产甲烷菌的生态多样性

合集下载

2022年锦州医科大学医疗学院食品科学与工程专业《微生物学》期末试卷B(有答案)

2022年锦州医科大学医疗学院食品科学与工程专业《微生物学》期末试卷B(有答案)

2022年锦州医科大学医疗学院食品科学与工程专业《微生物学》期末试卷B(有答案)一、填空题1、产甲烷细菌的细胞壁不含______,它属于______。

2、艾滋病全名为______,其病原体称为______,英文简写为______。

3、以一种______作氢供体,而以另一种______作氢受体而实现生物氧化产能的独特发酵类型,称为Stickland反应。

此反应的产能效率很______,每分子______仅产______ATP。

4、在配制异养微生物培养基时,常用的生长因子来源是______、______、______或______等。

5、真菌细胞壁的主要成分是______,另有少量的蛋白质和脂类。

低等真菌的细胞壁成分以______为主,酵母菌以______为主,而高等陆生真菌则以______为主。

6、在经典遗传学发展至分子遗传学过程中,有四种模式微生物发挥了重大作用,它们是① ______,② ______,③ ______,④ ______。

7、最常见的厌氧菌有① ______,② ______,③ ______,④ ______,⑤ ______,⑥ ______等。

8、根瘤菌的三种特性是指______、______和______。

9、线粒体的核糖体在大小上类似于原核生物的核糖体,线粒体与细菌之间的近缘关系,支持真核的细胞器(线粒体、叶绿体)是由______演化出来的假设。

10、决定传染结局的三大因素是______、______和______。

二、判断题11、固氮菌等的孢囊,除其形成方式与芽孢不同外,其功能(休眠、抗热性)与芽孢相同。

()12、病毒、类病毒和朊病毒因其是活细胞内寄生物,不能在人工培养基上培养,故属于难养菌。

()13、在肽聚糖的合成过程中,甲、乙两个肽尾间的交联是由转肽酶的转肽作用完成的。

()14、大肠杆菌噬菌体靠尾部的溶菌酶溶解寄主细胞壁后靠尾鞘收缩将DNA注入寄主细胞。

()15、真核微生物的“9+2”型鞭毛,指的是其鞭杆和基体的横切面都显示出外围有9个微管二联体,中央为2条中央微管。

基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析_刘春

基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析_刘春
中图分类号: X172 文献标识码: A 3301 ( 2011 ) 04111406 文章编号:0250-
Analysis of Methanogenic Community of Anaerobic Granular Sludge Based on mcrA Gene
LIU Chun 1 ,LI Liang 1 ,MA Jun-ke 1 ,WU Gen 2 ,YANG Jing-liang 1
,而 且 多 数 研 究 都 是 基 于
16S rRNA 基因 . 有研究认为, 基 于 16S rRNA 基 因 的 PCR 引物对 产 甲 烷 菌 群 的 特 异 性 会 受 到 产 甲 烷 菌 群自身系统发育多样性的影响, 因而 mcrA 基因在产 甲烷菌群分析中逐渐受到关注
[ 14 , 15 ]
fish厌氧颗粒污泥是高效厌氧反应器稳定和高效运行的关键产甲烷菌群是厌氧颗粒污泥中的主要功能菌群uasb颗粒污泥中的产甲烷菌数量可达10目前现代分子生物学技术已经广泛应用于包括厌氧颗粒污泥在内的不同环境样品中的产甲烷16srrna基因
第 32 卷第 4 期 2011 年 4 月
环 境 科 学 ENVIRONMENTAL SCIENCE
厌氧颗粒污泥是高效厌氧反应器稳定和高效运 行的关键, 产甲烷菌 群 是 厌 氧 颗 粒 污 泥 中 的 主 要 功 UASB 颗 粒 污 泥 中 的 产 甲 烷 菌 数 量 可 达 能菌群, 10 9 / mL[1 ]. 目前, 现代分子生物学技术已经广泛应 用于包括厌氧颗粒污泥在内的不同环境样品中的产 甲烷 菌 群 分 析
.
本研究以阿维菌素废水处理工业化厌氧颗粒污 泥为研究对象, 以 mcrA 基因为 PCR 的 目 标 基 因, 利 用 变 性 梯 度 凝 胶 电 泳 ( denaturing gradient gel electrophoreses , DGGE ) 技 术, 对厌氧颗粒污泥中的 优势产 甲 烷 菌 群 的 系 统 发 育 进 行 了 分 析, 并基于 mcrA 基 因 利 用 荧 光 原 位 杂 交 ( fluorescence in situ hybridization , FISH ) 技 术 对 产 甲 烷 菌 群 进 行 了 原 位 分析 . 同 时, 对 基 于 mcrA 基 因 和 16S rRNA 基 因 的 PCR-DGGE 及 FISH 检测结果进行了比较分析 . 1 1. 1 材料与方法 污泥样品 本研究所用厌氧颗粒污泥样品取自河北石家庄 某阿维 菌 素 废 水 处 理 工 业 化 UASB 反 应 器 ( 500 m ), 其平均 VSS / SS 值为 0. 882. 1. 2 污泥样品总 DNA 提取 采用改进后的工业化废水处理反应器污泥样品 总 DNA 提取方法对厌氧颗粒污泥样品总 DNA 进行 提取

产甲烷菌

产甲烷菌

产甲烷菌胡俊英 222010328210116动医二班摘要:产甲烷菌(Methanogenus),是专性厌氧菌,属于古菌域,广域古菌界,宽广古生菌门。

1974年《伯杰氏细菌鉴定手册》(第八版)中将其归属于1科、3属、9种。

截至1992年已发展为3目、7科、19属、70种。

截至2009年已发展为4目、12科、31属。

1979年,Balch和Wolfe通过16S rRNA测序将产甲烷菌发展为3目(甲烷杆菌目、甲烷球菌目、甲烷微菌目)4科7属14种。

1993年,Boone将甲烷八叠球菌科上升为一个目,建立了火热产甲烷菌目,至此产甲烷菌发展为5目10科25属59种。

2001年,Bergey's Manual of Systematic Bacteriology将产甲烷菌放在宽广古生菌门(Euryarchaeota)中,至此产甲烷菌发展为3纲,5目,10科,26属,78种。

产甲烷菌属于古菌域(Archaea),广域古菌界(Euryarchaeon),宽广古生菌门(Euryarchaeota)。

关键词:产甲烷细菌,厌氧分离技术,产甲烷作用产甲烷菌(Methanogenus),是专性厌氧菌,属于古菌域,广域古菌界,宽广古生菌门。

1974年《伯杰氏细菌鉴定手册》(第八版)中将其归属于1科、3属、9种。

截至1992年已发展为3目、7科、19属、70种。

截至2009年已发展为4目、12科、31属。

1979年,Balch和Wolfe通过16S rRNA测序将产甲烷菌发展为3目(甲烷杆菌目、甲烷球菌目、甲烷微菌目)4科7属14种。

1993年,Boone将甲烷八叠球菌科上升为一个目,建立了火热产甲烷菌目,至此产甲烷菌发展为5目10科25属59种。

2001年,Bergey's Manual of Systematic Bacteriology将产甲烷菌放在宽广古生菌门(Euryarchaeota)中,至此产甲烷菌发展为3纲,5目,10科,26属,78种。

《微生物产甲烷原理》课件

《微生物产甲烷原理》课件

pH值和温度
合适的pH值和温度能够维 持微生物活性,促进甲烷 发酵过程的稳定和高效。
微生物群落
微生物群落的构成和多样 性对甲烷生成有重要影响, 不同群落具有不同的代谢 能力和耐受性。
微生物产甲烷工艺的优缺点
1 优点
可将有机废弃物转化为有用能源,减少污染和碳排放,促进可持续发展。
2 缺点
工艺技术复杂,需要严格控制环境条件和微生物群落,成本较高且受限于底物类型。
微生物产甲烷应用与前景展望
生物气体生产
利用微生物产甲烷的原理,建 立生物气体生产系统,为能源 供应和替代燃料开辟新途径。
废弃物处理
将微生物产甲烷应用于废弃物 处理,实现废弃物资源化和减 少环境污染。
可持续发展
微生物产甲烷为可持续发展提 供了解决方案,减少了对传统 能源的依赖,推动绿色能源的 发展。
甲烷生成的生物反应
厌氧发酵
甲烷发酵
甲烷生成示意图
厌氧条件下,微生物通过发酵 过程产生甲烷,其中包括酸化、 乙酸生成和甲酸生成等重要生 物反应。
甲烷发酵是微生物利用有机废 弃物产生甲烷的过程,包括乙 酸、丙酸和氢气等底物的转化。
甲烷生成涉及多种微生物群落 和复杂反应路径,其中关键酶 的作用起着至关重要的作用。
微生物产甲烷原理
本课件介绍微生物产甲烷的原理,包括微生物概述、甲烷生成反应、厌氧消 化的工艺路线、甲烷发酵反应的控制因素、微生物产甲烷的优缺点以及应用 与前景展望。
微生物的分类和特点
分类
微生物包括细菌、真菌和病毒等多种类别,每种类别都在微观生物界有着不同的角色和功 能。
特点
微生物具有微小体积、高适应性、高繁殖率和广泛分布等特点,在自然界中起着重要的生 态作用。

2022年湖南农业大学东方科技学院食品科学与工程专业《微生物学》期末试卷A(有答案)

2022年湖南农业大学东方科技学院食品科学与工程专业《微生物学》期末试卷A(有答案)

2022年湖南农业大学东方科技学院食品科学与工程专业《微生物学》期末试卷A(有答案)一、填空题1、细菌的鞭毛具有______功能,菌毛具有______功能,性菌毛具有______功能。

2、最大的病毒是直径为200nm的______;最小病毒之一是______,其直径仅为28nm。

3、硝酸盐在微生物生命活动中具有两种作用,其一是利用它作为氮源,这就是______;另一种是利用它作为呼吸链最终氢受体,这就是______,又称______或______。

这两个作用的共同点都需要一种含______的______酶将硝酸盐还原为亚硝酸盐。

4、放线菌为7.5~8.@5、酵母菌菌为3.8~6.@0、霉菌为4.0~5.@8、藻类为6.0~7.@0、原生动物为6.0~8.0。

@43、培养基按所含成分可分为______、______和______;按物理状态可分为______、______、______和______;按用途可分为______和______。

5、食用菌一般是指可食用的有大型______的高等真菌,分类上主要属于______,其次为______。

6、微生物学为现代生命科学提供的独特研究方法有:① ______,② ______,③ ______,④ ______,⑤ ______,⑥ ______,⑦ ______,⑧ ______和⑨ ______等。

7、利用加热和辐射的物理方法可以对______进行灭菌,______和______可用加热、辐射和过滤进行消毒和灭菌。

8、植物根际微生物对植物有害的方面有______和______等。

9、质粒通常以共价闭合环状的超螺旋双链DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即______型、______型和______ 型。

10、当前已开发的新型疫苗有______、______、______、______、______和______等。

二、判断题11、菌落边缘细胞的菌龄比菌落中心的细胞菌龄长。

2022年江苏大学京江学院食品科学与工程专业《微生物学》期末试卷A(有答案)

2022年江苏大学京江学院食品科学与工程专业《微生物学》期末试卷A(有答案)

2022年江苏大学京江学院食品科学与工程专业《微生物学》期末试卷A(有答案)一、填空题1、不同的放线菌有不同的典型形态,如______属的基内菌丝会断裂成大量的杆菌状体,______属等可在菌丝顶端形成少量孢子,______属具有孢囊并可产生孢囊孢子,而______属则具有孢囊,但产生的是游动孢子等。

2、植物病毒一般可引起宿主植物三类明显的症状:① ______;② ______;③ ______。

3、根据受氢体性质不同,可把生物氧化分为______、______和______ 三种类型。

4、碳源对微生物的功能是______和______,微生物可用的碳源物质主要有______、______、______、______、______和______等。

5、酵母菌的无性繁殖方式主要有______和______。

6、原生动物是______色、无______,能______运动的单细胞真核生物。

7、最常见的厌氧菌有① ______,② ______,③ ______,④ ______,⑤ ______,⑥ ______等。

8、一般来说,在土壤中,各种微生物含量按递减顺序排列如下:______、______、______、______、______和______。

9、Avery和他的合作者分别用降解DNA、RNA和蛋白质的酶作用于有毒的S型细胞抽提物,然后分别与______混合,结果发现,只有DNA被酶解而遭到破坏的抽提物无转化活性,说明DNA是转化所必须的转化因子。

10、外毒素的种类很多,常见的如______、______、______和______ 等。

二、判断题11、因支原体的细胞大小接近病毒,故具有滤过性。

()12、用分装器将培养基分装试管时,应谨防培养基沾染试管口。

()13、原核生物呼吸链的P/O比一般较真核生物高。

()14、在昆虫颗粒体病毒的每一个蛋白质包含体中,都包裹着数量很多的杆状病毒体。

反刍动物瘤胃甲烷生成相关研究进展

反刍动物瘤胃甲烷生成相关研究进展

动物营养学报2020,32(11):5013⁃5022ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.11.005反刍动物瘤胃甲烷生成相关研究进展王㊀坤1㊀南雪梅1㊀熊本海1∗㊀蒋林树2(1.中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193;2.北京农学院奶牛营养学北京市重点实验室,北京102206)摘㊀要:反刍动物能将人类不能直接利用的纤维性植物原料转化成肉和奶等优质的畜产品,然而反刍动物每年向环境中排放甲烷约1亿t,不但加剧全球温室效应,而且降低饲料利用率㊂本文详细综述了近年来瘤胃甲烷生成机制㊁瘤胃甲烷生成相关微生物㊁瘤胃甲烷测定方法及瘤胃甲烷排放调控措施等方面的相关研究进展,以期为调控反刍动物瘤胃甲烷排放研究提供参考㊂关键词:反刍动物;瘤胃;甲烷生成;产甲烷古菌中图分类号:S811.6㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)11⁃5013⁃10收稿日期:2020-03-30基金项目:国家 十三五 重大专项课题(2017YFD0701604)作者简介:王㊀坤(1990 ),男,山东烟台人,博士研究生,研究方向为反刍动物营养与饲料科学㊂E⁃mail:cang327@163.com∗通信作者:熊本海,研究员,博士生导师,E⁃mail:xiongbenhai@caas.cn㊀㊀反刍动物能将人类不能直接利用的纤维性植物原料转化成肉和奶等优质的畜产品,对人类社会发展具有重要意义㊂随着世界人口的增长以及居民生活水平的提高,人类社会对优质畜产品的需求越来越多,反刍动物生产的重要性也越来越大㊂然而,反刍动物在消化植物纤维的同时会向环境中排放甲烷等温室气体,反刍动物每年向环境中排放甲烷约1亿t,约占全球每年甲烷排放总量的20%[1]㊂甲烷的温室效应约为二氧化碳的25倍,反刍动物生产对环境的影响引起了越来越多的关注,各国科学家围绕反刍动物瘤胃甲烷排放展开了大量研究,通过适当的措施调控反刍动物瘤胃甲烷排放具有重要意义㊂1 甲烷生成机制㊀㊀甲烷生成通常被认为是产甲烷古菌在严格厌氧的条件下独有的生命现象㊂但有研究报道,除产甲烷古菌外,蓝藻细菌和真核生物也具有产生甲烷的能力,甚至可以在有氧的情况下产生甲烷[2-4]㊂产甲烷古菌是一种生态多样性的微生物,广泛存在于多种陆生及水生厌氧环境中,包括湿地㊁海洋沉积物㊁淡水沉积物以及动物胃肠道等㊂甲烷是产甲烷菌厌氧呼吸的终产物[5],作为主要的甲烷产生源头,大气中70%的甲烷是由产甲烷菌产生的[6]㊂㊀㊀甲烷生成是生物质厌氧降解的终端过程,通常发生在氧㊁硝酸盐㊁Fe3+及硫酸盐等末端电子受体不足或快速耗尽的环境中[5-6]㊂甲烷生成的底物主要有二氧化碳㊁乙酸盐和甲基化合物㊂根据反应底物的不同,甲烷生成可分为3条途径:二氧化碳还原途径㊁解乙酸途径和甲基营养途径㊂3条途径的最后1步反应均为甲基辅酶M被甲基辅酶M还原酶还原生成甲烷㊂氢气是二氧化碳还原途径的主要电子供体,因此该途径也被称为氢营养途径,此外,甲酸㊁甲醇及一氧化碳也可作为该途径的电子供体[5]㊂氢营养途径是最常见的甲烷生成途径,甲烷杆菌目(Methanobacteriales)㊁甲烷球菌目(Methanococcales)㊁甲烷微菌目(Methanomi⁃crobiales)㊁甲烷八叠球菌目(Methanosarcinales)㊁甲烷火菌目(Methanopyrales)及甲烷胞菌目(Methanocellales)的产甲烷菌均可通过该途径生成甲烷㊂在解乙酸途径中,乙酸裂解为羧基和甲基,羧基被氧化为二氧化碳,甲基被还原为甲烷㊂作为最不常见的途径,仅存在于Methanosarcina⁃㊀动㊀物㊀营㊀养㊀学㊀报32卷les,但由解乙酸途径生成的甲烷约占全球生物甲烷总量的2/3[5]㊂在甲基营养途径中,甲醇㊁甲胺及甲基硫化物等甲基化合物的甲基团传递给辅酶M,生成的甲基辅酶M最终被甲基辅酶M还原酶还原生成甲烷㊂对于常见的甲基营养型甲烷菌(主要来自Methanosarcinales),甲基还原所需的电子是通过额外的甲基被氧化成二氧化碳得到,但是Methanomicrococcusblatticola和Methanospha⁃era的甲基营养型甲烷菌以氢气作为电子供体[5-7]㊂最近研究发现,Methanomassiliicoccales的甲烷菌也以氢气作为电子供体,其甲烷生成途径属于氢气依赖型甲基营养途径[8]㊂甲基营养型甲烷菌主要存在于海洋沉积物中,以及动物胃肠道和一些极端环境中[5]㊂2㊀反刍动物瘤胃甲烷生成㊀㊀反刍动物瘤胃微生物发酵碳水化合物产生甲烷,不但加剧全球温室效应,而且降低饲料利用率㊂反刍动物以甲烷形式所损失的能量占饲料总能的2% 12%[9]㊂研究人员围绕甲烷生成及其调控措施展开了大量研究,然而瘤胃微生物发酵碳水化合物生成挥发性脂肪酸的过程部分依赖于可排出代谢氢的甲烷生成过程,因此单纯抑制瘤胃甲烷生成的调控措施往往不能起到长期调控的目的[10-11]㊂产乙酸作用和丙酸生成等一些瘤胃内可与甲烷生成途径竞争代谢氢的内在代谢过程,在瘤胃甲烷调控方面的潜在作用越来越多的引起了公众的关注[12-13]㊂一方面,这些代谢过程通过与甲烷生成途径竞争代谢氢来抑制甲烷生成,不会因为瘤胃中的氢无法被及时排出而影响发酵;另一方面,乙酸和作为瘤胃葡萄糖前体物的丙酸均为反刍动物的能量来源物质,通过增加乙酸和丙酸的产量来竞争性抑制瘤胃甲烷生成可提高饲料能量的利用率㊂㊀㊀碳水化合物是反刍动物主要的能量来源,纤维素㊁半纤维素和淀粉等多糖首先在瘤胃内水解为葡萄糖等单糖㊂各种单糖在瘤胃微生物的作用下进一步代谢为挥发性脂肪酸㊁二氧化碳及氢气㊂氢气是瘤胃发酵过程中重要的中间产物,在葡萄糖分解为丙酮酸以及丙酮酸氧化脱羧生成乙酰辅酶A的过程中产生(图1)㊂为了保证瘤胃发酵的正常进行,产生的氢气需要被及时从瘤胃排出[10]㊂甲烷生成是瘤胃主要的排出氢气的途径,细菌㊁原虫以及真菌产生的氢气被传递给产甲烷古菌通过氢营养途径还原二氧化碳生成甲烷㊂瘤胃产甲烷古菌在数量和多样性上不如瘤胃细菌丰富,且在全世界范围内的反刍动物中高度保守[14]㊂Hen⁃derson等[14]对来自35个国家的瘤胃和前肠样品(379头牛㊁106头绵羊㊁59头鹿㊁52头山羊和72头其他物种)的微生物群落组成进行了全面的全球普查㊂研究发现,尽管样品的来源千差万别,但主要的古菌群体却惊人地相似㊂Methanobrevi⁃bactergottschalkii和Methanobrevibacterruminanti⁃um出现在所有样品中,且占比高达74%㊂Metha⁃nosphaera和Methanomassiliicoccaceae的2个古菌群体占比也比较高,这5个主要的产甲烷古菌群体约占整个古菌群落的90%㊂瘤胃中大约78%的产甲烷古菌通过氢营养途径产生甲烷,22%的产甲烷古菌通过甲基营养途径产生甲烷,解乙酸途径在瘤胃中较为少见[15]㊂甲烷短杆菌(Methanobre⁃vibacter)是瘤胃中主要氢营养型甲烷菌[16],Meth⁃anosphaera㊁Methanimicrococcus和甲烷细菌属(Methanobacterium)也是瘤胃中重要氢营养型甲烷菌属[13]㊂瘤胃中的甲基营养型甲烷菌主要包括Methanosarcinales㊁Methanosphaera和Methanomas⁃siliicoccaceae[5]㊂㊀㊀除甲烷生成外,瘤胃中的丙酸生成过程以及由氢气和二氧化碳生成乙酸的过程都可消耗氢气㊂硝酸盐和硫酸盐等一些无机盐也可作为电子受体消耗氢气,但是这些物质在瘤胃中的含量通常不多[17-19],而且含量过多可能会增加反刍动物中毒的风险[20]㊂3㊀反刍动物瘤胃甲烷生成相关微生物㊀㊀瘤胃甲烷的生成是瘤胃内各种微生物共同作用的结果,产甲烷古菌是直接的甲烷产生微生物,而原虫㊁细菌及真菌等其他微生物也在瘤胃甲烷生成过程中发挥着重要作用㊂㊀㊀瘤胃原虫根据其结构和活性不同,主要有2种类型:Holotrich原虫,具有完全被纤毛覆盖的柔性表膜,主要消化可溶性底物;Entodiniomorphid原虫,具有坚硬的表膜,纤毛仅位于口部附近区域,能够消化微粒状物质[22]㊂尽管瘤胃原虫不能产生甲烷,但其可通过自身的氢化酶产生大量氢气供氢营养型产甲烷古菌使用,因此在瘤胃甲烷生成中发挥重要作用㊂此外,原虫的表面和体内附着410511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展以及寄生有产甲烷古菌,这种共生关系也使原虫成为瘤胃甲烷生成重要的参与者[22]㊂Methano⁃brevibacter和Methanomicrobium被认为是最主要的2个与原虫具有共生关系的产甲烷古菌属[23-24]㊂尽管原虫在瘤胃中普遍存在,但原虫对于瘤胃并不重要,且驱除原虫可以降低9% 37%的甲烷排放[25-26]㊂然而,也有一些研究表明,驱除原虫对瘤胃甲烷产生的影响并不明显[27-28]㊂Newbold等[29]通过Meta分析研究发现,通过驱除原虫平均可降低11%的甲烷产量,然而产甲烷古菌的丰度并没有显著降低㊂图1 瘤胃发酵及甲烷生成途径Fig.1㊀Rumenfermentationandpathwaysofmethanogenesis[13,19,21]㊀㊀同原虫类似,真菌通过产生大量氢气参与瘤胃甲烷生成,此外真菌发酵也可产生二氧化碳㊁甲酸和乙酸等代谢终产物[30]㊂目前已知的瘤胃中的真菌属有6个,Neocallimastix㊁Caecomyces㊁Piromy⁃ces㊁Anaeromyces㊁Orpinomyces和Cyllamyces[31]㊂一些产甲烷古菌可能也与真菌有共生关系,然而这种关系并没有得到证实[32]㊂由于真菌能产生氢气,通常认为真菌的丰度可能与甲烷生成有关,但Kittelmann等[33]研究发现,绵羊瘤胃甲烷排放与真菌群落结构没有相关性㊂Newbold等[29]通过Meta分析研究发现,驱除原虫虽然对产甲烷古菌的丰度没有影响,但降低了真菌的丰度,而真菌丰度的降低是否与甲烷产量的降低有关尚不清楚㊂㊀㊀细菌是瘤胃内最多样化的微生物类群,能分解纤维㊁淀粉㊁蛋白质和糖等多种物质,瘤胃中最丰富的3个细菌门是厚壁菌门(Firmicutes)㊁拟杆菌门(Bacteroidetes)和变形菌门(Proteobacte⁃ria)[14]㊂属于Firmicutes的纤维分解菌瘤胃球菌属(Ruminococcus)和优杆菌属(Eubacterium)能够产生氢气,纤维杆菌属(Fibrobacter)不产生氢气,而Bacteroidetes是纯粹的氢气消耗菌[34]㊂Kittel⁃mann等[33]通过分析236份来自于118头不同甲烷排放量绵羊的瘤胃液样品,发现瘤胃微生物的群落结构与绵羊甲烷排放水平相关㊂一种类型的低甲烷排放量绵羊瘤胃中具有较高含量的丙酸生成菌Quinellaovalis;另一种类型的低甲烷排放量绵羊瘤胃中具有较高含量的乳酸和琥珀酸生成菌,包括Fibrobacterspp.㊁Kandleriavitulina㊁Olsenellaspp.㊁Prevotellabryantii和Sharpeaaza⁃buensis;高甲烷排放量绵羊的瘤胃中具有较高含量属于瘤胃球菌属(Ruminococcus)的一些菌种,以及瘤胃球菌科(Ruminococcaceae)㊁毛螺旋菌科(Lachnospiraceae)㊁Catabacteriaceae㊁粪球菌属(Coprococcus)和普雷沃菌属(Prevotella)等㊂Danielsson等[35]和Wallace等[36]均研究发现,高甲烷排放动物个体的瘤胃中Proteobacteria的含量较少㊂琥珀酸弧菌科(Succinivibrionaceae)是Pro⁃teobacteria的优势科,有研究发现肠道中较高含量5105㊀动㊀物㊀营㊀养㊀学㊀报32卷的Succinivibrionaceae是导致Tammar袋鼠相比反刍动物甲烷生成效率低的原因[37]㊂Prevotella是一种多功能的菌属,该属的部分菌种在高甲烷排放个体中含量较高,而部分菌种又在低甲烷排放个体中含量较高[16,35]㊂通常情况下,高甲烷排放的动物个体肠道中有更多的氢气产生菌,而低甲烷排放的动物个体肠道中有更多的氢气消耗菌㊂4㊀反刍动物瘤胃甲烷测定方法㊀㊀准确测定反刍动物甲烷排放量对于研究甲烷生成机制及其减排措施具有重要意义㊂呼吸舱法以其高的准确性及可重复性被认为是甲烷测定的 金标 方法,但由于其成本高㊁技术要求严格且对动物应激较大,因此限制了该方法的广泛使用[38]㊂六氟化硫示踪法相比于呼吸舱法,可直接在生产条件下对动物的甲烷排放进行测定,但该方法的准确性受当地天气变化影响较大且存在残留问题,因此该方法的广泛使用亦受到限制[39]㊂此外,直接测定法还包括头箱法㊁面罩法㊁便携式收集舱法㊁甲烷/二氧化碳比例法㊁GreenFeed体系法㊁嗅探器法㊁甲烷激光探测器等短期测定方法,以及适用于大群体测定的塑料大棚法和微气象法[40]㊂直接测定法虽然设备成本高㊁技术要求苛刻且操作难度大,但直接测定法是研究甲烷排放的基础方法,是其他方法参考和对比的标准㊂㊀㊀间接测定甲烷产量的方法主要有体外法和统计模型法㊂体外法通过模拟体内瘤胃环境来研究气体生成,故而其影响因素较多[41]㊂统计模型法通常根据营养物质或能量摄入量建立线性或非线性模型估测甲烷排放量,实用性强㊂国家水平以及全球水平甲烷排放量的测定均采用统计模型法估测[40]㊂随着技术水平的不断改进,模型法预测的准确性越来越高,并且发展了针对不同种类反刍动物的专用模型(表1)㊂此外,间接测定法还包括根据乳中特定脂肪酸的浓度预测甲烷产量的方法以及乳中红外光谱法[42]㊂统计模型法是一种非常有效的甲烷估测方法,但代表性强的统计模型需要以直接测定法为基础㊂表1㊀甲烷产量预测模型Table1㊀ModelsusedtopredictCH4production动物Animals方程式EquationRMSER2RMSPE/%绵羊Sheep[20]方程1Eq.1CH4(MJ/d)=0.208(ʃ0.040)+0.049(ʃ0.0039)ˑGEI(MJ/d)0.240.8622.7方程2Eq.2CH4(MJ/d)=0.550(ʃ0.172)+1.299(ʃ0.126)ˑDMI(kg/d)-0.266(ʃ0.053)ˑFL-0.00093(ʃ0.00042)ˑNDF(g/kg)0.220.9222.4方程3Eq.3CH4(MJ/d)=-0.784(ʃ0.269)+0.138(ʃ0.0084)ˑME(MJ/d)-0.378(ʃ0.062)ˑFL+0.00294(ʃ0.00046)ˑOMDm(g/kg)-1.943(ʃ0.381)ˑmetabolizability0.210.9424.5方程4Eq.4CH4(MJ/d)=5.699(ʃ1.94)-[5.699(ʃ1.94)-0.133(ʃ0.047)]ˑexp[-0.021(ʃ0.0071)ˑME(MJ/d)]0.140.9120.7山羊Goat[43]方程5Eq.5CH4(MJ/d)=0.242(ʃ0.073)+0.0511(ʃ0.0073)ˑDEI(MJ/d)0.310.8330.3方程6Eq.6CH4(MJ/d)=-1.042(ʃ0.271)+2.205(ʃ0.395)ˑNDFI(kg/d)-2.417(ʃ1.102)ˑEEI(kg/d)+1.456(ʃ0.323)ˑNFC(kg/d)+0.0208(ʃ0.0039)ˑOMDm(g/kg)-0.513(ʃ0.137)ˑFL0.140.8230.3方程7Eq.7CH4(MJ/d)=0.885(ʃ0.154)+0.809(ʃ0.0867)ˑDMI(kg/d)-0.397(ʃ0.0494)ˑFL+0.0198(ʃ0.0022)ˑOMDm(g/kg)+2.04(ʃ0.234)ˑADFI(kg/d)-8.54(ʃ0.548)ˑEEI(kg/d)0.240.8836.6方程8Eq.8CH4(MJ/d)=1.721(ʃ0.151)ˑ{1-exp[-0.0721(ʃ0.0092)ˑMEI(MJ/d)]}0.170.7938.0水牛Buffalo[44]方程9Eq.9CH4(MJ/d)=1.29(ʃ0.576)+0.788(ʃ0.099)ˑDMI(kg/d)0.8119.4610511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展续表1动物Animals方程式EquationRMSER2RMSPE/%方程10Eq.10CH4(MJ/d)=-0.436(ʃ0.665)+0.678(ʃ0.184)ˑDMI(kg/d)+0.697(ʃ0.347)ˑNDFI(kg/d)0.8516.1方程11Eq.11CH4(MJ/d)=21.71(ʃ3.84)-[21.71(ʃ3.84)-0.732(ʃ0.637)]-exp[-0.0485(ʃ0.0094)ˑDMI(kg/d)]0.7921.2牛Cattle[45]方程12Eq.12CH4(MJ/d)=9.311(ʃ1.060)+0.042(ʃ0.001)ˑGEI(MJ/d)+0.094(ʃ0.014)ˑNDF(%)-0.381(ʃ0.092)ˑEE(%)+0.008(ʃ0.001)ˑBW(kg)+1.621(ʃ0.119)ˑMF(%)2.59 15.6方程13Eq.13CH4(MJ/d)=2.880(ʃ0.200)+0.053(ʃ0.001)ˑGEI(MJ/d)-0.190(ʃ0.049)ˑEE(%)1.29 14.4方程14Eq.14CH4(MJ/d)=1.487(ʃ0.318)+0.046(ʃ0.001)ˑGEI(MJ/d)+0.032(ʃ0.005)ˑNDF(%)+0.006(ʃ0.0007)ˑBW(kg)1.23 18.6方程15Eq.15CH4(MJ/d)=0.221(ʃ0.151)+0.048(ʃ0.001)ˑGEI(MJ/d)+0.005(ʃ0.0005)ˑBW(kg)0.9215.1热带牛Tropicalcattle[46]方程16Eq.16CH4(MJ/d)=1.29(ʃ0.906)+0.878(ʃ0.125)ˑDMI(kg/d)5.490.7031.0方程17Eq.17CH4(MJ/d)=0.910(ʃ0.746)+1.472(ʃ0.154)ˑDMI(kg/d)-1.388(ʃ0.451)ˑFL-0.669(ʃ0.338)ˑADFI(kg/d)4.220.8422.2方程18Eq.18CH4(MJ/d)=71.47(ʃ22.14)ˑ[1-exp(-0.0156(ʃ0.0051)ˑDMI(kg/d))]3.560.8330.3㊀㊀GEI:总能采食量grossenergyintake;DEI:消化能采食量digestibleenergyintake;DMI:干物质采食量drymatterintake;NDF(I):中性洗涤纤维含量或采食量neutraldetergentfibercontentorintake;FL:饲喂水平feedinglevel;ADFI:酸性洗涤纤维采食量aciddetergentfiberintake;MEI:代谢能采食量metabolizableenergyintake;EE(I):粗脂肪含量或采食量etherex⁃tractcontentorintake;NFCI:非纤维性碳水化合物采食量non⁃fibercarbohydrateintake;OMDm:采食维持水平有机物消化率organicmatterdigestibilityatmaintenanceleveloffeedintake;MF:乳脂肪含量milkfatcontent;BW:体重bodyweight;RMSE:均方根误差rootmeanssquareerror;RMSPE:均方根预测误差rootmeansquarepredictionerror㊂5 反刍动物瘤胃甲烷排放调控措施㊀㊀瘤胃甲烷产量受动物个体㊁饲粮组成㊁瘤胃发酵模式㊁瘤胃微生物组成及活性等多种因素影响㊂研究人员围绕反刍动物瘤胃甲烷调控展开了大量研究,主要的调控措施包括:调整饲粮结构,改变瘤胃发酵模式;使用甲烷抑制剂,抑制甲烷生成途径及甲烷生成相关微生物活性;增加其他电子受体,竞争性抑制甲烷产生㊂此外,提高动物的生长性能,优化畜群结构减少非生产动物的数量,以及选育低甲烷排放品种等也是调控瘤胃甲烷排放的有效措施(图2)㊂通常情况下,不同调控措施之间可相互影响,共同发挥调控作用㊂㊀㊀调整饲粮结构,改善瘤胃发酵模式和瘤胃微生物组成及活性进而调控瘤胃甲烷排放㊂饲粮组成对瘤胃甲烷生成具有重要影响㊂随饲粮精料比例的增加,瘤胃中乙酸比例降低,丙酸比例升高,瘤胃发酵模式以丙酸型发酵为主,而丙酸是瘤胃中仅次于甲烷的氢利用物质,可竞争性抑制瘤胃甲烷产生[10]㊂高精料饲粮会降低瘤胃pH,抑制产甲烷古菌及原虫活性进而降低甲烷产量[47]㊂然而,增加饲粮精料比例不但增加了饲养成本,而且易引起亚急性或急性瘤胃酸中毒㊁蹄叶炎等营养代谢病㊂Meale等[48]通过体外法研究发现,墨西哥丁香(Gliricidiasepium)和臂形草(Brachiariaruziziensis)具有降低甲烷排放的潜力㊂Machado等[49]通过体外法研究了多种海藻类植物发现,钥形毛藻(Asparagopsis)和鞘藻(Oedogonium)具有显著降低甲烷排放的作用㊂Wang等[12]研究发现,增加饲粮中非粗料来源纤维的含量,有降低体外甲烷产量的趋势,并增加了发酵液中丙酸的比例㊂因此,开发利用新型优质饲料比单纯增加饲粮精料水平更有应用前景㊂㊀㊀使用甲烷抑制剂,抑制甲烷生成途径及甲烷7105㊀动㊀物㊀营㊀养㊀学㊀报32卷生成相关微生物活性㊂甲烷抑制剂主要包括植物次级代谢物㊁脂类㊁卤代物㊁离子载体及硝基物等㊂单宁等植物次级代谢物一方面可抑制产甲烷古菌活性抑制甲烷生成,另一方面可减少原虫数量抑制甲烷生成[50]㊂脂类可通过抑制产甲烷古菌活性抑制甲烷生成,且不饱和脂肪酸还可通过生物氢化作用竞争性抑制甲烷生成[51]㊂卤代物和离子载体对甲烷的抑制作用主要是通过毒害产甲烷古菌直接降低甲烷产量[52-53]㊂离子载体还可刺激产琥珀酸菌和丙酸菌生长,通过增加丙酸产量从而竞争性抑制甲烷生成[40]㊂3-硝基丙醇可在不损害动物生产性能和健康的情况下持续降低甲烷产量并增加丙酸产量[54],被认为是目前最有潜力及应用价值的甲烷抑制剂㊂此外,科学家通过免疫法使用产甲烷古菌疫苗抑制瘤胃甲烷产生[55],但由于大部分瘤胃产甲烷菌无法纯培养,因而利用纯培养产甲烷古菌开发的疫苗可能导致瘤胃未培养产甲烷菌数量增加㊂甲烷抑制剂普遍存在成本高㊁毒副作用及生物残留等诸多弊端,且抑制剂可使产甲烷古菌产生抗性,因此甲烷抑制剂长期作用效果有待观察㊂图2㊀反刍动物瘤胃甲烷排放调控措施Fig.2㊀StrategiestomitigateCH4emissioninrumen[40]㊀㊀增加其他电子受体,竞争性抑制甲烷生成㊂硝酸盐在瘤胃中对氢的亲和力大于二氧化碳,可通过与产甲烷古菌竞争氢进而减少瘤胃甲烷生成[49],硝酸盐自身被还原为亚硝酸盐,进一步生成氨㊂Lee等[56]研究发现,饲粮中添加硝酸盐能降低肉牛12%的甲烷排放㊂VanZijderveld等[57]在奶牛饲粮中添加硝酸盐,降低了16%的甲烷排放㊂硝酸盐和亚硝酸盐具有一定的毒性,饲喂硝酸盐会增加其在组织和奶中的残留[58-59]㊂此外,饲粮中添加延胡索酸和苹果酸等丙酸前体物,可通过增加丙酸生成竞争性抑制甲烷生成[60]㊂6㊀小㊀结㊀㊀消耗氢气生成甲烷从而促进碳水化合物的降解吸收是反刍动物在物种进化过程中形成的正常生理机制,各种直接抑制甲烷生成的调控措施在瘤胃微生物复杂的自我调节下很难长期发挥作用㊂丙酸生成是瘤胃内可与甲烷生成途径竞争代谢氢的内在代谢过程,通过竞争性抑制甲烷产生从而增加丙酸产量,不会因为瘤胃中的氢无法被及时排出而影响发酵,同时作为瘤胃葡萄糖前体物的丙酸是反刍动物重要的能量来源物质㊂因此,竞争性抑制甲烷生成,在调控甲烷生成的同时提高饲料能量利用率是一种具有应用前景的甲烷调控模式㊂810511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展参考文献:[1]㊀CONRADR.Theglobalmethanecycle:recentad⁃vancesinunderstandingthemicrobialprocessesin⁃volved[J].EnvironmentalMicrobiologyReports,2009,1(5):285-292.[2]㊀LENHARTK,BUNGEM,RATERINGS,etal.Evi⁃denceformethaneproductionbysaprotrophicfungi[J].NatureCommunications,2012,3:1046.[3]㊀LIUJG,CHENH,ZHUQA,etal.Anovelpathwayofdirectmethaneproductionandemissionbyeu⁃karyotesincludingplants,animalsandfungi:anover⁃view[J].AtmosphericEnvironment,2015,115:26-35.[4]㊀BIZ㊅ICᶄM,KLINTZSCHT,IONESCUD,etal.Cya⁃nobacteria,themostancientandabundantphotoau⁃totrophsonearthproducethegreenhousegasmethaneduringphotosynthesis[J].BioRxiv,2019:398958.[5]㊀LIUYC,WHITMANWB.Metabolic,phylogenetic,andecologicaldiversityofthemethanogenicarchaea[J].AnnalsoftheNewYorkAcademyofSciences,,2008,1125(1):171-189.[6]㊀LYUZ,SHAONN,AKINYEMIT,etal.Methano⁃genesis[J].CurrentBiology,2018,28(13):R727-R732.[7]㊀THAUERRK,KASTERAK,SEEDORFH,etal.Methanogenicarchaea:ecologicallyrelevantdiffer⁃encesinenergyconservation[J].NatureReviewsMi⁃crobiology,2008,6(8):579-591.[8]㊀SÖLLINGERA,URICHT.Methylotrophicmethano⁃genseverywhere⁃physiologyandecologyofnovelplayersinglobalmethanecycling[J].BiochemicalSo⁃cietyTransaction,2019,47(6):1895-1907.[9]㊀JOHNSONKA,JOHNSONDE.Methaneemissionsfromcattle[J].JournalofAnimalScience,1995,73(8):2483-2492.[10]㊀MCALLISTERTA,NEWBOLDCJ.Redirectingru⁃menfermentationtoreducemethanogenesis[J].Aus⁃tralianJournalofExperimentalAgriculture,2008,48(2):7-13.[11]㊀DENMANSE,FERNANDEZGM,SHINKAIT,etal.Metagenomicanalysisoftherumenmicrobialcom⁃munityfollowinginhibitionofmethaneformationbyahalogenatedmethaneanalog[J].FrontiersinMicrobi⁃ology,2015,6:1087.[12]㊀WANGK,NANXM,CHUKK,etal.Shiftsofhy⁃drogenmetabolismfrommethanogenesistopropionateproductioninresponsetoreplacementofforagefiberwithnon⁃foragefibersourcesindietsinvitro[J].FrontiersinMicrobiology,2018,9:2764.[13]㊀LANW,YANGCL.Ruminalmethaneproduction:associatedmicroorganismsandthepotentialofapply⁃inghydrogen⁃utilizingbacteriaformitigation[J].Sci⁃enceoftheTotalEnvironment,2019,654:1270-1283.[14]㊀HENDERSONG,COXF,GANESHS,etal.Rumenmicrobialcommunitycompositionvarieswithdietandhost,butacoremicrobiomeisfoundacrossawidege⁃ographicalrange[J].ScientificReports,2015,5:14567.[15]㊀SESHADRIR,LEAHYSC,ATTWOODGT,etal.CultivationandsequencingofrumenmicrobiomemembersfromtheHungate1000collection[J].NatureBiotechnology,2018,36(4):359-367.[16]㊀KITTELMANNS,SEEDORFH,WALTERSWA,etal.Simultaneousampliconsequencingtoexploreco⁃occurrencepatternsofbacterial,archaealandeukaryot⁃icmicroorganismsinrumenmicrobialcommunities[J].PLoSOne,2013,8(2):e47879.[17]㊀NEWBOLDCJ,LÓPEZS,NELSONN,etal.Propio⁃nateprecursorsandothermetabolicintermediatesaspossiblealternativeelectronacceptorstomethanogene⁃sisinruminalfermentationinvitro[J].BritishJournalofNutrition,2005,94(1):27-35.[18]㊀VANZIJDERVELDSM,GERRITSWJJ,APA⁃JALAHTIJA,etal.Nitrateandsulfate:effectivealter⁃nativehydrogensinksformitigationofruminalmeth⁃aneproductioninsheep[J].JournalofDairyScience,2010,93(12):5856-5866.[19]㊀BEAUCHEMINKA,UNGERFELDEM,ECKARDRJ,etal.Review:fiftyyearsofresearchonrumenmethanogenesis:lessonslearnedandfuturechallengesformitigation[J].Animal,2020,14(Suppl.1):S2-S16.[20]㊀PATRAAK.Predictionofentericmethaneemissionfrombuffaloesusingstatisticalmodels[J].Agricul⁃ture,Ecosystems&Environment,2014,195:139-148.[21]㊀SHIWB,MOONCD,LEAHYSC,etal.Methaneyieldphenotypeslinkedtodifferentialgeneexpressioninthesheeprumenmicrobiome[J].GenomeRe⁃search,2014,24(9):1517-1525.[22]㊀BELANCHEA,DELAFUENTEG,NEWBOLDCJ.Studyofmethanogencommunitiesassociatedwithdifferentrumenprotozoalpopulations[J].FEMSMi⁃9105㊀动㊀物㊀营㊀养㊀学㊀报32卷crobiologyEcology,2014,90(3):663-677.[23]㊀JANSSENPH,KIRSM.Structureofthearchaealcommunityoftherumen[J].AppliedandEnviron⁃mentalMicrobiology,2008,74(12):3619-3625.[24]㊀PATRAA,PARKT,KIMM,etal.Rumenmethano⁃gensandmitigationofmethaneemissionbyanti⁃meth⁃anogeniccompoundsandsubstances[J].JournalofAnimalScienceandBiotechnology,2017,8:13.[25]㊀HOOKSE,WRIGHTADG,MCBRIDEBW.Meth⁃anogens:methaneproducersoftherumenandmitiga⁃tionstrategies[J].Archaea,2010,2010:945785.[26]㊀MORGAVIDP,FORANOE,MARTINC,etal.Mi⁃crobialecosystemandmethanogenesisinruminants[J].Animal,2010,4(7):1024-1036.[27]㊀HEGARTYRS,BIRDSH,VANSELOWBA,etal.Effectsoftheabsenceofprotozoafrombirthorfromweaningonthegrowthandmethaneproductionoflambs[J].BritishJournalofNutrition,2008,100(6):1220-1227.[28]㊀BIRDSH,HEGARTYRS,WOODGATER.Persist⁃enceofdefaunationeffectsondigestionandmethaneproductioninewes[J].AustralianJournalofExperi⁃mentalAgriculture,2008,48(2):152-155.[29]㊀NEWBOLDCJ,DELAFUENTEG,BELANCHEA,etal.Theroleofciliateprotozoaintherumen[J].FrontiersinMicrobiology,2015,6:1313.[30]㊀GRUNINGERRJ,PUNIYAAK,CALLAGHANTM,etal.Anaerobicfungi(phylumNeocallimastigomy⁃cota):advancesinunderstandingtheirtaxonomy,lifecycle,ecology,roleandbiotechnologicalpotential[J].FEMSMicrobiologyEcology,2014,90(1):1-17.[31]㊀ISHAQSL,KIMCJ,REISD,etal.Fibrolyticbacte⁃riaisolatedfromtherumenofnorthamericanmoose(Alcesalces)andtheiruseasaprobioticinneonatallambs[J].PLoSOne,2015,10(12):e0144804.[32]㊀WEIYQ,LONGRJ,YANGH,etal.Fiberdegrada⁃tionpotentialofnaturalco⁃culturesofNeocallimastixfrontalisandMethanobrevibacterruminantiumisolatedfromyaks(Bosgrunniens)grazingontheQinghaiTibetanPlateau[J].Anaerobe,2016,39:158-164.[33]㊀KITTELMANNS,PINARES⁃PATINOCS,SEED⁃ORFH,etal.Twodifferentbacterialcommunitytypesarelinkedwiththelow⁃methaneemissiontraitinsheep[J].PLoSOne,2014,9(7):e103171.[34]㊀TAPIOI,SNELLINGTJ,STROZZIF,etal.Theru⁃minalmicrobiomeassociatedwithmethaneemissionsfromruminantlivestock[J].JournalofAnimalSci⁃enceandBiotechnology,2017,8:7.[35]㊀DANIELSSONR,DICKSVEDJ,SUNL,etal.Meth⁃aneproductionindairycowscorrelateswithrumenmethanogenicandbacterialcommunitystructure[J].FrontiersinMicrobiology,2017,8:226.[36]㊀WALLACERJ,ROOKEJA,MCKAINN,etal.Therumenmicrobialmetagenomeassociatedwithhighmethaneproductionincattle[J].BMCGenomics,2015,16:839.[37]㊀POPEPB,SMITHW,DENMANSE,etal.IsolationofSuccinivibrionaceaeimplicatedinlowmethanee⁃missionsfromtammarwallabies[J].Science,2011,333(6042):646-648.[38]㊀GRAINGERC,CLARKET,MCGINNSM,etal.Methaneemissionsfromdairycowsmeasuredusingthesulfurhexafluoride(SF6)tracerandchambertechniques[J].JournalofDairyScience,2007,90(6):2755-2766.[39]㊀WILLIAMSSRO,MOATEPJ,HANNAHMC,etal.BackgroundmatterswiththeSF6tracermethodforestimatingentericmethaneemissionsfromdairycows:acriticalevaluationoftheSF6procedure[J].AnimalFeedScienceandTechnology,2011,170(3/4):265-276.[40]㊀PATRAAK.RecentAdvancesinmeasurementanddietarymitigationofentericmethaneemissionsinru⁃minants[J].FrontiersinVeterinaryScience,2016,3:39.[41]㊀RYMERC,HUNTINGTONJA,WILLIAMSBA,etal.Invitrocumulativegasproductiontechniques:histo⁃ry,methodologicalconsiderationsandchallenges[J].AnimalFeedScienceandTechnology,2005,123-124:9-30.[42]㊀NEGUSSIEE,DEHAASY,DEHARENGF,etal.In⁃vitedreview:large⁃scaleindirectmeasurementsforen⁃tericmethaneemissionsindairycattle:areviewofproxiesandtheirpotentialforuseinmanagementandbreedingdecisions[J].JournalofDairyScience,2017,100(4):2433-2453.[43]㊀PATRAAK,LALHRIATPUIIM,DEBNATHBC.Predictingentericmethaneemissioninsheepusinglin⁃earandnon⁃linearstatisticalmodelsfromdietaryvari⁃ables[J].AnimalProductionScience,2016,56(2/3):574-584.[44]㊀PATRAAK,LALHRIATPUIIM.Developmentofstatisticalmodelsforpredictionofentericmethanee⁃missionfromgoatsusingnutrientcompositionandin⁃020511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展takevariables[J].AgricultureEcosystems&Environ⁃ment,2016,215:89-99.[45]㊀MORAESLE,STRATHEAB,FADELJG,etal.Predictionofentericmethaneemissionsfromcattle[J].GlobalChangeBiology,2014,20(7):2140-2148.[46]㊀PATRAAK.Predictionofentericmethaneemissionfromcattleusinglinearandnon⁃linearstatisticalmod⁃elsintropicalproductionsystems[J].MitigationandAdaptationStrategiesforGlobalChange,2016:1-22.[47]㊀KUMARS,DAGARSS,PUNIYAAK,etal.Chan⁃gesinmethaneemission,rumenfermentationinre⁃sponsetodietandmicrobialinteractions[J].ResearchinVeterinaryScience,2013,94(2):263-268.[48]㊀MEALESJ,CHAVESAV,BAAHJ,etal.Methaneproductionofdifferentforagesininvitroruminalfer⁃mentation[J].Asian⁃AustralasianJournalofAnimalSciences,2011,25(1):86-91.[49]㊀MACHADOL,MAGNUSSONM,PAULNA,etal.Effectsofmarineandfreshwatermacroalgaeoninvitrototalgasandmethaneproduction[J].PLoSOne,2014,9(1):e85289.[50]㊀PATRAAK,SAXENAJ.Anewperspectiveontheuseofplantsecondarymetabolitestoinhibitmethano⁃genesisintherumen[J].Phytochemistry,2010,71(11/12):1198-1222.[51]㊀WILLIAMSSRO,MOATEPJ,DEIGHTONMH,etal.Methaneemissionsofdairycowscannotbepre⁃dictedbytheconcentrationsofC8ʒ0andtotalC18fat⁃tyacidsinmilk[J].AnimalProductionScience,2014,54(10):1757-1761.[52]㊀CHENM,WOLINMJ.Effectofmonensinandla⁃salocid⁃sodiumonthegrowthofmethanogenicandru⁃mensaccharolyticbacteria[J].AppliedandEnviron⁃mentalMicrobiology,1979,38(1):72-77.[53]㊀MARTINEZ⁃FERNANDEZG,DENMANSE,YANGCL,etal.Methaneinhibitionaltersthemicro⁃bialcommunity,hydrogenflow,andfermentationre⁃sponseintherumenofcattle[J].FrontiersinMicrobi⁃ology,2016,7:1122.[54]㊀HRISTOVAN,OHJ,GIALLONGOF,etal.Anin⁃hibitorpersistentlydecreasedentericmethaneemissionfromdairycowswithnonegativeeffectonmilkpro⁃duction[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2015,112(34):10663-10668.[55]㊀WRIGHTADG,KENNEDYP,O'NEILLCJ,etal.Reducingmethaneemissionsinsheepbyimmuniza⁃tionagainstrumenmethanogens[J].Vaccine,2004,22(29/30):3976-3985.[56]㊀LEEC,ARAUJORC,KOENIGKM,etal.Effectsofencapsulatednitrateongrowthperformance,nitratetoxicity,andentericmethaneemissionsinbeefsteers:backgroundingphase[J].JournalofAnimalScience,2017,95(8):3700-3711.[57]㊀VanZIJDERVELDSM,GERRITSWJJ,DIJK⁃STRAJ,etal.Persistencyofmethanemitigationbydi⁃etarynitratesupplementationindairycows[J].JournalofDairyScience,2011,94(8):4028-4038.[58]㊀GUYADERJ,DOREAUM,MORGAVIDP,etal.Long⁃termeffectoflinseedplusnitratefedtodairycowsonentericmethaneemissionandnitrateandni⁃triteresidualsinmilk[J].Animal,2016,10(7):1173-1181.[59]㊀DOREAUM,ARBREM,POPOVAM,etal.Linseedplusnitrateinthedietforfatteningbulls:effectsonmethaneemission,animalhealthandresiduesinoffal[J].Animal,2017,12(3):501-507.[60]㊀LIXZ,LONGRJ,YANCG,etal.Rumenmicrobialresponsesinfermentationcharacteristicsandproduc⁃tionofCLAandmethanetolinoleicacidinassociatedwithmalateorfumarate[J].AnimalFeedScienceandTechnology,2010,155(2/3/4):132-139.1205㊀动㊀物㊀营㊀养㊀学㊀报32卷∗Correspondingauthor,professor,E⁃mail:xiongbenhai@caas.cn(责任编辑㊀陈㊀鑫)ResearchAdvancesonRumenMethanogenesisinRuminantsWANGKun1㊀NANXuemei1㊀XIONGBenhai1∗㊀JIANGLinshu2(1.StateKeyLaboratoryofAnimalNutrition,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China;2.BeijingKeyLaboratoryforDairyCowNutrition,BeijingUniversityofAgriculture,Beijing102206,China)Abstract:Ruminantscanconvertplantmaterialsthatpeoplecan tutilizedirectlyintomeatandmilkproducts.However,ruminantsemitabout100milliontonsofmethaneintotheenvironmenteveryyear,whichnotonlyexacerbatestheglobalgreenhouseeffects,butalsoreducesfeedutilization.Thisarticlereviewedtherecentre⁃searchprogressinmethanogenesisintherumen,rumenmicroorganismsassociatedwithmethaneemissions,measurementmethodsandstrategiesinmitigatingmethaneemissionsinordertoprovideareferenceforstudiesofruminantmethaneemissions.[ChineseJournalofAnimalNutrition,2020,32(11):5013⁃5022]Keywords:ruminants;rumen;methanogenesis;methanogens2205。

内蒙古工业大学给水排水工程《水处理微生物》考试考点

内蒙古工业大学给水排水工程《水处理微生物》考试考点

---"水处理生物学"的研究对象是什么?主要集中在与水中的污染物迁移、分解及转化过程密切相关的微生物、微型水生动物和水生/湿生植物,特别是应用于水处理工程实践的生物种类。

细菌等原核微生物在水处理工程中通常起着关键的作用,是水处理生物学研究的重点。

---微生物有哪些基本特征?个体微小、结构简单、进化地位低、种类多、分布广、繁殖快、易变异---微生物的双名法规定是什么?一种微生物的名称由两个拉丁文单词组成,第一个是属名,用拉丁文名词表示,词首字母大写,它描述微生物的主要特征;第二个是种名,用拉丁文形容词表示,词首字母不大写,它描述微生物的次要特征。

有时候在前面所述的两个单词之后还会有一个单词,这个单词往往是说明微生物的命名人。

---细菌的大小一般是用什么单位测量的?一般用μm测量。

---以形状来分,细菌可分为哪几类?可分为球状、杆状和螺旋状(弧菌及螺菌)3种,少数为其他形状,以杆菌最为常见,球菌次之,螺旋菌最少。

---细菌的细胞结构包括一般结构和特殊结构,简单说明这些结构及及其生理功能。

-细菌的一般结构包括细胞壁和原生质两部分。

原生质位于细胞壁内,包括细胞膜(细胞质膜)、细胞质、核质和内含物。

-细胞壁是包围在细菌细胞最外面的一层富有弹性的、厚实、坚韧的结构。

功能有:①保持细胞形状和提高细胞机械强度②为细胞的生长、分裂所必需③鞭毛的支点,实现鞭毛运动④阻拦大分子有害物质⑤赋予细胞特定的抗原性以及对抗生素和噬菌体的敏感性。

-细胞膜是一层紧贴着细胞壁而包围着细胞质的薄膜,其化学组成主要是蛋白质、脂类和少量糖类。

这种膜具有选择性吸收的半渗透性,膜上具有与物质渗透、吸收、转运和代谢等有关的许多蛋白质和酶类。

功能为:①选择性地控制细胞内外物质的运送和交换②维持细胞内正常渗透压③合成细胞壁组分和荚膜的场所④进行氧化磷酸化或光合磷酸化的产能基地⑤许多代谢酶和运输酶以及电子呼吸链组成的所在地⑥鞭毛的着生和生长点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微生物学》课程论文论文题目:产甲烷杆菌的研究和其利用前景工艺学学院:生命与地理科学学院专业:生物科学班级:S10A学号:20101911131姓名:刘韬成绩:目录1 产甲烷菌的分类................................................................................................................................ -2 -2.产甲烷菌的生态多样性.................................................................................................................... - 2 - 3.生长繁殖特别缓慢.......................................................................................................................... - 3 -4.产甲烷菌代谢途径............................................................................................................................ - 3 -5.甲烷合成的途径................................................................................................................................ - 3 -6.沼气池中产甲烷杆菌和不产甲烷菌的关系.................................................................................... - 4 -6.1不产甲烷细菌为产甲烷菌提供生长基质和产甲烷所需的底物 ......................................... - 4 -6.2不产甲烷细菌为产甲烷菌创造适宜的厌氧环境................................................................. - 4 -6.3不产甲烷细菌为产甲烷菌清除有毒物质............................................................................. - 4 -6.4产甲烷菌为不产甲烷细菌生化反应解除反馈抑制............................................................. - 4 -6.5共同维持沼气发酵环境中的适宜pH值............................................................................... - 5 -6.6不产甲烷细菌构建了产甲烷菌的“古环境” ....................................................................... - 5 -7.产甲烷杆菌的应用前景.................................................................................................................... - 5 -7.1废水处理................................................................................................................................. - 5 -7.2酿酒工业上的应用................................................................................................................. - 5 -7.3产甲烷菌在煤层气开发中的应用......................................................................................... - 6 -8. 结语................................................................................................................................................ - 6 - 参考文献................................................................................................................................................ - 6 -产甲烷杆菌的研究和其利用前景10级生物科学 20101911131 刘韬摘要产甲烷菌是一类重要的极端环境微生物,在地球生物化学碳素循环过程中起着关键作用. 目前,根据产甲烷菌的系统发育和生理生化特性可将已培养的产甲烷菌分为5大目. 产甲烷菌广泛分布在海底及淡水沉积物、水稻田、动物胃肠道、地热及地矿等环境中,生态学研究表明,产甲烷菌在不同的生态环境里具有不同的群落分布特点,并且受不同环境因子的影响而显示出不同的生理代谢功能. 本文综述了国内外近年来产甲烷菌的分类及生态多样性研究进展,同时简述了产甲烷菌在厌氧生物处理和工业酿酒中广阔应用前景.关键词产甲烷菌;分类;生态多样性;废水处理;泸州老窖Methanobacterium research and its prospect Abstract methanogens is an important kind of extreme environmental microbial, in the biogeochemistry of carbon cycle plays a key role in the process. At present, according to the methanogenic bacteria phylogeny and physiological and biochemical characteristics can be cultured methanogens have been divided into 5heads. Methane producing bacteria widely distributed in marine and freshwater sediments rice, water, animal gastrointestinal tract, geothermal and geological environment, ecological studies have indicated, methanogenic bacteria in different ecological environment has different characteristics of community distribution, and affected by different environmental factors and show different physiological and metabolic function. This article reviews the domestic and abroad in recent years and the classification of methane producing bacteria biodiversity research progress, at the same time on the methanogenic bacteria in anaerobic biological treatment and broad application prospects in industrial saccharomyces.Key words methanogens; classification; biodiversity; wastewater treatment; Lu zhou产甲烷菌是一类严格厌氧的原核微生物,是有机物甲烷化作用中食物链的最后一组成员,其独特的厌氧代谢机制使其在自然界物质循环中起着重要作用. 一方面,产甲烷菌是产生温室气体的主要因素,全球甲烷的排放量每年大约是500 t,其中74%是由产甲烷菌代谢产生[1];另一方面,产甲烷菌在有机质的厌氧生物处理工业应用中发挥着关键的作用,如沼气发酵、煤层气开发等. 因此,对产甲烷菌的研究具有重要的理论和实践意义. 随着厌氧培养技术和微生物分子生态技术的发展,更多的实验室能对产甲烷菌进行多角度的研究. 这些研究揭示出产甲烷菌分类地位的多样性,展示出不同环境下产甲烷菌的生态及生理特性的差异性,同时也为产甲烷菌的实际工业应用指明了方向.1 产甲烷菌的分类1776年,Alessandro Volta首次发现了湖底的沉积物能产生甲烷,之后历经一个多世纪的研究,利用有机物产甲烷的厌氧微生物才大致被分为两类:一类是产氢、产乙酸菌,另一类就是产甲烷菌. W.E. Balch等在1979年报道了3个目、4个科、7个属和13个种的产甲烷微生物,他们的分类是建立在形态学、生理学等传统分类特征以及16S rRNA寡核苷酸序列等分子特征基础上的[2].随着厌氧培养技术和菌种鉴定技术的不断成熟,产甲烷菌的系统分类也在不断完善. 《伯杰系统细菌学手册》第9版将近年来的研究成果进行了总结和肯定,并建立了以系统发育为主的产甲烷菌最新分类系统. 产甲烷菌分可为5个大目,分别是:甲烷杆菌目(Methanobacteriales)、甲烷球菌目(Methanococcales)、甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)和甲烷火菌目(Methanopyrales) [3],上述5个目的产甲烷菌可继续分为10个科与31个属,它们的系统分类及主要代谢生理特性见表1.2.产甲烷菌的生态多样性产甲烷球菌发现于1982年,生活在260m深、200atm、94℃的海底火山口附近,属于原核生物中的古菌域,具有其它细菌如好氧菌、厌氧菌和兼性厌氧菌所不同的代谢特征. 产甲烷菌的甲烷生物合成途径主要是以乙酸、H2/CO2、甲基化合物为原料[4]. 产甲烷菌在自然界中分布极为广泛,在与氧气隔绝的环境几乎都有甲烷细菌生长,如海底沉积物、河湖淤泥、水稻田以及动物的消化道等. 在不同的生态环境下,产甲烷菌的群落组成有较大的差异性,并且其代谢方式也随着不同的微环境而体现出多样性.3.生长繁殖特别缓慢甲烷细菌生长很缓慢,在人工培养条件下需经过十几天甚至几十天才能长出菌落。

相关文档
最新文档