同济大学《高等数学》数列的极限
合集下载
同济大学高等数学数列的极限-2023年学习资料

-N定义:imxn=a→-1n->o0-Vε>0,N>0,使n>N时,恒有xn-a<e.-其中V:每一个或 给的;3:至少有一个或存在-几何解释:-28-a-8-a+8-X2 XI XN+1-尤N+2-当n>N时, 有的点x,都落在a-s,a+s内,-只有有限个(至多只有N个)落在其外-上页-返回
注意:数列极限的定义未给出求极限的方法-例1证明i-n+-1-=1.-n->oo-xn-1=-n+-1"三-任给e>0,要xn-1<8,只要-。或2-所以,取N=,-则当n>N时,-就有-+-1-1<-即i-n -1”--1n→o-上页-返回
例2设xn=CC为常数,证明imx,=C.-证任给s>0,对于一切自然数n,-xn-C=C-C=0<ε成立 -所以,-lim x =C.-1n→oo-说明:常数列的极限等于同一常数-小结:用定义证数列极限存在时,关 是任意给-定ε>0,寻找N,但不必要求最小的N.-上页-返
2、截丈问题:-“一尺之棰,日截其半,万世不竭”-第一天截下的杖长为X1=-第二天截下的杖长总和的X,-2 2-I八-11八-第天裁下的杖长总和为X,-2是+A-Xn=1-12-→1-上页-返回
二、数列的定义-定义:按自然数1,2,3,∧编号依次排列的一列数-x称为数-列的项xn称为通项(一般项).数列1记为xn}.-例如-2,4,8,Λ,2", ;-{2"-111-248A2A-上页-返回
1,-1,1,Λ,-1"+1,Λ;{-1”--A;+-1-n-√3,V3+3,△,V3+V3+√Λ+3,Λ 注意:1.数列对应着数轴上一个点列.可看作一-动点在数轴上依次取x1,x2,∧,xn,A·-x3x1x2北 xn-2.数列是整标函数xn=fn.-上页-返回
同济大学《高等数学》(第四版)1-6节 极限的运算法则

3
3
x→2
小结: 小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 + ⋯ + a n , 则有
x → x0
lim f ( x ) = a 0 ( lim x ) n + a1 ( lim x ) n −1 + ⋯ + a n
x → x0
n
x → x0
= a 0 x 0 + a1 x 0
n −1
+ ⋯ + a n = f ( x 0 ).
P( x) 2. 设 f ( x ) = , 且Q( x 0 ) ≠ 0, 则有 Q( x )
P ( x0 ) lim f ( x ) = = f ( x 0 ). = x → x0 lim Q ( x ) Q( x0 )
x → x0 x → x0
由无穷小与无穷大的关系,得 由无穷小与无穷大的关系 得
4x − 1 lim 2 = ∞. x →1 x + 2 x − 3
x −1 例3 求 lim 2 . x →1 x + 2 x − 3
2
0 解 x → 1时, 分子 , 分母的极限都是零 . ( 型) 0
先约去不为零的无穷小 因子 x − 1后再求极限 . 后再求极限
1 2 n 1+ 2 +⋯+ n lim ( 2 + 2 + ⋯ + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
sin x 例6 求 lim . x→∞ x
3
x→2
小结: 小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 + ⋯ + a n , 则有
x → x0
lim f ( x ) = a 0 ( lim x ) n + a1 ( lim x ) n −1 + ⋯ + a n
x → x0
n
x → x0
= a 0 x 0 + a1 x 0
n −1
+ ⋯ + a n = f ( x 0 ).
P( x) 2. 设 f ( x ) = , 且Q( x 0 ) ≠ 0, 则有 Q( x )
P ( x0 ) lim f ( x ) = = f ( x 0 ). = x → x0 lim Q ( x ) Q( x0 )
x → x0 x → x0
由无穷小与无穷大的关系,得 由无穷小与无穷大的关系 得
4x − 1 lim 2 = ∞. x →1 x + 2 x − 3
x −1 例3 求 lim 2 . x →1 x + 2 x − 3
2
0 解 x → 1时, 分子 , 分母的极限都是零 . ( 型) 0
先约去不为零的无穷小 因子 x − 1后再求极限 . 后再求极限
1 2 n 1+ 2 +⋯+ n lim ( 2 + 2 + ⋯ + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
sin x 例6 求 lim . x→∞ x
同济大学的高等数学讲义 (1)

1 xn − 1 < 4 10 只要n>10000即可.即从第10001项开始的以后所有项都
满足这一要求. 一般:要使
1 xn − 1 < k 10 只要n>10k 即可.即从第(10k+1)项开始的以后所有项都
满足这一要求.
对上面例的分析,可以看到,无论一个正数取得多么 小,总可以找到自然数n,在这项以后的所有项与1的距 离都可以小于该数.数学上用ε 来表示一个任意小的正 数.由此得到极限的精确定义:
我们知道:两个数a 和b 的接近程度可用两数差的绝 对值来刻画.
(−1)n+1 x − 1 = 1 对数列 xn = 1 + ,n ,故只要n充分大, n n xn − 1 就充分小.例如要使
xn − 1 < 1 10 2
只要n>100即可.即从第101项开始的以后所有项都满足 这一要求;
再如,要使
3.极限的定义 定义 设数列 ( x n )n =1 ,如果存在常数a,使得对任意给
∞
定的正数ε (不论它多么小),总存在自然数N,只要N>n, 不等式
xn − a < ε
都成立,那么称常数a 是数列 ( x n )n =1 的极限,,或则
∞
称数列 ( x n )n =1 收敛于a,记为
∞
lim xn = a,
∴ ∀ε > 0, 取δ = ε , 当 0 < x − (− 1 ) < δ , 有
从而当n>N时,有
xn = ( xn − a ) + a ≤ xn − a + a ≤ 1 + a ,
取
M = max{ x1 , x2 ,
xN ,1 + a },
同济大学高等数学第六版上第一章第五节 极限运算法则

3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)
高等数学(第五版)同济大学主编 1-2节数列极限

第二节 数列的极限
§2.1数列的极限
我国古代数学家刘徽(公元3世纪)利用圆内接 正多边形来推算圆面积的方法——割圆术,就是极限 思想在几何学上的应用.
1
按照某一法则依次序排列的数,例如:
1 2 3 n , , ,, , ; 2 3 4 n 1
n xn n 1
2,4,8,,2 ,;
1 1 1 1 , , , , n , ; 2 4 8 2
| xn 0 |
得证 lim xn 0
n
11
例
1 证明: lim n 0. n 2
证 0,
1 1 1 1 2n 由 n 0 n n log 2 2 2
故取
N [log 2 ] 1
则 n > N 时,
1 0 n 2 1 由极限的定义, 得 lim n 0 . n 2
2 1 3 2 2 1 3 2 n 1 1
课堂练习P30。 1. 6
的极限存在,则极限值 定理 (唯一性)若数列 xn 1 唯一的。
的极限存在,则 xn 是有界的。 定理2 (有界性)若数列 xn
即M 0, n N , 有 xn M .
解
例5
1 2 n 求 lim ( 2 2 2 ). n n n n
n 时, 是无穷小之和. 先变形再求极限.
解
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2
1 n( n 1) 1 1 1 2 lim lim (1 ) . 2 n n 2 n n 2
n
设 lim xn a, lim yn b, 则
§2.1数列的极限
我国古代数学家刘徽(公元3世纪)利用圆内接 正多边形来推算圆面积的方法——割圆术,就是极限 思想在几何学上的应用.
1
按照某一法则依次序排列的数,例如:
1 2 3 n , , ,, , ; 2 3 4 n 1
n xn n 1
2,4,8,,2 ,;
1 1 1 1 , , , , n , ; 2 4 8 2
| xn 0 |
得证 lim xn 0
n
11
例
1 证明: lim n 0. n 2
证 0,
1 1 1 1 2n 由 n 0 n n log 2 2 2
故取
N [log 2 ] 1
则 n > N 时,
1 0 n 2 1 由极限的定义, 得 lim n 0 . n 2
2 1 3 2 2 1 3 2 n 1 1
课堂练习P30。 1. 6
的极限存在,则极限值 定理 (唯一性)若数列 xn 1 唯一的。
的极限存在,则 xn 是有界的。 定理2 (有界性)若数列 xn
即M 0, n N , 有 xn M .
解
例5
1 2 n 求 lim ( 2 2 2 ). n n n n
n 时, 是无穷小之和. 先变形再求极限.
解
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2
1 n( n 1) 1 1 1 2 lim lim (1 ) . 2 n n 2 n n 2
n
设 lim xn a, lim yn b, 则
1.2数列的极限及运算 同济大学高数(第七版)上册PPT演示课件

]
,
当n
N时,有
n2 2n2
-1 - 5n
-
1 2
n2 1 1
lim n
2n2
5n
2
.
14
三、 收敛数列的性质
定理1(唯一性) 若数列{ xn } 收敛,则其极 限必唯一.
证
设
lim
n
xn
a,又设 lim n
xn
b,由定义知:
0, N1 , N 2 N ,
2
正六边形的面积 A1
正十二边形的面积 A2
R
正6 2n1 形的面积 An
A1 , A2 , A3 ,, An , S
当n越大时,An的面积与圆的面积的差别也就越小; 当n→∞时,内接正多边形的面积就无线接近于圆, 这就是极限的概念.
3
二、数列极限的定义
1、数列的定义
数列是整标函数: xn f (n) , n 1,2,,可表示为 {xn}:x1 , x2 , , xn , ;其中,为数列的通项 .
放大的原则: 1、使放大后的式子n 较为简单,且 n 0 (n ) ,再解不等式 n ,从而确定所要找的 N .
2、在放大过程中,为使式子简单,有时要限定n 必须大于某个正数, 并在最后确定N 的值时,考虑到这个前提条件.
12
例3 证明 lim 2n 2 . n 1 3n 3
以数列 {1 (1)n1} 为例,观察它当 n 时的变化趋势 . n
两个数的接近程度可用这两个数之差的绝对值来度量!
xn
1
( 1) n 1
1 n
高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件

2n 2 2n 1
成立.
发散数列 1n 也可能有界, 1 n 1 ;
无界数列 (1)n 2n 一定发散;
有界数列
1 2
1
(1)n
不
一
定
收
敛
,
1 2
1
(1)n
1,但当
n
为奇数时,
1 2
1
(1)
n
0 ;当
n
为偶数时,
1 2
1
(1)n
1.
综上可知:收敛数列必有界.数列有界是数列收敛的
2x 1 7 ,即 m f (x) M .此处 f x 2x 1 在x 3 处有定义,且当 x 3时, f x 的极限值恰好是f 2 .
例 8 由表达式
y
f
(x)
1
x, 0, x
x 0
0
1
的确定的函数,如图 1-26 所示.
O
1
x
图21-526
当 x 0时, f (x) 1 x,则lim f (x) lim(1 x) 1.
x2 x2
求 lim f (x), lim f (x),并由此判断lim f (x) 是否存在.
x2
x2
x2
解 lim f (x) lim (2x 1) 5, lim f (x) lim (x2 1) 5,
x2
x2
x2
x2
即 f (2 ) f (2 ) 5, 由函数 f (x) 在x 2 处极限存在的充要
自变 x x0的变化过程中,函数值 f (x)无限接近于 A,就
称 A 是函数 f (x)当
x
x0
时
极
限
.
记
同济大学 高等数学 课件 .ppt

设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )
有
lim
n
xn
lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1
1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y
A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn
x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.
局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2