机械设计理论

合集下载

机械设计的基本原理和方法

机械设计的基本原理和方法

机械设计的基本原理和方法机械设计是指以机械结构为基础,使用工程技术方法进行创新和设计的过程。

在机械设计中,掌握基本原理和方法是非常重要的,下面将介绍其中的几个关键点。

一、机械设计的基本原理1.结构设计原理机械设计的结构设计原理是指根据机械产品的功能要求,将其分解为若干个组成部分,并通过合理的连接方式使这些部分形成一个有机的整体。

结构设计的关键在于考虑产品的强度、刚度、稳定性等因素,以确保产品的正常运行。

2.运动学原理机械设计中的运动学原理是研究物体运动的规律和方法。

在机械设计中,需要根据产品的工作要求和工作环境,确定产品的运动轨迹、速度、加速度等参数,并通过运动学分析来确定合适的机械结构和传动机构。

3.材料力学原理材料力学原理是机械设计的重要基础。

在机械设计中,需要对所选材料的力学性能进行分析和计算,以确定材料的适用范围和工作条件。

常用的材料力学原理包括弹性力学、塑性力学等。

4.热力学原理热力学原理在机械设计中的应用主要是分析机械系统的热工性能。

通过热力学原理的应用,可以对机械系统的能量传递和转化进行分析,从而优化机械系统的能效和性能。

二、机械设计的基本方法1.需求分析和规划机械设计的第一步是对产品需求进行分析和规划。

通过调研和产品定位,明确产品设计的目标和功能要求,确定设计方向和设计原则。

2.概念设计和创新概念设计是指根据需求和规划,在理论上进行创新和方案设计。

在概念设计中,可以采用创新的思维方式,结合专业知识和设计经验,提出多个不同的设计方案。

3.详细设计和分析详细设计是指从概念设计中选取一个最佳方案,并进行详细制图和参数计算。

在详细设计中,需要进行力学、动力学、热力学等方面的分析,确保设计方案的合理性和可行性。

4.制造和优化机械设计完成后,需要进行制造和优化。

在制造过程中,需要根据设计图纸进行加工和装配,确保产品的质量和精度;在优化过程中,可以根据实际使用情况对机械系统进行改进和调整,提高产品的性能和可靠性。

机械设计及理论

机械设计及理论

机械设计及理论(一级学科:机械工程)机械设计及理论是研究机械科学中具有共性的基础理论和设计方法的学科,原名为机械学学科。

本学科1982年获得硕士学位授予权,2000年获得博士学位授予权。

随着科学技术的不断发展,动态设计、优化设计、可靠性设计、有限元设计、智能设计、虚拟设计、计算机辅助设计、创新设计等现代化设计方法完善和发展了传统的设计理论与设计方法。

机械学科与仿生学、电子学、控制理论、信息学、生物学、材料科学等许多种学科相互交叉、渗透,形成了多种与机械学科密切相关的边缘学科。

与其它学科的相互交叉、渗透、融合,促进了机械设计及理论学科的新发展。

本学科的主要研究方向如下。

1.机构学与机器人机械学:平面机构及空间机构的分析与综合理论,机构组合理论,机构创新设计理论与方法,广义机构与仿生机构,空间并联机构,机器人机械学与仿真技术,数学机械化在机器人与机械设计中的应用。

2.机械传动与摩擦学:机械传动理论、设计方法,传动系统故障监控与诊断,机械传动仿真技术,摩擦、磨损和润滑机理,摩擦学理论与设计,摩擦学测试技术,流体润滑技术与应用,特殊轴承润滑。

3.机械系统运动学与动力学:机械系统的动力学模型与动态仿真,液压系统、机械振动分析与控制,模态分析与动态测试、减振降噪。

振动与冲击理论在车辆、航天器、飞行器中的应用。

4.运动生物力学:机构学、生物学、力学、医疗学交叉、渗透形成的边缘学科,涉及到人体结构、功能,人体的运动学、动力学、动态测试与分析、人机工程;主要研究冲击与振动环境下的人体安全与防护问题。

5.计算机图形图像学:计算机图形图象处理的基本理论,包括图形算法、图象处理、仿真显示、可视化,图形库。

图像技术在微观材料、复杂形体、运动形体的应用。

一、培养目标硕士研究生应热爱祖国,热爱人民,有道德、开拓进取,具有严谨的学风。

在本学科上掌握坚实的基础理论和系统的专门知识,具有从事科学研究工作和独立担负专门技术工作的能力。

机械设计的基本原理

机械设计的基本原理

机械设计的基本原理1. 引言机械设计是利用物理学、力学、工程材料学等基础理论为基础,结合工程实践经验,对各种机械设备进行设计、研发和制造的过程。

本文将介绍机械设计的基本原理,并探讨其在工程实践中的应用。

2. 力学原理机械设计的基本原理之一是力学原理。

力学研究物体的静力学和动力学特性,主要包括受力分析、物体的平衡条件以及物体的运动规律等方面。

在机械设计中,力学原理可以帮助工程师确定机械部件的尺寸、形状和材料,以确保机械设备的结构稳定性和功能性能。

3. 材料力学材料力学是机械设计的另一个重要原理。

不同的材料具有不同的力学性能,包括强度、硬度、韧性等。

通过对材料的力学特性进行分析和测试,可以为机械设计者提供选择合适材料的依据。

在机械设计中,合理选择材料可以提高机械设备的耐用性和可靠性。

4. 运动学原理运动学原理研究物体的运动规律和运动参数,如速度、加速度和位置等。

在机械设计中,运动学原理可以用于确定机械系统的运动方式和传动方式。

通过对机械系统的动力学分析,可以优化系统的运动性能,提高工作效率。

5. 热力学原理热力学原理研究物体在能量转换过程中的性质和规律。

在机械设计中,热力学原理可以应用于热机设计和能量传递等方面。

合理利用能量和优化能量传递过程,可以提高机械系统的能源利用效率。

6. 润滑学原理润滑学原理研究物体表面间的摩擦和润滑特性,涉及到润滑方法、摩擦力以及润滑剂的选择等方面。

在机械设计中,润滑学原理可以用于减少机械部件的磨损和能量损失,提高机械系统的工作效率和寿命。

7. 结构设计原理结构设计原理是机械设计的关键原理之一,涉及到机械部件的形状、尺寸、布局等方面。

结构设计原理需要考虑到力学性能、材料力学、运动学等因素,并结合实际应用需求进行综合分析与优化。

8. 机电一体化原理机电一体化原理将机械设计与电气控制相结合,实现机械设备的自动化和智能化。

机电一体化技术在现代机械设计中得到广泛应用,提高了机械设备的精度、可靠性和生产效率。

机械设计中的机械设计理论与模型

机械设计中的机械设计理论与模型

机械设计中的机械设计理论与模型机械设计是指通过分析和研究,确定并优化机械产品的结构、形状、材料、工艺、运动方式以及相互配合等方面的设计。

在机械设计中,机械设计理论与模型是重要的工具和方法,用来指导设计过程和验证设计方案的可行性。

本文将探讨机械设计中的机械设计理论与模型的应用和意义。

一、机械设计理论的应用机械设计理论是机械设计的基础,它涉及众多物理学和数学学科的知识,并结合实际工程应用进行不断发展和完善。

在机械设计中,以下是一些常用的机械设计理论:1.力学理论:力学理论是机械设计的基本理论,包括静力学、动力学、材料力学等内容。

通过力学理论的应用,可以预测机械结构的受力情况,确定结构的稳定性和强度。

2.热力学理论:机械设计中的许多机械部件和系统都涉及热力学过程。

通过热力学理论的应用,可以优化机械系统的热能转换效率,提高机械设备的工作效率。

3.流体力学理论:机械设计中的液压系统、气动系统等需要应用流体力学理论进行分析和设计。

通过流体力学理论的应用,可以预测流体的流动性能和压力损失,确定合适的管道和阀门尺寸。

4.控制理论:机械设计中的自动控制系统需要应用控制理论进行设计和优化。

通过控制理论的应用,可以实现机械设备的自动化操作和稳定控制。

二、机械设计模型的应用机械设计模型是机械设计过程中的一种抽象和简化,用来描述和分析机械系统的结构和性能。

在机械设计中,以下是一些常用的机械设计模型:1.几何模型:机械设计中的几何模型是指通过计算机辅助设计(CAD)软件绘制的机械产品的三维图形。

几何模型可以直观地显示机械产品的外形和内部结构,为设计人员提供直观的视觉信息。

2.运动学模型:机械设计中的运动学模型是指通过数学模型描述机械系统的运动轨迹和运动规律。

运动学模型可以帮助设计人员确定机械系统的运动速度、位移和加速度等参数,优化机械系统的运动性能。

3.动力学模型:机械设计中的动力学模型是指通过数学模型描述机械系统的受力和运动过程。

【专业介绍】机械设计及理论专业介绍

【专业介绍】机械设计及理论专业介绍

【专业介绍】机械设计及理论专业介绍机械设计及理论专业介绍一、专业概述机械设计与理论是机械工程一级学科的二级学科。

它是一门基础技术学科,用于机械的功能分析和综合,以及对其性能的定量描述和控制。

这是一个简单的理论介绍,用于归纳和总结机械工程的各种详细工作流程和程序。

主要研究各种机械、机构及其零部件的工作原理、运动和动态性能、强度和使用寿命、振动和噪声、摩擦、摩擦物理、关系力学、磨损和润滑、机械创新和设计、现代设计和计算方法。

机械设计及理论专业介绍二、专业特色机械设计与理论专业主要从事复合材料零部件的设计与制造、计算机辅助工程、轻工业自动化机械设计与理论研究,将计算机辅助设计和现代检测技术应用于机械及其产品的设计过程,掌握扎实的基础理论和系统的专业知识。

了解本学科的现状和发展趋势,具有工程设计和管理的综合素质和知识结构,适合工程技术、教学、科研和管理。

在轻工机械和食品机械行业培养轻工先进科技。

近年来,先后完成了多项国家级自然科学基金项目、省部级项目和水平项目,部分成果已达到国内领先水平和国际先进水平。

机械设计及理论专业介绍三、培养目标有扎实的数学、力学和信息技术基础,有系统的机械专业知识,必要的机械测试、机电一体化实验技能和熟练使用计算机的能力;了解本学科专业发展的现状和趋势;掌握一门外语,能熟练阅读专业文献,具备从事本学科领域内内科研究、教学、设计制造和技术管理的能力。

机械设计及理论专业介绍四、课程设置现代测试技术、现代控制理论、工程设计、CAD方法与技术、工程计算机图形学、MEMS设计、机构分析与综合、摩擦学与润滑理论、计算机辅助几何设计与分析、现代模具设计与制造技术等。

机械设计及理论专业介绍五、就业方向一般来说,机械设计与理论专业从事机械制造领域的CAD/CAM设计、制造和设备管理。

他们还可以在机电系从事高级职业技术工作。

以下介绍了几所专业性较强的机械类院校的就业情况:1、随着前沿技术的逐渐应用和发展,专业的技术人才需求量较大,如数控操作人员、设备维护人员、机械设计人员、检验人员、物流、管理人员等。

举出机械设计基础理论体系的某一知识点,所学实例

举出机械设计基础理论体系的某一知识点,所学实例

举出机械设计基础理论体系的某一知识点,所学实例第一章绪论
1.机械的组成:完整的机械系统由原动机,传动装置,工作机,和控制系统四大基本组成部分。

2.机械结构组成层次:零件,构件,机构,机器。

3.机械零件:加工的单元体。

4.机械构件:运动的单元体。

5.机械机构:具有确定相对运动的构件组合体。

第二章机械设计概论
1.机械设计的基本要求:使用功能,工艺性,经济性其他。

2.机械设计的一般程序:
(1)确定设计任务书。

(2)总体方案设计。

(3)技术设计。

(4)编制技术文件。

(5)技术审定和产品鉴定。

3.机械零件的失效:机械零件不能正常工作,失去所需的工作效能。

4.设计计算准则:保证零件不产生失效。

5.,机械零件的结构工艺性:
铸造工艺性,模锻工艺性,焊接工艺性,热处理工艺性,切削加工工艺性,装配工艺性。

6.工程材料:金属材料,非金属材料。

7.金属材料的机械性能:强度,刚度,硬度,塑性,韧性和疲劳强度。

8.金属材料的工艺性能:铸造性,铸造性,焊接性,切削加工性。

9.钢的热处理方式:退火,正火,淬火与回火,表面淬火,表面化学热处理。

10.常用金属材料:铸铁,碳素钢,合金钢,有色金属材料。

机械设计及理论

机械设计及理论

机械设计及理论
机械设计为机械工程的一项重要学科,它是在理论的基础上,通
过合理的设计规范,结合实际应用来实现机械制造及各种类型产品功
能要求的系统过程。

机械设计理论涉及许多方面,如机械力学、摩擦学、材料力学、机械微小分析、机械匹配、机构动力学、工艺设计等。

首先,机械设计是机械制造的前期工作,在机械制造中,设计是
最关键的步骤,决定了机械性能的好坏。

为了能够实现机械产品的性
能要求,必须根据实际情况,从机械设计理论中选取合适的理论依据。

其次,机械设计理论也非常重要,它能够有效指导机械制造以达
到性能高效优良的高效率。

在设计一个机械设备时,常常需要考虑动
力根据、动力传递方式、机械构成及工作原理等因素,这些都需要正
确的理论依据和正确的分析结果。

最后,机械设计理论能够帮助设计者对机械设备进行理性化和定
性分析,更好地指导机械设计实践,从而实现机械制造产品的有效性能。

机械设计理论不仅提供有效的技术支持,而且还能够有效地提高
机械设计的水平,促进机械产品的发展。

总之,机械设计理论是机械设计的基础,是机械设计实践的重要
依据。

通过合理的机械设计理论,可以提高机械产品的质量和性能,
满足金钱新闻制造业的发展需求。

机械设计理论

机械设计理论

机械设计理论机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。

它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。

进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。

机械设计是一项创造性的工作。

设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。

如前所诉,机械设计的目的是生产能够满足人类需求的产品。

发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。

因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。

应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。

掌握工程基础知识要比熟记一些数据和公式更为重要。

仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。

另一方面,应该认真精确的进行所有运算。

例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。

一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。

因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。

一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。

由于许多人墨守成规,这样做并不是一件容易的事。

一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。

新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。

因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。

应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。

在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

‗机械设计‘ Category[转-凸轮系列一]凸轮机构的优缺点以及与其他运动装置的一些对比二月14th, 2011凸轮机构最大的优点是可实现高速化,结构紧凑,可靠性高;最大的缺点是不可变,不能变更动作时间(角度)一、关于凸轮动作与气缸动作的比较。

1、结构运动特性:凸轮机构结构紧凑,可靠性高,可以实现高速自动化。

在自动机械中,虽然也可以使用气动装置,但气动动作结束时冲击较大,当改变速度时,需要对节流阀进行调节,当生产速度提高较大时,气缸装置显然无能为力。

而用凸轮机构可以获得平稳的运动,当速度改变时也可以保持同步。

气压易受压力系统影响,当同一气源的其他气缸急速动作时,气压会下降,气缸的动作也会产生变化,而凸轮始终处于稳定状态。

2、运动的时序性:气缸的动作是一个接着一个的,必须是一个动作完成后才能进行下一个动作。

凸轮的位移(角度)与时间是确定的,动作是可以叠加的,一个动作未结束时可以开始下一动作,因此可以缩短循环时间。

3、故障率:设计良好的凸轮机构可以使用到设备的终生,气缸则无法达到此要求。

4、动作变化性:当需要变化动作的次序与时间时,显然凸轮机构无能为力。

凸轮机构一旦设计使用,基本上是不可改变的(除了有些设计成可调角度的凸轮勉强能调整一点角度外),是刚性的。

气动则不然,可以通过PLC进行调整,是柔性的。

5、能耗毫无疑问,凸轮的能耗要比气缸装置少,从能量的转换来说,气缸的能量是空气压缩机转换过来的,存在着转换损失和管道的严重泄露。

二、关于凸轮动作与伺服控制系统的比较不容置疑,伺服控制由于有强大的适应性与灵活性在当今占据着越来越重要的地位。

伺服控制可以摸拟运动曲线而获得很好的运动动力特性,很多优良的运动曲线也是应伺服需要而开发的。

与凸轮机构比较,主要差异是可变性与不变性。

前面说到,伺服具有强大的适应性与可变性,而凸轮机构的动作行程、同步和运动特性是不变的,无论负荷发生了多少的变化,其运动状态是不会发生变化的。

伺服机构通过伺服电动机进行数字控制实现运动控制,使用同一运动曲线的凸轮机构与伺服机构产生不同的运动动力效果。

比较遗憾地说,在此方面凸轮机构还略胜一筹。

一、关于凸轮动作与气缸动作的比较。

1、结构运动特性:凸轮机构结构紧凑,可靠性高,可以实现高速自动化。

在自动机械中,虽然也可以使用气动装置,但气动动作结束时冲击较大,当改变速度时,需要对节流阀进行调节,当生产速度提高较大时,气缸装置显然无能为力。

而用凸轮机构可以获得平稳的运动,当速度改变时也可以保持同步。

气压易受压力系统影响,当同一气源的其他气缸急速动作时,气压会下降,气缸的动作也会产生变化,而凸轮始终处于稳定状态。

2、运动的时序性:气缸的动作是一个接着一个的,必须是一个动作完成后才能进行下一个动作。

凸轮的位移(角度)与时间是确定的,动作是可以叠加的,一个动作未结束时可以开始下一动作,因此可以缩短循环时间。

3、故障率:设计良好的凸轮机构可以使用到设备的终生,气缸则无法达到此要求。

4、动作变化性:当需要变化动作的次序与时间时,显然凸轮机构无能为力。

凸轮机构一旦设计使用,基本上是不可改变的(除了有些设计成可调角度的凸轮勉强能调整一点角度外),是刚性的。

气动则不然,可以通过PLC进行调整,是柔性的。

5、能耗毫无疑问,凸轮的能耗要比气缸装置少,从能量的转换来说,气缸的能量是空气压缩机转换过来的,存在着转换损失和管道的严重泄露。

二、关于凸轮动作与伺服控制系统的比较不容置疑,伺服控制由于有强大的适应性与灵活性在当今占据着越来越重要的地位。

伺服控制可以摸拟运动曲线而获得很好的运动动力特性,很多优良的运动曲线也是应伺服需要而开发的。

与凸轮机构比较,主要差异是可变性与不变性。

前面说到,伺服具有强大的适应性与可变性,而凸轮机构的动作行程、同步和运动特性是不变的,无论负荷发生了多少的变化,其运动状态是不会发生变化的。

伺服机构通过伺服电动机进行数字控制实现运动控制,使用同一运动曲线的凸轮机构与伺服机构产生不同的运动动力效果。

比较遗憾地说,在此方面凸轮机构还略胜一筹。

∙凸轮 . 凸轮机构∙Write comment〔转〕机械设计心得∙七月11th, 2010机械设计往往离不开自己的阅历,经验的积累固然可以从书本上学到不少,但是事非躬亲很难在脑海中留下深刻的印象,对别人的经验,自己没有一定的基础,要理解吸收真的是一件很不容易的事。

机械设计贯穿设计、制造、使用,维护的整个过程,设计时的疏忽总会在这些方面反映出来,成功与否是很容易判断的。

设计的过程中,受制造的影响很大,亦就是说好的设计是不能脱离制造的,对制造越了解,越有助于提高设计水平。

设计的图纸,投入生产,我没见过多少能立即按图加工装配,在审图、工艺等过程发现大堆的问题很常见,包括所谓―资深‖的高工,总工拿出的图纸,还是经过多次开会研究反复讨论的出来的结果,原因是多方面的,绘图的规范性,看图者的水平是一方面,但设计方对制造工艺的了解不深入是主要原因。

怎样判定自己对制造的了解程度?最简单的方法是随手抓一张自己设计的东西的图纸你是否能说出它的制造全过程。

铸、锻、车、钳、铣、刨、磨,只是这样子,肯定是不行,在机械厂做过几年的谁不知道?必须细分下去,要全面了解各过程。

比如说铸造时候怎么分型,浇口冒口怎么放,可能会有什么样的铸造缺陷产生,零件结构在热处理的时候会不会导致意外情况发生的,怎么在零件结构上进行优化,切削加工过程,在脑海中虚拟出来,总共用几把刀,转速,走刀量,甚至铁屑望哪里飞,各把刀使用的顺序,车工,铣工,磨工的操作动作全过程,如此等等,才算是有了比较好的基础。

不是说搞设计的一定要会玩车床,铣床,会烧电焊才可以,但是要知道这些作业特点,在设计时加以充分考虑,作为搞机械设计的人这样才比摇车床烧电焊的强,才有安身立命之处。

如此,在设计过程中,就会规避一些不合理的结构,设计的质量自然提高不少,可是还不够,一个有十年八年的工龄的技工能提出比你更成熟的细节方案(尽管整体的设计统筹他们做不了),但是多少个不眠的夜晚设计出就这样一个结果,岂不是斯文扫地耶?唯一的解决办法,多看书。

别人总结出来的通常与生产相结合,俱是心血的结晶。

带着问题学,多想就能消化。

再也不会说―只要保证同心度就行了‖这样愚蠢的回答,关键是你已经指出保证同心度的方法,甚至前辈的错误。

这个时候,没人再叫你小钱、小赵,连老板都叫你钱工、赵工,挺受尊敬的吧。

摸摸下巴,胡子长出来了,尿布丢了,孩子叫妈了,呵呵成就感也来了。

可是设计总是为了使用,好的设计必须具备一点点人性的,设计一套工艺装备,一试产,效率高质量好,老板来搞杯庆功酒。

过了几天,发现人家弃之不用了,原因是操作者骂娘啊。

用起来痛苦啊。

而且要注意的细节又多,别个就是个操作工他要是考虑的那么多因素就不会还在那里做操作工了啊。

设计不利于使用,就面临淘汰,有很多的成套设备,如汽车的发动机变速箱之类正常运转时―挺好的,―,可其中一个小键槽,一个轴承位,什么的地方坏了,整个就不能用,厂方只卖整件,要配件不卖,自己加强还真的没地方加了,换了几个厂去买,摆了一堆,用户只好敬而远之,立了个技改项目--可怜的技改。

这样的事情只要是在机械行业转的久的都会有所见所闻。

使用根本就离不开维修,好的设计更不能忽视维修性。

在一条大型的的生产线上,关键的设备,总共一年也就维修那么两次,但是每此都要把设备大卸八块,行车叉车千斤顶撬杠十八般兵器还不够用,老师傅们还要自己专门动脑动手玩几样好用的专用家当来伺候,导致停产的损失已经超过设备本身的价值,真是个无言的结局。

一套大型设备仅因更换一只油封什么的,都要几乎将整机完全分解,使用单位不骂设计干的是断子绝孙的玩意才怪,真的是设计者的悲哀。

我们搞设计不光是要站在制造的基础上,还要有创新,但一定要学会继承。

现在,全社会都在强调创新,但我们不能一强调创新,就瞧不起原有的东西。

通常的创新分为两种,一种就是构成事物旧有元素的重新组合,一种是在旧有元素上加一些新的元素。

所以,不管怎样,创新的东西总是含有一些旧有事物的影子是不可否认的。

正像哲学中所讲,新事物都是在肯定中否定,否定中有肯定中产生的。

比如我们人类,虽然说是大自然的天之骄子,但实际上,我们99%的基因都是和大猩猩一样的。

如果人类不是在继承大猩猩的基因基础上,有1%的突破,人类的出现是难以想象的,如果有人说我有志气,不需要继承大猩猩的基因,我自己搞一个100%纯人类基因,那您就是再过一亿年,也搞不出来一个人类来。

所以说,不能为了创新,把旧有的东西全盘抛弃。

原有的东西就如同一盘菜,创新就如同一点点调料,有了这么一点调料,菜的味道更加鲜美。

但没有人为了纯鲜美,不要菜,光来一盘炒调料的。

所以我们强调创新,但不能忘记继承,只有继承,没有创新,那是因循守旧,而只有创新,没有继承,那是空中楼阁。

1:1的克隆可能很多的人认为是最安全最省事的一种设计方式。

但是作为从事设计行业的人来讲,克隆是一件可耻的事情。

所谓一抄二改三创造。

简练的概括了设计人员的成长之路。

刚入门的时候,只能照抄,但是在抄袭的同时要拼命的去理解原设计者的意图和思维,理解整个机器的传动,各个装置之间的相互关联,每个零件的相互关系,理解了之后就可以出图,图纸上就可以有明确的尺寸配合要求,形位公差约束。

只知道画下来,随手胡扯几根线条上去,大概感觉机器精度比较高,就玩命的把精度往上提动不动就0.005,0.002,在图纸上大言不惭的签名在设计栏。

号称自己搞的东西是很精密的。

这种不知所谓的号称机械机械设计工程师的信手拈来满地都是。

模仿优秀的作品是每一个设计师的必走之路。

但是做设计,一定要有自己的想法,人也要有自己鲜明的个性,久了,就形成了自己的风格,风格的养成与一个人的艺术素养和个人修养有直接关系。

罗嗦的人搞出来的东西就是那么罗嗦的,小气的人搞出来的东西就是一副小家子气,不负责任的人搞出来的机器就跟那人的德行一样的不负责任。

能有自己的设计理念,设计风格,就是不一样,这样捣腾出来的东西就有了独特的灵魂。

行家一看就知道,这是用心的杰作。

在抄袭的时候积累了经验就要抱着否定的态度学习。

查阅资料,多看些经典的设计案例,和设计的禁忌,与自己接触过的一些东西进行对比,就有了大的提高。

就可以在现有的机器上动手术。

如:提高机器的附加值,完善更多的功能,让整机具备更高的可靠度。

从而迎合高端的客户;或者进行结构精简,保留一些常用功能,降低成本,满足些买不起那么也用不上多功能的客户的需求。

做到这样就可以称的上做机械设计开始入门了。

能不能成为世界级的发明家这个事情很难说的,呵呵。

但是凭自己多年经历见识,将一些结构进行组合,变异,嫁接,创造一些新的东西是不难的。

与其用一生的时间去研究永动机之类的高深课题,或者搞一些莫名其妙不能创造任何价值的所谓专利,不如用自己有限的生命去做些能在这个美丽的星球上留下点印记的事情。

相关文档
最新文档