操作方法的特点。
通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。
同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力。
1.2 课程设计内容课程设计内容设计一个简单的多用户文件系统。
即①在系统中用一个文件来模拟一个磁盘;②此系统至少有:Create、delete、open、close、read、write等和部分文件属性的功能。
③实现这个文件系统。
④能实际演示这个文件系统。
基本上是进入一个界面(此界面就是该文件系统的界面)后,可以实现设计的操作要求。
1)设计一个10个用户的文件系统,每次用户可保存10个文件,一次运行用户可以打开5个文件。
2)程序采用二级文件目录(即设置主目录MFD)和用户文件目录(UFD)。
另外,为打开文件设置了运行文件目录(AFD)。
3)为了便于实现,对文件的读写作了简化,在执行读写命令时,只需改读写指针,并不进行实际的读写操作。
4)因系统小,文件目录的检索使用了简单的线性搜索。
5)文件保护简单使用了三位保护码:允许读写执行、对应位为1,对应位为0,则表示不允许读写、执行。
6)程序中使用的主要设计结构如下:主文件目录和用户文件目录(MFD、UFD),打开文件目录(AFD)即运行文件目录,如图5.1所示。
2 数据结构的设计2.1 预定义#define BLOCKSIZ 512 //磁盘块的大小#define DA TABLKNUM 512 //数据块的数目#define BLKGRUPNUM 50 //数据块组包含多少数据块#define P_N_BLOCKS 15 //inode节点中指向数据块的指针个数#define GROUPNUM DATABLKNUM/BLKGRUPNUM+1 //数据块组组数#define DINODESIZ 512 //磁盘i结点区的大小(空间32×512)#define DINODENUM 32 //磁盘i结点区的块数#define SYSOPENFILE 40#define DIRNUM 32 //一个目录下的最多目录和文件的总和数#define DIRSIZ 14 //文件、目录名的长度(字节)#define UPWDSIZ 15 //密码的长度#define UNAMSIZ 15 //用户名的长度#define PWDSIZ sizeof(struct pwd) //密码结构的长度#define PWDNUM BLOCKSIZ/PWDSIZ //密码数据空间的大小(pwd为单位)#define NOFILE 20 //一个用户最多可以打开的文件数目#define DINODESTART 4*BLOCKSIZ//i结点区的开始地址-inodes table ,1引导2超块3block bitmap 4inode bitmap#define DA TASTART (2+DINODENUM)*BLOCKSIZ //数据区的开始地址#define DATASTARTNO 36 //数据区开始指针#define DIMODE_EMPTY 00000/*可以用的空间*/#define DIMODE_FILE 00001#define DIMODE_DIR 00002#define DIMODE_PASSWD 00004#define GRUP_0 0 //管理员组#define GRUP_1 1#define GRUP_2 2#define GRUP_4 42.2 结构体//磁盘i结点结构,struct inode{// char di_name[DIRSIZ];unsigned __int16 di_ino; /*磁盘i节点标识*/unsigned __int16 di_number; /*关联文件数,当为0时表示删除文件*/unsigned __int16 di_mode; /*存取权限*/unsigned __int16 di_uid; /*磁盘i节点用户id*/unsigned __int16 di_gid; /*磁盘i节点权限组id*/ //1管理员组2用户组unsigned __int32 di_size; /*文件大小*/unsigned __int32 di_ctime; /* Creation time */unsigned __int32 di_mtime; /* Modification time */unsigned __int16 di_block[P_N_BLOCKS]; /* 一组block 指针*/};// 目录项结构struct direct{char d_name[DIRSIZ]; /*目录名(14字节)*/__int16 d_ino; /*目录号*/};//超级快结构struct super_block{unsigned __int16 s_inodes_count; /* inodes 计数*/unsigned __int16 s_blocks_count; /* blocks 计数*/unsigned __int16 s_r_blocks_count; /* 保留的blocks 计数*/unsigned __int16 s_free_blocks_count; // 空闲的blocks 计数unsigned __int16 s_free_inodes_count; /* 空闲的inodes 计数*/unsigned __int16 s_free_blocks_group[GROUPNUM];//新增一个数组来记录每个数据块组中的空闲数据块计数unsigned __int16 s_first_data_block; /* 第一个数据block */unsigned __int16 s_log_block_size; /* block 的大小*/unsigned __int16 s_blocks_per_group; /* 每block group 的block 数量*/unsigned __int16 s_inodes_per_group; /* 每block group 的inode 数量*/};// 用户密码struct pwd{unsigned __int8 p_uid;unsigned __int8 p_gid;char username[UNAMSIZ];/*用户名新加的*/char password[UPWDSIZ];};// 目录结构struct dir{struct direct direct[DIRNUM];__int16 size;};2.3 全局变量和函数// 全局变量unsigned __int8 di_bitmap[DINODENUM]; // 硬盘inode节点位图1表示已使用0表示未使用unsigned __int8 bk_bitmap[DA TABLKNUM]; // 数据块block位图struct super_block filsys; //超级块struct pwd pwd[PWDNUM];FILE *fd; //文件指针struct inode *cur_inode; //i节点当前目录指针struct inode *inodetemp; //i节点指针const char fsystemname[20]="Linux.EXT2"; //模拟硬盘的文件名struct direct dir_buf[BLOCKSIZ / sizeof(struct direct)]; //目录数组char cmdhead[20];//cmd 的头表示所在哪个文件夹、int i_lock=0;//inode位图锁可能会多线程int b_lock=0;//block位图锁struct pwd *cur_user;/* 全局函数*/extern int Format();//格式化磁盘extern int Install();//启动,安装文件系统struct inode * read_inode(int);//install里面读取文件dinodestruct direct * read_dir_data(int);//读取存储文件夹的物理块extern void showdir();//命令dirint Enterdir(char[]);//进入某个文件夹命令-- cd 文件名int Fd_dirfile(char[]);//查找当前目录里的文件没找到返回-1 找到返回inode号int Iscmd(char[]);//判断是否两个字符串的命令void two_cmd(char[],char[]);//两个字符串的命令int creat(char[]);//创建文件void changeinode();//交换指针char * ReadFile(char[]);//读取文件int mkdir(char[]);//创建文件夹void showbitmap();//显示位图int deletefd(char[]);//删除文件int editfile(char[]);//编辑文件int rename(char[]);//重命名void showhelp();//命令帮助void login();void logout();int access();//权限判断/*磁盘i节点的分配与释放(当一个新文件被建立的时候,在给该文件分配磁盘存储区之前,应为该文件分配存放该文件说明信息的磁盘i节点,当从文件系统中删除某个文件时,应首先删除它的磁盘i节点项。
2015广工操作系统课程设计报告之磁盘调度(附java源代码)

《操作系统》课程设计磁盘调度算法学 院 计算机学院 专 业 计算机科学与技术 学 号 姓 名指导教师孙为军日期2016年1月2日操作系统课程设计任务书说明:本表由指导教师填写,由系主任审核后下达给选题学生,装订在设计(论文)首页一、设计思想说明1.1 设计环境开发平台:eclipse Version: Luna Service Release 1 (4.4.1) Build id: 20140925-1800开发环境:Windows10 操作系统Java版本:java version “1.8.0_25”java<TM> SE Runtime Environment <build 1.8.0_25-b18>java HotSpot(TM) 64-Bit Server Vm <Build 25.25-b02,mixed mode>1.2 设计思想1.先到先服务算法(FCFS)这是一种比较简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。
2.最短寻道时间优先调度算法(SSTF)该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。
其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。
在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。
3.扫描算法(SCAN)扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实验报告学生学院____ 计算机学院______专业班级 13级计科9学 号学生姓名指导教师 李敏2015 年 12 月 29 日实验一进程调度实验一、实验目的用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解。
二、实验内容和要求设计一个有N个进程共行的进程调度程序。
要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程),时间片轮转算法,多级反馈队列调度算法这三种算法。
每个进程有一个进程控制块(PCB)表示。
进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。
进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。
就绪进程获得CPU后都只能运行一个时间片。
用已占用CPU时间加1来表示。
如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。
每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。
重复以上过程,直到所要进程都完成为止。
三、实验主要仪器设备和材料实验环境硬件环境:IBM-PC或兼容机软件环境:C++、C语言编程环境四、实验方法1、编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对五个进程进行调度。
“最高优先数优先”调度算法的基本思想是把CPU分配给就绪队列中优先数最高的进程。
静态优先数是在创建进程时确定的,并在整个进程运行期间不再改变。
动态优先数是指进程的优先数在创建进程时可以给定一个初始值,并且可以按一定原则修改优先数。
例如:在进程获得一次CPU后就将其优先数减少1。
或者,进程等待的时间超过某一时限时增加其优先数的值,等等。
2、编写并调试一个模拟的进程调度程序,采用“轮转法”调度算法对五个进程进行调度。
轮转法可以是简单轮转法、可变时间片轮转法,或多队列轮转法。
简单轮转法的基本思想是:所有就绪进程按FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片相同。
如果运行进程用完它的时间片后还为完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。
直至所有的进程运行完毕。
3、多级反馈队列调度算法的基本思想是:当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。
当轮到该进程执行时,如能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行,以此类推。
五、程序流程图(一个实验有多个算法的应该分别给出)1、“最高优先数优先”调度算法(已在模板中给出)2、“轮转法”调度算法3、多级反馈队列调度算法六、各程序之间的调用关系1、“最高优先数优先”调度算法(已在模板中给出)2、“轮转法”调度算法3、多级反馈队列调度算法七、重要数据结构或源程序中疑难部分的说明,需附详细注释1、“最高优先数优先”调度算法(已在模板中给出)2、“轮转法”调度算法typedef struct pcb{char name[10];//进程名int time; //进程的总时间int runtime;//进程已经占用的cpu时间int needtime;//进程还需要的时间char state;//进程运行状态:w(wait) or r(runing)struct pcb *next;}pcb,*PCB;3、多级反馈队列调度算法typedef struct pcb{char name[10];//进程名int time; //进程的总时间int runtime;//进程已经占用的cpu时间int needtime;//进程还需要的时间char state;//进程运行状态:w(wait) or r(runing)struct pcb *next;}pcb,*PCB;typedef struct queue{char name[10];int timeSlice; //时间片的大小PCB mPcb;struct queue *next;}queue, *QUEUE;八、程序运行结果1、“最高优先数优先”调度算法(已在模板中给出)2、“轮转法”调度算法测试数据:进程名进程所需时间时间片aa 3 2bb 4 2cc 5 2dd 6 2ee 7 23、多级反馈队列调度算法测试数据:队列名时间片QueueA 2QueueB 4QueueA 8进程名进程所需时间aa 3bb 4cc 5dd 6ee 7九、结果分析与实验小结通过实验可知,“最高优先数优先”调度算法是通过最高优先数来排列进程的执行顺序,可以满足普遍的进程,但缺点较大,可能出现优先级低的进程长期无法执行。
“轮转法”调度算法则是规定每个进程在规定的时间片内运行进程,可以使进程非常公平地执行,但若出现优先级较高的程序则无法优先执行。
多级反馈队列调度算法则是通过较好地满足各种类型进程的需要来分配进程调度,是目前公认的一种比价好的进程调度算法。
实验二作业调度一、实验目的本实验要求学生模拟作业调度的实现,用高级语言编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解。
二、实验内容和要求1、为单道批处理系统设计一个作业调度程序1)编写并调试一个单道处理系统的作业等待模拟程序。
2)作业调度算法:分别采用先来先服务(FCFS)、最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。
3)由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的CPU时限等因素。
4)每个作业由一个作业控制块JCB表示,JCB可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。
作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。
每个作业的最初状态总是等待W。
5)对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间,并比较各种算法的优缺点。
1、模拟批处理多道操作系统的作业调度1)编写并调试一个作业调度模拟程序。
2)作业调度算法:分别采用先来先服务(FCFS)和短作业优先调度算法。
3)在批处理系统中,要假定系统中具有的各种资源及数量,调度作业时必须考虑到每个作业的资源要求,所需要的资源是否得到满足。
作业调度程序负责从输入井选择若干个作业进入主存,为它们分配必要的资源,当它们能够被进程调度选中时,就可占用处理器运行。
作业调度选择一个作业的必要条件是系统中现有的尚未分配的资源可满足该作业的资源要求。
但有时系统中现有的尚未分配的资源即可满足某个作业的要求也可满足其它一些作业的要求,那么,作业调度必须按一定的算法在这些作业中作出选择。
当作业正常运行完毕或因发生错误非正常终止时,作业进入完成状态,此时,系统将收回该作业所占用的全部资源,并清除有关的JCB。
并输出显示作业运行情况及作业输出结果。
三、实验主要仪器设备和材料实验环境硬件环境:IBM-PC或兼容机软件环境:C++、C语言编程环境四、实验方法1、编写并调试一个单道处理系统的作业等待模拟程序。
假设在单道批处理环境下有四个作业JOB1、JOB2、JOB3、JOB4,已知它们进入系统的时间、估计运行时间。
分别采用先来先服务(FCFS)、最短作业优先(SJF)、响应比高者优先(HRN)的调度算法,计算出作业的平均周转时间和带权平均周转时间。
五、程序流程图(一个实验有多个算法的应该分别给出)1.1 单道先来先服务算法1.2单道短作业优先算法1.3单道高相应比优先调度算法六、各程序之间的调用关系(1)单道作业调度(2)多道作业调度七、重要数据结构或源程序中疑难部分的说明,需附详细注释(1)单道作业调度typedef struct jcb{char name[10]; //作业名int startTime; //开始时刻int needTime; //所需时间int finishTime; //完成时刻int period; //周转时间float wPeriod; //带权周转时间float rp; //相应比: (等待时间+要求服务时间)/要求服务时间char state; //状态struct jcb *next;//下一个指针}jcb, *JCB;(2)多道作业调度typedef struct jcb{char name[10]; //作业名int startTime; //开始时刻int needTime; //所需时间int finishTime; //完成时刻int needMemory; //所需内存int needSource; //所需资源(磁带机台数)char state; //状态struct jcb *next;//下一个指针}jcb, *JCB;八、程序运行结果1.单道调度(1)单道先来先服务算法测试数据:JOB1 3JOB2 9JOB3 2JOB4 8(2)单道短作业优先算法测试数据:JOB1 20JOB2 49JOB3 25JOB4 67(3)单道高相应比优先调度算法测试数据:JOB1 4JOB2 9JOB3 5JOB4 72.多道调度注:测试数据均来自实验要求提供的数据,主存是100,磁带机是10 (1)多道先来先服务算法(2)多道短作业优先算法九、结果分析与实验小结通过本实验,在进行单道作业调度时,我们采用了三种调度算法,分别是FCFS算法,SJF算法和HRRN算法,这几个算法都有各自的优点,FCFS算法是针对顺序作业队列的,而SJF算法则是对短作业算法优先执行,HRRN算法是综合了两个的考虑,来进行平衡。
在多道作业调度过程中,则不仅要考虑所需时间,更要考虑所需内存和资源,因为在多道作业调度中,各个作业是并发执行的,所以当一个作业调度完成后,将会释放资源和内存,从而满足其他作业的调度。
通过这个实验,我感觉FCFS算法是作业调度的基础,而其他算法则是建立在它的基础中不断优化的算法。
实验三存储管理实验一、实验目的1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。
熟悉虚存管理的各种页面淘汰算法。