微积分李建平第五章+不定积分
第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题经济数学——积分二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间/内原函数・(primitive furwtion ) 例(sinx) =cosx sinx 是cos 兀的原函数.(inx) =— (X >0)XIn X 是1在区间((),+oo)内的原函数.X第一节五、定理原函数存在定理:如果函数八X)在区间内连续, 那么在区间^内存在可导函数F(x), 使Hxef,都有F\x) =f(x).简言之:连续函数一定有原函数.问题:(1)原函数是否唯一?(2)若不唯一它们之间有什么联系?1 f例(sinx) =cosx (sinx + C) =cosx(C为任意常数)经济数学一微积分关于原函数的说明:(1)(2)证说明F(x)+c是f (兀舶全部原粛或经济数学一微积分经济数学——微积分不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ・经济数学——微积分6=X% /. fx^dx =——十 C. J」6例2求f --------- dr.J 1 + X-/ J解•/ (arctanx)=,,I‘1 + 疋 心& =皿2被积函数『积分号积分变量寒积表达式F(x)例3某商品的边际成本为100-2x ,求总成本函数C(jc).解C(x) = J(100-2x)dx g = 1 OQx —兀2 + c IK™其中c为任意常数经济数学一微积分二、不定积分的几何意义函数八兀)的原函数的图形称为y(x)的积分曲线.显然,求不定积分得到一积分曲线族,在同一经济数学一微积分经济数学——微积分经济数学微积分基本积分表p*l=x“ zz> k"dx= — + C ・J “+1(“H -l)既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.经济数学一微积分(1) f kdx = kx + C 仏是常数); (2) (\“dx = J + C (〃H —1); J “+1(3)[竺"=In X +C;J jrr dx说明;X >0, => 一 = lnx + C,J Xx<0, [ln(-x )r= 1 (—*)' =丄,—X X n f — =ln(-x) + C,.订咚=In I X I +C, X J X实例“+1启示 能否根据求导公式得出积分公式?结论 基本积分表(4)(6)(7) f ------ -dx =arctanx4-C;J 1 + x"f t -------- dx = arcsin jc + C;JJ cos xdx =sinx + C;Jsin xdx =-cosx +C;r dr r r---- 2— = sec~ xdx =tanx +C; J cos X Jf = fcsc^ xdx =—cotx + C; J sin" X J经济数学一微积分(10)(11)(12)(13) J sec X tan xdx =secx + C;J CSC X cot xdx =—cscx +C; J/dx =gx +C;X= a +C;J Ina经济数学一議积分经济数学一微积分例4求积分5解 ^x^yfxAx — J x^dr飞+12经济数学一議积分四、不定积分的性质(1) Jl/(x)±g(x)jdx = J/(x)dx ± Jg(x)dx; r 证•・・J/(x)dx ± Jg(x)dxtt=J/(x)dx ± Jg(x)dx =/(x)±g(x).・・・等式成立.(此性质可推广到有限多个函数之和的情况)+ C=-x^+C.7经济数学一議积分J kf{x}Ax =町/(x )dx.(A:是常数,A: H0)求积分=3arctanx —2arcsinx + C经济数学一微积分r 1 + X + 工2•」X (1 + X*)「1+…L =厂(1+% J 兀(1 +工2) J 兀(1 +云)= arctanx + lnA +C.例6求积分WF—^dx +经济数学一微积分解KrS 訂甯斗 」Ar(l + jr) J 兀・(1 +兀・)J 刖 JE"----- arctanx + C< X经济数学一微积分例8求积分1 ------------- —dx.J 1 + cos 2x 解J 1 + ;心4 = j 1 + 2丄—严£土吨g + G说明:以上几例中的被积函数都需要进行 恒等变形,才能使用基本积分表.I 化积分为代做和的积分\ 例9 已知一曲线y = f(x)在点(x,/(x))处的 切线斜率为sec^x+sinx,且此曲线与 轴的交 点为(0,5),求此曲线的方程.例7求积分r 1+2兀2J 兀2(] + 尤2)1 + 2*2解•/— = sec2 X十sin x,dr二y = J^sec' X + sinx)dx=tanx —cosx H-C,j(0) = 5, /. C = 6、所求曲线方程为y = tan x — cosx + 6.经济数学一微积分五、小结原函数的概念:F\x) = f(x)不定积分的概念:J/U)dx = F(x) + C 基本积分表(1)〜(13) 求微分与求积分的互逆关系不定积分的性质经济数学一微积分经济数学——积分思考题1, X > 0 符号函数 /(x) = sgnx = 0, X =0—1, X < 0在(-co,+ 00)内是否存在原函数?为什么?经济数学——积分X + C, X >0X =0[―x+C,x <0 但F (兀)在工=0处不可微, 故假设错误所以/(X )在(-00, + 8)内不存在原函数.思考题解答不存在.假设有原函数F (x ) F (x ) = -ic,经济数学一微积分练习题、 填空题;1. 一个已知的连续函数,有个原函数,其中 任意两个的差是一个 2. 3・ /(•V )的______ 称为/(X)的不定积分! 把/(“)的一个原函数F(x)的图形叫做函数/(X )的 ______ ,它的方程是y = F(x),这样不定积 ,它的方程是 4.5. J f(x)dx 在几何上就表示 j = F(x) + C ; 由F (x) = /(x)可知,在积分曲线族j=F(x) + C (C 是任意常数)上横坐标相同的点处作切线,这 些切线彼此 的;若/(X )在某区间上 ____ ,则在该区间上/(X )的 原函数一定存在:经济数学一微积分 6. J xsfxdx = ___________ 7 f - .J 皿- -------------- 8. J (宀 3工 + 2)dx= _ 9. J(>/7 + l)(7P'-l)dv = 10. J-—dx =求下列不定积分:3x经济数学一微积分3. f cos* —drJ 25. J (1-占)厶石血a fF+SlirX.6.----- ; ---- sec* xQxJ x" + l, f cos 2x ■ 』J cos-X sin-s 一曲线通过点且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程•经济数学一微积分 练习题答案一、1.无穷多,常数:2.全体原函数; 积分曲线,积分曲线族;4.平行;5.连续 2 色 2 ---x'+C ; 7, -------- x '+C ;53 3 -- +2x + C ; 3 22 - 2 -- + -x2--x2-x + C ; 3 5 3 —4 - 2 - 2\・x —一—3 53. 6. 9.10.3.5.X—arctanx + C;X + sin X _2 24(*+7)717 +6三s , = lnx+C・经济数学一微积分2. 2’” + C;In 2-In 34e-(cotx +tanx) + C ;6. tan* —arccatx + C.o。
第五章_不定积分

微积分
(三)不定积分的几何意义 的原函数的图形称为 的积分曲线 . 的所有积分曲线组成 的平行曲线族.
f ( x) dx 的图形
y
O
x0
x
微积分
例3. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
sin x 2、设 f x ,则 x
f x dx
sin x x
x2
3、 f x dx e
x2
C,
则 f x 2 xe
微积分
5.3、 基本积分表
x x 1 x x dx 实例 C. 1 1 ( 1)
(也称配元法 , 凑微分法)
微积分
例1. 求 解: 令 u a x b , 则 d u ad x , 故 原式 = u
m
1 1 1 m 1 du u C a a m 1
注意换回原变量
注: 当
时
微积分
例2. 求 解:
sin x dcos x cos xdx cos x
e xd x e x C
ax x C (7 ) a d x ln a
微积分
dx (8) sec 2 xd x tan x C cos 2 x dx (9) 2 csc 2 xd x cot x C sin x (10) sec x tan xdx sec x C
(二)不定积分的运算性质
1.
k f ( x) dx k f ( x)dx (k 0) 2. [ f ( x ) g ( x )] dx f ( x )dx g ( x ) d x
《高等数学B》第五章 不定积分 第4节 有理函数的积分

xdx 1 5. 2 C ( n 2) ; 2 n 2 2 n 1 ( 2 ( n 2) 可用递推法求出. 2 n (x a )
二、待定系数法举例 x3 dx . 例1 求 2 x 5x 6 解
因此有
4 2 1 x dx 5 dx 5 2 5dx (1 2 x )(1 x 2 ) 1 2 x 1 x
2 1 2x 1 1 ln | 1 2 x | dx dx 2 2 5 5 1 x 5 1 x 2 1 1 2 ln | 1 2 x | ln(1 x ) arctan x C . 5 5 5
一、六个基本积分
理论上任何一个有理函数 (真分式) 的积分都可以分 为以下 6 个类型的基本积分的代数和 . dx 1. ln | x a | C ; xa dx 1 2. C ( n 2) ; n n 1 ( x a) (1 n)( x a )
dx 1 x 3. 2 arctan C ; 2 a a x a xdx 1 4. 2 ln( x 2 a 2 ) C ; x a2 2
例2 求 解
dx . 2 x ( x 1)
A B C 1 , 2 2 x ( x 1) x 1 x ( x 1 )
2
1 A( x 1) Bx Cx ( x 1)
(1)
代入特殊值来确定系数 A , B , C
取 x 0, A1,
取 x 1, B 1
1 ln | x | ln | x 1 | C . x 1
dx . 例3 求 2 (1 2 x )(1 x ) 1 A Bx C 解 , 2 2 (1 2 x )(1 x ) 1 2 x 1 x
微积分(第五章)

dx 1、 1 3 sin x dx 3、 2 sin x cos x 5
§3 分部积分法
第二节
一 、 降次法
例1 求下列积分
分部积分法
1、 x cos xdx
2 x x 3、 e dx
2、 xe x dx
第五章 不定积分
§3 分部积分法
二 、 转换法
例2
1、
求下列积分
x ln xdx
2、 x arctan xdx
3、 arcsin xdx
第五章 不定积分
§3 分部积分法
三 、 循环法
x e sin xdx
例3
求
第五章 不定积分
§3 分部积分法
四 、 递推法
例4
n I (ln x ) dx 的递推公式(其中 n 为正整 求 n 3 (ln x ) dx 。
数,且 n 2 ),并用公式计算 例5 求下列积分
3 sec xdx 1、
dx
2 2
a x dx 3、 3x 2 5、 x 1 x 2 dx
dx 7、 2 a x2
2、 4、
2 cos 2 xdx
6、
xe dx tan xdx
x2
dx 8、 2 x a2 dx dx arctanx 9、 e 10、 2 x(1 2 ln x) 1 x dx dx 11、 cos x sec xdx 12、 x ln x ln ln x
第五章 不定积分
§1
§2 §3 §4
不定积分的概念、性质
第五章 不定积分 (《微积分》PPT课件)

(8)
dx cos2
x
sec2
xdx
tan
x
C;
(9)
dx sin2
x
csc2
xdx
cot
x
C;
(10) sec x tan xdx sec x C; (11) csc x cot xdx csc x C; (12) e xdx e x C; (13) a xdx a x C;
6. x xdx ______________________;
7.
dx
x2 x
_______________________;
8. ( x2 3x 2)dx _________________;
9. ( x 1)( x3 1)dx _____________;
10.
(1
x)2 x
dx
或 f ( x)dx在区间 I 内原函数(.primitive function )
例 sin x cos x sin x是cos x的原函数. ln x 1 ( x 0)
x ln x是1 在区间(0,)内的原函数.
x
定理 原函数存在定理:
如果函数 f ( x)在区间I 内连续, 那么在区间I 内存在可导函数F ( x) , 使x I ,都有F ( x) f ( x).
简言之:连续函数一定有原函数.
问题:(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系?
例 sin x cos x sin x C cos x
( C为任意常数)
关于原函数的说明:
(1)若 F ( x) f ( x) ,则对于任意常数 C ,
F( x) C 都是 f ( x)的原函数.
第五章 不定积分与定积分习题解答

Φ′( x) = xe − x ,令 Φ′( x) = 0 ,得驻点 x = 0
x < 0 时, Φ′( x) < 0 ; x > 0 时, Φ′( x) > 0
x = 0 取极小值, Φ (0) = 0 .
2. 求下列极限:
∫ (1) lim
x →0
x 0
cos t 2 dt x
;
∫ (2) lim
2 0
0
π
∫
π
0
sin n x dx = 2 ∫ 2 sin n x dx
0
π
4.计算下列定积分:
(1) ∫
解
4
1
1 dx ; 1+ x x = t ,则 x = t 2
2 2t 2 1 3 dx = ∫ dt = 2 ⎡ t − ln (1 + t ) ⎤ = 2 − 2 ln ⎣ ⎦ 1 1 1 1+ t 2 1+ x 3 dx 4
1 dx ; x 1 1 1 1 1 解 ∫ 2 sin dx = − ∫ sin d = cos + C x x x x x dx (8) ∫ x − x ; e +e (7)
∫x
1
2
sin
解
e x dx dx x = ∫ e x + e− x ∫ e2 x + 1 = arctan e + C dx (9) ∫ ; (2 − x) 1 − x
1
2
当 1 < x < 2 时, 0 < ln x < ln 2 < 1 ,
ln x > ( ln x )
2
∫
2
1
第五章 不定积分 《经济数学》PPT课件

【例 5-6】求不定积分 3x e xdx
解: 3x exdx (3e)x dx
(3e) x
C
ln(3e)
3x ex
C
1 ln 3
【例 5-7】求不定积分 x 4 dx
1 x2
解: x4 dx x4 1 1 dx
1 x2
1 x2
(x2 1)( x2 1) 1dx
1 x2
解:
sin 2
x 2
dx 1 2
1
cosx dx 2
dx cos
xdx
1 (x sin x) C
2
【例 5-10】求不定积分 cos2x dx sin x cosx
解: cos2x dx cos2 x sin 2 x dx
sin x cosx
sin x cos x
cos(ex )d(ex ) sin(ex ) C
注: cos(3x)dx sin(3x) C
现在我们计算 cos(3x)dx
cos(3x)dx
cos3x
1 3
1 sin u C
d (3x) 3x u
1 sin 3x
1 3
cos
C
u
du
3
3
此法就是第一类换元积分法.
定理 设 f (u)du F(u) C , u (x) ,且u (x) 有连续导函数,则 f (x)(x)dx F(x) C .
其中, 1 (x) 是 x (t) 的反函数.
这种方法称为第二类换元法.
注(1)第二类换元法即是:
f (x)dx 令 x (t) f (t) (t)dt
(t) C
[ 1 (x)] C
(2)选择合适的函数 x (t) 是第二类换元法
微积分教学课件第5章不定积分第2节基本积分表

x dx 2
1
cos 2
x
dx
1 ( x sin x) C 2
(6)
1
dx sin
x
1 sin x dx
(1 sin x)(1 sin x)
1 sin x
cos2 x dx
(sec2 x secx tan x)dx tan x secx C
10
训练:求下列不定积分
(1) ( x2 1)2 dx ( x4 2x 2 1)dx 1 x5 2 x3 x C 53
11
1
( x2 1 x2 )dx x arctan x C
7
例3 求下列不定积分
(5)
x4 1 x2 dx
x4 11 1 x2 dx
( x2 1)( x2 1) 1
1 x2
dx
(x2
1
1 1 x2 )dx
x3 3
x arctan
xC
8
例4 求下列不定积分
三角恒等变形
ln
|
x
|
C
6
例3 求下列不定积分
(3)
( x2 1)
1 x2 2x dx
x2 1
(
2
) dx
x 1 x2
x
1 x2
( x 1 2 )dx 1 x2 ln | x | 2arcsinx C
x 1 x2
2
(4)
1 x2 (1
x2 ) dx
x2 1 x2 x 2 (1 x 2 ) dx
1 sin2 x cos2 x dx
sin2 x cos 2 x sin2 x cos 2 x dx
(sec2 x csc2 x)dx tan x cot x C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章不定积分第一节不定积分的概念与性质一、原函数在微分学中,导数是作为函数的变化率引进的,例如,已知变速直线运动物体的路程函数s=s(t),则物体在时刻t的瞬时速度v(t)=s′(t),它的反问题是:已知物体在时刻t的瞬时速度v=v(t),求路程函数s(t),也就是说,已知一个函数的导数,要求原来的函数.这就引出了原函数的概念.定义1 设f(x)是定义在区间I上的已知函数,如果存在函数F(x),使对任意x∈I都有F′(x)=f(x),或d F(x)=f(x)d x,(5-1-1)则称F(x)为f(x)在区间I上的一个原函数.例如在(1,+∞)内,[ln(x)]′(1,+∞)内的一个原函数.显然,ln(x)+2,故ln(xln(x)的原函数.一般地,对任意常数C,ln(x)+C由此可知,当一个函数具有原函数时,它的原函数不止一个.关于原函数,我们首先要问:一个函数具备什么条件,能保证它的原函数一定存在?这个问题将在下一章中讨论,这里先介绍一个结论.定理1(原函数存在性定理) 如果函数f(x)在区间I上连续,则在区间I上存在可导函数F(x),使对任意x∈I,都有F′(x)=f(x).这个结论告诉我们连续函数一定有原函数.我们已经知道:一个函数如果存在原函数,那么原函数不止一个,这些原函数之间的关系有如下定理:定理2 如果F(x)是f(x)在区间I上的一个原函数,则在区间I上f(x)的所有原函数都可以表示成形如F(x)+C(C为任意常数)的形式.定理需要证明两个结论:(1) F(x)+C是f(x)的原函数;(2) f(x)的任一原函数都可以表示成F(x)+C的形式.证 (1) 已知F (x )是f (x )的一个原函数,故F ′(x )=f (x ). 又[F (x )+C ]′=F ′(x )=f (x ),所以F (x )+C 是f (x )的一个原函数.(2) 设G (x )是f (x )的任意一个原函数,即G ′(x )=f (x ),则有[G (x )-F (x )]′=G ′(x )-F ′(x )=f (x )-f (x )=0.由拉格朗日中值定理的推论1知,导数恒等于零的函数是常数,故G (x )-F (x )=C ,即 G (x )=F (x )+C .由定理2知,只要找到f (x )的一个原函数F (x ),就能写出f (x )的原函数的一般表达形式F (x )+C (C 为任意常数),即f (x )的全体原函数.二、 不定积分定义2 设F (x )是f (x )的一个原函数,则f (x )的全体原函数F (x )+C (C 为任意常数)称为f (x )的不定积分,记作()f x ⎰d x ,即()f x ⎰d x =F (x )+C , (5-1-2)其中,∫称为积分号,f (x )称为被积函数,f (x )d x 称为被积表达式,x 称为积分变量,C 称为积分常数.例1 求x ⎰d x .解 由于(212x )′=x ,故212x 是x 在(-∞,+∞)内的一个原函数, 因此 x ⎰d x =212x +C .例2 求1x⎰d x .解 由于(ln x )′=1x ,故ln x 是1x在(-∞,0)∪(0,+∞)内的一个原函数,因此1x ⎰d x =ln x +C .例3 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解 设所求的曲线方程为y =f (x ),按题设,曲线上任一点(x ,y )处的切线斜率为d d yx=2x , 即f (x )是2x 的一个原函数.因为2x ⎰d x =2x +C , 从而y =2x +C .因所求曲线通过点(1,2),故 2=1+C , C =1. 于是所求曲线方程为 y =2x +1.函数f (x )的原函数的图形称为f (x )的积分曲线.本例即是求函数2x 的通过点(1,2)的那条积分曲线.显然,这条积分曲线可以由另一条积分曲线(例如y =2x )经y 轴方向平移而得(见图5-1).图5-1三、 不定积分的性质从不定积分的定义,即可知其下述性质: 由于()f x ⎰d x 是f (x )的原函数,所以有(1)dd x[()f x ⎰d x ]=f (x ), 或 d [()f x ⎰d x ]=f (x )d x ; 又由于F (x )是F ′(x )的原函数,所以有 (2) '()F x ⎰d x =F (x )+C ,或记作 d ⎰F (x )=F (x )+C .由此可见,微分运算(以记号d 表示)与求不定积分的运算(简称积分运算,以记号⎰表 示)是互逆的.当记号∫与d 连在一起时,或者抵消,或者抵消后差一个常数. (3)[]()()f x g x αβ+⎰d x =α()f x ⎰d x +β()g x ⎰d x ,其中α,β为任意常数.此性质可以简单地说成:和的积分等于积分的和;常数因子可以从积分符号中提出来,这是一个积分常用的性质。
性质(3)可以推广到任意有限个函数的情形.四、 基本积分表既然积分运算是微分运算的逆运算,那么很自然地可以从导数公式得到相应的积分公式.例如,因为α≠-1时,1()'1x αα++=x α,所以11x αα++是x α的一个原函数,于是x α⎰d x =111x αα++ +C (α≠-1). 类似地可以得到其他积分公式.下面我们把一些基本的积分公式列成一个表,这个表通常叫做基本积分表. (1) k ⎰d x =kx +C (k 为常数), (2) x α⎰d x =111x αα+++C (α为常数且α≠-1), (3)1x ⎰d x =ln ︱x ︱+C ,(4) x a ⎰d x =1ln xa a+C ,(5) e x ⎰d x =e x+C ,(6) cos ⎰d x =sin x +C , (7) sin x ⎰d x =-cos x +C ,(8) 2sec x ⎰d x =2d cos xx ⎰=tan x +C , (9) 2csc x ⎰d x =2d sin xx⎰=-cot x +C , (10) sec tan x x ⎰d x =sec x +C , (11) csc cot x x ⎰d x =-csc x +C ,(12)⎰=arcsin x +C ,(13)2d 1xx +⎰=arctan x +C .以上13个基本积分公式及前面的不定积分性质是求不定积分的基础,读者应该熟记.例4 求313()x x x +⎰d x .解 313()x x x+-⎰d x=x ⎰d x +1x⎰d x -12x ⎰d x +33x -⎰d x=22x +ln x -2332x -232x -+C . 例5 求421x x+⎰d x . 解 421x x +⎰d x =42111x x -++⎰ d x =221(1)1x x -++⎰ d x =313x -x +arctan x +C .例6 求2tan x ⎰d x .解 2tan x ⎰d x =2(sec 1)x -⎰d x =2sec x ⎰d x -dx ⎰=tan x -x +C .例7 求2sin2x⎰ d x .解 2sin 2x ⎰d x =12⎰(1-cos x )d x =12∫(1-cos x )d x =12(x -sin x )+C .应该注意,由于两个原函数之间可以相差一个常数,因此,积分结果在形式上可能不一样,此时可通过求导来验证结果,比如,arcsin .x C =+另一方面,由于(arccos )x '=,所以,arcsin .x C =-+ 这两个结果都正确。
造成积分结果形式不同的原因是arcsin arccos .2x x π+=习题 5-11. 求下列不定积分:(1)25)x -d x ; (2) 2x ; (3) 3e x x ⎰d x ; (4) 2cos2x⎰d x ; (5) 23523x x x ⋅-⋅⎰d x ; (6) 22cos 2d cos sin x x x x⎰. 2. 解答下列各题:(1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求'()f x ⎰d x ;(3) 已知f (x )的导数是sin x ,求f (x )的一个原函数; (4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P =0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001()3Pln 3,求需求量与价格的函数关系.第二节 换元积分法直接利用基本积分表和积分的性质所能计算的不定积分是非常有限的.因此,有必要进一步研究不定积分的方法.本节把复合函数的微分法反过来用于求不定积分,利用变量代换得到复合函数的积分法,称为换元积分法,简称换元法,换元法通常分为两类,分别称为第一类换元法和第二类换元法.一、 第一类换元法我们知道,如果F (u )是f (u )的原函数,则()f u ⎰d u =F (u )+C ,而如果u 又是另一变量x 的函数u =ϕ (x ),且ϕ (x )可微,那么根据复合函数的微分法,有[F (ϕ (x ))]′=f (ϕ (x ))ϕ′(x ). 再由不定积分的定义,得f ⎰(ϕ (x ))ϕ′(x )d x =F (ϕ (x ))+C =()()u x f u du ϕ=⎡⎤⎣⎦⎰.于是有下述定理:定理1 设f (u )具有原函数,u =ϕ (x )可导,则有换元公式f ⎰(ϕ (x ))ϕ′(x )d x =()()u x f u du ϕ=⎡⎤⎣⎦⎰. (5-2-1)由此可见,如果被积函数具有f (ϕ (x )) ϕ′(x )的形式,那么可令u =ϕ (x ),代入后有f ⎰(ϕ (x ))ϕ′(x )d x =()()u x f u du ϕ=⎡⎤⎣⎦⎰.这样,上式左端的积分便转化成了函数f (u )的积分,如果能求得f (u )的原函数,再将u =ϕ (x )代回,就可得到左端的积分F (ϕ (x ))+C .例1 求2cos 2x ⎰d x .解 被积函数中,cos 2x 是cos u 与u =2x 的复合函数,常数因子2恰好是中间变量u =2x 的导数,因此作变量代换u =2x ,便有2cos 2x ⎰d x =cos 2x ⎰·2d x =cos 2x ⎰·(2x )′d x =cos ⎰u d u =sin u +C . 再以u =2x 代入,即得2⎰cos 2x d x =sin 2x +C .例2 求1d 25x x +⎰. 解 125x +可看成1u与u =2x +5的复合函数,被积函数中虽没有u ′=2这个因子,但我们可以凑出这个因子:125x +=12·125x +·2=12·125x +·(2x +5)′,从而令u =2x +5,便有125x +⎰ d x =12⎰·125x + (2x +5)d x =12125x +⎰d(2x +5)=121u ⎰d u=12ln u +C =12ln 25x + +C . 一般地,对于积分f ⎰ (ax +b )d x ,总可以作变量代换u =ax +b ,把它化为()d f ax b x +⎰=1a ⎰f (ax +b )d(ax +b )=1a()()u x f u du ϕ=⎡⎤⎣⎦⎰. 以后,我们还常常用到下列微分公式,读者应熟悉。