大数据解决方案在保险行业应用实践
大数据分析在保险行业中的实际应用

大数据分析在保险行业中的实际应用随着科技的不断发展和互联网的普及,大数据分析逐渐成为各行各业的热门话题。
在保险行业中,大数据分析的应用也逐渐得到了广泛认可和应用。
本文将探讨大数据分析在保险行业中的实际应用,并分析其对保险业务的影响。
首先,大数据分析在保险行业中的一个重要应用是风险评估。
保险公司通过收集和分析大量的数据,可以更加准确地评估客户的风险水平。
传统的保险风险评估主要依赖于客户的个人信息和历史记录,而大数据分析可以进一步深入挖掘客户的行为模式、社交关系等信息,从而更加全面地评估客户的风险。
例如,通过分析客户的社交媒体数据,保险公司可以了解客户的生活方式、兴趣爱好等,从而更好地评估其保险风险。
这种精细化的风险评估可以使保险公司更加准确地定价,提高保险产品的适配性。
其次,大数据分析在保险行业中还可以帮助保险公司进行欺诈检测。
保险欺诈是保险行业面临的一个重要挑战,而大数据分析可以帮助保险公司及时发现和预防欺诈行为。
通过分析大量的保险理赔数据,保险公司可以建立欺诈模型,识别出潜在的欺诈案件。
例如,通过分析客户的行为模式和历史理赔记录,保险公司可以发现一些异常模式,进而判断是否存在欺诈行为。
这种基于大数据的欺诈检测可以帮助保险公司减少欺诈损失,提高业务效率。
此外,大数据分析还可以帮助保险公司进行客户细分和精准营销。
保险公司通过分析大量的客户数据,可以将客户分为不同的细分市场,并根据不同市场的需求开发相应的保险产品。
例如,通过分析客户的年龄、性别、职业等信息,保险公司可以将客户分为不同的细分市场,然后根据不同市场的需求,开发相应的保险产品。
这种精准营销可以提高保险公司的销售效果,增加客户满意度。
此外,大数据分析还可以帮助保险公司进行客户关系管理。
保险公司通过分析客户的行为模式和偏好,可以更好地了解客户的需求,并提供个性化的服务。
例如,通过分析客户的购买记录和理赔记录,保险公司可以了解客户的保险需求和风险偏好,然后提供相应的保险建议和服务。
大数据技术在保险行业中的应用案例分享

大数据技术在保险行业中的应用案例分享保险行业是一个与每个人息息相关的行业,与人们的安全和幸福息息相关,也是一个数据重度行业。
保险公司需要从大量数据中快速、高效地找到具有可预测性的规律和趋势,从而为保险定价、风险管理、精准营销、投资等方面提供决策支持。
大数据技术就是解决这一问题的有力工具,下面我们来分享一些大数据技术在保险行业中的应用案例。
1. 通过大数据技术提高保险理赔效率和准确性保险理赔是保险行业核心业务之一,传统的理赔处理流程需要大量的人力和时间,从受理、快速核实、评估到定损再到赔款发放,整个流程通常需要平均一个月以上的时间。
同时,理赔定损中也面临着巨大的压力,如何快速、准确地评估案件,为客户提供更好的服务和体验,也是保险公司需要不断探索和优化的问题。
大数据技术的应用可以大大提高保险理赔的效率和准确性。
例如,保险公司可以借助大数据技术实现对各类理赔案件的数据分析,通过挖掘和分析保险理赔数据、医疗数据、车辆数据等多种类型数据,为理赔人员提供更好的决策支持,并帮助打破理赔处理流程的瓶颈。
同时,通过大数据技术建立风险分析模型,保险公司可以及时发现异常情况,缩短理赔处理时间,提高理赔效率和准确性。
2. 利用云计算、人工智能和区块链技术提高保险业的风险管理能力保险业的风险管理能力的提升也是一个重要趋势,大数据技术也在这方面发挥了不可或缺的作用。
例如,采用云计算技术,可实现对海量风险数据的快速处理和计算,有效提高了风险管理效率。
又如,通过人工智能技术,可以自动分析、挖掘海量数据中的隐含规律和趋势,对风险进行实时的精准评估,综合应用多种技术手段,彻底提升保险行业的风险管理能力。
此外,区块链技术的应用也可以为保险行业提供更好的风险管理服务。
保险实现了不同数据主体之间的去中心化应用,通过技术的加密与智能合约的发挥,可以将保险从响应灾害到快速、安全的理赔和资金发放等方面进行更为迅速地响应,提高保险业的风险管理效率和精准性。
大数据在保险行业中的应用案例

大数据在保险行业中的应用案例随着科技的发展和数据技术的进步,大数据在各行各业中的应用越来越广泛。
保险行业作为金融领域的一支重要力量,也开始充分利用大数据来提升服务质量、降低风险、优化运营等方面。
本文将介绍几个在保险行业中成功应用大数据的案例。
一、定价模型优化大数据分析可以准确评估风险,根据客户的风险特征制定个性化的保险产品和合理的保费,从而提高用户体验和市场竞争力。
保险公司可以通过收集和分析客户的个人信息、行为数据和社交媒体数据来了解客户的需求和风险特点,结合传统的统计模型和机器学习算法,构建更加精准的定价模型。
二、欺诈识别面临大量保单和索赔数据,保险公司需要及时准确地识别欺诈行为,以降低经济损失。
大数据技术可以帮助保险公司从数据中挖掘出潜在的欺诈模式和特征,如异常索赔、频繁更换保险数据、虚假证明等,通过建立欺诈检测模型或使用数据挖掘算法,实时监控保险业务,及时识别并预防欺诈行为。
三、客户洞察通过分析客户的行为数据和消费偏好,保险公司可以更好地理解客户需求,提供个性化的产品和增值服务。
大数据技术可以帮助保险公司构建客户画像,了解客户的人口统计学特征、消费行为、兴趣爱好等,进而提供个性化推荐和精准营销,增加客户黏性和满意度。
四、风险管理大数据在风险管理中的应用,可以帮助保险公司更好地评估和控制风险,减少损失。
通过结合多维度数据、历史数据和外部数据源,保险公司可以建立风险模型,预测和评估风险事件的概率和影响,并制定相应的风险管理策略,提前采取风险防范措施,降低损失。
五、智能理赔传统理赔流程繁琐、耗时,而且容易出现纰漏和欺诈。
大数据的应用可以使理赔流程更加智能化和便捷化。
通过将保险公司内部的理赔数据与外部的风险数据进行结合,可以实现智能化的理赔审核和自动化的理赔流程。
利用大数据分析,识别索赔有效性,减少人为因素的干扰,提高理赔效率和准确性。
综上所述,大数据在保险行业中的应用为行业发展带来了全新的机遇和优势。
互联网大数据在保险行业中的应用及案例分析

互联网大数据在保险行业中的应用及案例分析互联网对于人们的生活产生了巨大的影响,尤其是互联网大数据的出现,它对各行各业都产生了非常深远的影响。
保险作为一种风险转移的方式,也受到了互联网大数据的影响。
本篇文章将探讨互联网大数据在保险行业中的应用及其案例分析。
一、互联网大数据在保险行业的应用1. 数据分析保险公司需要掌握风险信息,并对不同类型的风险进行评估和分析。
这需要大量的数据支持,尤其是在大数据时代,数据的规模已经非常庞大。
保险公司需要对这些数据进行处理和分析,以便更好地理解风险,并根据数据结果来制定相应的保险产品和策略。
2. 互联网销售互联网大数据的应用使得保险销售更加方便快捷。
现在,很多保险公司都通过互联网销售保险产品,顾客可以通过保险公司的网站来购买保险产品。
同时,保险公司可以通过互联网上的大数据来进行定制化销售,并根据不同客户的需求来提供相应的服务。
3. 评估理赔互联网大数据还可以帮助保险公司来评估理赔情况。
保险公司可以通过监控互联网上的社交网络和其他公共信息来源来对保险进行理赔。
例如,当顾客在社交媒体上发布一张车祸的照片时,保险公司可以通过这个信息来快速、准确地了解事故的情况,并对理赔进行评估。
二、互联网大数据在保险行业的案例分析1. 理赔施工中国平安保险集团是一家使用互联网大数据来进行理赔的保险公司。
该公司采用互联网大数据来监控保险索赔入口,以便更好地跟踪车祸和事故的信息,并及时对理赔进行处理。
同时,平安保险还通过互联网上的大数据来提供保险索赔的进度追踪服务,方便顾客随时了解理赔的情况。
2. 定制化保险服务中国太平保险集团也是一家使用互联网大数据来进行保险定制服务的公司。
该公司通过互联网上的大数据来分析客户的人口统计学信息、行为和偏好,以便更好地了解客户的需求,并为其提供定制化的保险服务。
同时,该公司还采用互联网上的大数据来进行市场调查和评估,并根据调查结果来制定相应的保险产品和策略。
保险行业大数据分析的应用案例

保险行业大数据分析的应用案例随着信息技术的迅速发展和互联网的普及,大数据逐渐成为各行各业的关键词之一。
在保险行业,大数据分析不仅可以优化保险公司的运作,提升管理效率,还可以帮助保险公司更好地了解客户需求,精准定制保险产品,降低风险,提升收益。
本文将介绍一些保险行业大数据分析的应用案例,以展示大数据在保险行业的巨大价值和潜力。
案例一:客户风险评估在保险行业中,客户风险评估是非常重要的一环。
传统的客户风险评估通常基于有限的信息和统计数据,往往不够全面和准确。
然而,随着大数据的出现,保险公司可以从各种渠道收集大量客户数据,包括购买习惯、社交媒体活动、车辆行驶数据等,从而更全面地评估客户风险。
例如,一家汽车保险公司可以通过分析客户的车辆数据,了解客户的驾驶习惯、车辆使用情况以及事故记录等。
基于这些数据,保险公司可以更准确地评估客户的风险,并据此制定个性化的保险方案,如设定优惠政策、调整保险费率等。
案例二:欺诈检测在保险行业中,欺诈行为是一个严重的问题。
传统的欺诈检测方法往往耗时且效果有限,因为欺诈分子不断改变手法,难以识别。
然而,利用大数据分析技术,保险公司可以更好地应对欺诈行为。
例如,一家保险公司可以通过分析大量的理赔数据,建立欺诈检测模型。
该模型可以识别出异常的理赔行为,如频繁的理赔申请、不合理的索赔金额、虚假的事故记录等。
通过这种方式,保险公司可以及时发现潜在的欺诈行为,并采取相应的措施,保护自身利益。
案例三:产品定制和精准营销大数据分析还可以帮助保险公司更好地了解客户需求,并据此开发和定制个性化的产品。
通过对客户数据的分析,保险公司可以识别出客户的需求和偏好,从而设计出更加符合客户需求的保险产品。
例如,一家健康保险公司可以通过分析客户的健康数据,如体检报告、智能手环数据等,了解客户的健康状况和潜在风险。
基于这些数据,保险公司可以推出针对不同客户群体的健康保险方案,如健康管理服务、定期体检优惠等,从而提升客户满意度和保险公司的市场竞争力。
大数据技术在保险业中的应用

大数据技术在保险业中的应用随着科技的不断发展,大数据技术逐渐走进了保险业。
保险业的数据涵盖了从客户信息到交易记录、风险评估等各方面的信息,这些数据都可以用来制定更好的保险策略和服务。
大数据技术的应用能够让保险公司更快、更有效地处理大量数据,为客户提供更智能化的产品和服务。
下面,我们从三个方面来探讨大数据技术在保险业的应用。
一、风险管理在保险业中,风险管理是一个至关重要的环节。
如何识别风险,对风险进行量化评估和管理,是保险行业面临的难题。
利用大数据技术,保险公司可以通过对客户的历史数据、消费习惯、社会背景等进行分析,预测客户可能存在的风险。
例如,利用机器学习和数据挖掘技术,保险公司可以分析出某种车辆在某个地区的历史出险情况,从而提前预估车辆保险索赔的可能性和成本。
大数据还能帮助保险公司实现个性化风险评估,给客户提供个性化的保险服务。
二、客户服务保险行业的客户服务是非常重要的一环节。
利用大数据技术,保险公司可以更好地实现客户信息管理、保单管理和服务运营等方面的工作。
通过大数据分析,保险公司能够更准确地了解客户需求和行为,为客户提供定制化的保险产品和服务,提高客户忠诚度。
同时,大数据也可以帮助保险公司提高客户服务效率,例如保险理赔审批,通过机器学习和人工智能技术,保险公司能够更快速地审批理赔,提供更好的理赔服务。
三、市场推广大数据技术的应用不仅能够帮助保险公司提高客户服务质量,还能够为其市场推广提供更好的支持。
通过大数据分析,保险公司能够实时监测客户需求和市场趋势,及时调整产品和服务,满足客户需求,增强竞争力。
例如,保险公司可以通过社交媒体分析客户反馈,了解客户需求和服务评价,并针对性地推出营销策略。
依托大数据技术,保险公司还能为销售渠道管理提供更加精细化的支持,通过营销数据分析、绩效数据分析等方式,提高渠道效率和效益。
总结大数据技术在保险业中的应用,是推动保险业转型升级的重要驱动力。
大数据分析能够帮助保险公司精准统计信息、精准判断风险、精准服务客户,从而提高保险业的效率和品质。
如何在保险业中应用大数据的5种方法

如何在保险业中应用大数据的5种方法保险业是一个信息密集的行业,大量的客户数据和风险信息需要处理和分析。
随着大数据技术的快速发展,保险公司能够利用大数据来提高业务效率、降低风险、提升客户满意度。
在本文中,我们将介绍如下5种方法,以帮助保险业有效地应用大数据。
1. 风险评估和定价大数据在风险评估和定价方面具有重要的作用。
根据客户的个人资料、历史信息和其他相关数据,保险公司可以构建客户的风险档案,准确地评估潜在风险,并制定相应的保险方案和价格。
通过分析大数据,保险公司可以更好地理解不同因素对风险的影响,为客户提供个性化的保险产品,从而提高市场竞争力。
2. 欺诈检测保险欺诈是保险业面临的一个重大挑战,大数据技术可以帮助保险公司更好地识别和防止欺诈行为。
通过分析大量的数据点和模式,保险公司可以识别出异常的索赔模式、虚假声明和潜在欺诈风险。
大数据技术可以快速地分析和处理大量数据,提高欺诈检测的准确性和效率。
3. 客户洞察和个性化推荐保险公司可以利用大数据技术来深入了解客户需求、趋势和行为模式。
通过分析客户的消费习惯、社交媒体数据和其他相关信息,保险公司可以更好地了解客户的需求,为客户提供个性化的保险服务和推荐。
例如,保险公司可以利用大数据技术提供智能化的保险咨询和推荐,根据客户的特定需求和风险偏好,定制保险产品和服务。
4. 理赔效率提升保险公司可以利用大数据技术来提高理赔的效率和准确性。
通过分析客户的历史理赔数据、医疗记录和其他相关信息,保险公司可以快速处理理赔申请,减少人工操作和繁琐的审查过程。
大数据技术还可以帮助保险公司自动化理赔流程,提供更好的客户体验和快速的理赔服务。
5. 风险管理和预测大数据技术可以帮助保险公司更好地进行风险管理和预测。
通过分析历史数据、市场趋势和其他相关信息,保险公司可以识别潜在风险和市场机会。
大数据技术可以帮助保险公司实时监测风险和市场波动,及时调整保险策略和定价,以降低风险和提高收益。
大数据在保险业中的应用介绍

数据挖掘与分析
数据挖掘
利用机器学习、关联分析等技术,挖掘数据中的潜在规律和关联关系。
数据分析
通过统计分析、趋势预测等方法,对保险业务数据进行深入分析,为业务决策提供支持。
数据可视化与报告生成
数据可视化
利用图表、图像等形式,直观展示数据分析 结果,帮助用户更好地理解数据。
报告生成
根据分析结果,生成各类业务报告,如风险 评估报告、客户画像报告等,为业务决策提
特性
包括数据量大、处理速度快、数据类 型多样、价值密度低等。
大数据在保险业中的重要性
提高风险评估准确
性
大数据可以帮助保险公司更准确 地评估风险,从而制定更合理的 保险产品和定价策略。
优化客户体验
通过对大数据的分析,保险公司 可以更好地了解客户需求,提供 个性化的服务和产品。
提升运营效率
大数据技术可以帮助保险公司优 化业务流程,提高工作效率,降 低运营成本。
01 区块链技术可以提高保险业务的透明度和可追溯 性,降低操作风险。
02 通过智能合约,保险公司可以自动执行保险合同 条款,简化理赔流程。
03 区块链技术可以保护客户隐私和数据安全,防止 信息泄露和被篡改。
物联网与车联网保险的兴起
随着物联网和车联网技术的发展,保险公司可以实时监测车辆和设备运行 状态,提供更精准的保险服务。
05
大数据在保险业中的未来 展望
人工智能与大数据的结合
01
人工智能与大数据的结合将进一步优化保险业务流程,提高 决策效率和准确性。
02
通过机器学习和自然语言处理技术,保险公司能够更准确地 分析客户需求,提供个性化服务。
03
人工智能可以帮助保险公司进行风险评估和预测,减少欺诈 行为,降低赔付率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03: 用户画像
预测 标签
模型 标签
事实 标签
原始 数据
人口属性 消费能力
人口属性 产品购买偏好 用户关联关系
人口属性 资金往来趋势
客户基本信息 客户收入支出信息
用户画像标签
人群属性 违约概率
用户流失概率 用户近期需求
模型预测
用户价值 渠道使用偏好
用户满意度
建模分析
账户历史趋势 产品购买次数
用户兴趣爱好 用户活跃度 用户风险评分
全1亿网+画??商像数据独擎品:据(特、格优模Js式势拟on登::)录将精●●●、H确244T模的,10M00拟流大0L+0转用量类+商换户控子品为行制类标格为、签式、JS化功维引数能度
全面、操作简●单100 万+商品标签数
互联网开放数据
客户盘点: 1,500+ 互联网企业客户
02:跨渠道用户归一
日志收集系统
SDK/API/ 接口
? 采集内容:央行征信、银联交 易等合作方数据
? 数据格式:可支持各种第二方 数据格式
? 独特优势:支持多种数据格式, 按需采集,灵活、易扩展
合作方数据
第一方数据 大数据平台
抓取系统
? 抓取内容:媒体资讯、贴吧、微博、 搜索引擎、…
? 数据格式:将HTML转换为格式化数 据(Json)
多渠道协同, 数据应用
客户体验
建设可靠信任关系
03: 业务规划
内部数据
DATA
DATA
DATA
DATA
DATA
DATA DATA
DATA
数据 整合
DATA
外部数据
用户 画像
数据 分析
数据模型
客户细分模型
客户价值模型
忠诚度模型 受众群体扩展
模型 社会网络模型
客户 获取
数据 应用
客户 服务
客户 转化
业务应用
大数据清洗
业务数据清洗系统 用户行为数据清洗系统 互联网公开数据清洗系统
大数据标准化
用户多重 ID 归一化系统
商品归一化系统
大数据结构化
用户标签管理系统
商品标签管理系统
数据全生命周期管理
大数据操作系统(BD-OS )
可视化数据操作平台
业务流程全生命周期管理
业务价值挖掘建模
数据访问 资源管控 分布式存储(磁盘及内存) 数据接入
分析 & 洞察
全方位深入分析
客户服务
客户挽回
应用 & 营销 & 交互
多渠道协同, 数据应用
客户体验
建设可靠信任关系
内部数据
DATA DATA
DATA
DATA DATA DATA DATA
DATA
数据 整合
DATA
外部数据
用户 画像
数据模型
客户细分模型
数据 分析
客户价值模型
忠诚度模型
受众群体扩展 模型
目录
? 大数据在保险行业的机遇与挑战 ? ? ? ? 针对保险行业的大数据解决方案 ? ? ? ? 保险及金融行业的成功案例介绍 ? ?
以用户为中心建设互联网+保险 01: 建设思路
客户获取
客户转化
战略 & 规划
明确并聚焦目标
分析 & 洞察
全方位深入分析
客户服务
客户挽回
02: 建设目标
应用 & 营销 & 交互
业务转型
用户行为偏好数据匹配 大数据分析技术和工具
保险企业客户分析模型
大数据技术与平台支撑
不断优化的管理闭环
04: 技术实现
保险行业发展大数据的难点
数据多 整合困难
客户多 分析困难
需求多 应用困难
? 数据来源的多样性 ? 数据类型的复杂性 ? 数据特征的多元化 ? 数据处理方法的差异化 ? 组织内部数据的分散性 ? 数据共享机制的缺乏 ?…
览器、跨设备、…
数据探头系统
业务系统数据
? 采集内容: CRM、信用卡等 业务系统数据
? 数据格式:关系型数据库 ? 独特优势:灵活、易扩展、高
操控性
数据桥接系统
日志数据
? 采集内容:Txt、CSV、Excel、 XML、Word、PDF、 Socket…
? 独特优势:支持非结构化数据、 实时、高效
9大?维独度特优势:实时、跨站、跨浏 500+览子器维、度跨设备、…
1,100 万+用户标签
数据探头系统
5全.5网亿??画+业数独操像用务据特控系格优性:户数统式势据数::桥据关灵系活接型、系数易4统,据扩0库展00日、+高活万跃UV?:XS独实oM特时cLk优、、e日t●●●●●势高W…志日日 日并 单: 效or收支活 推活发次d、持集跃 荐跃推响P非访 次荐应DP系结VF次 数:时、统:构: :间2化1万:.362数,,次70亿<据00/200、秒0万 万0ms
大数据管理平台
媒体网站 个性化
系统
电子商城 个性化 系统
移动商城 个性化 系统
媒体网站 个性化 系统
在线营销 支持系统
门店营销 支持系统
会员营销 支持系统
全网市场 监控系统
舆情管家
商情管家
用户洞察 系统
个性化推荐引擎( BRE )
自动化营销引擎( BME )
大数据分析引擎( BAE )
大数据采集
业务数据汇集系统 用户行为数据采集系统 互联网公开数据抓取系统
社会网络模型
客户 获取
数据 应用
客户 服务
客户 转化
业务应用
业务转型
用户行为偏好数据匹配 大数据分析技术和工具
保险企业客户分析模型
大数据技术与平台支撑
不断优化的管理闭环
为保险企业提供端到端的整体解决方案
内部数据
4 数据模型
DATA
DATA
DATA
DATA
DATA
DATA
DATA
1
数据 整合
DATA
安
全 ( 认 证
监 控
配
安 装 及
权
置
云
限
及
服
报
务
ACL ) 警
应用平台 管理平台
基础平台
目录
? 大数据在保险行业的机遇与挑战 ? 针对保险行业的大数据解决方案 ? 保险及金融行业的成功案例介绍 ? 华夏人寿实施大数据的建议路径
以用户为中心建设互联网+保险
客户获取
客户转化
战略 & 规划
明确并聚焦目标
2
客户 归一
客户细分模
忠诚度模型
受众群体扩展模型
DATA
社会网络模型
外部数据
5
客户 获取
数据 应用
客户 服务
客户 转化
持续优化
6 业务转型
01: 海量多源异构数据的整合
实时用户行为
? 采集内容:用户行为轨迹 ? 数据格式:自定义、高度灵活 ? 独特优势:实时、跨站、跨浏
渠道使用频率 投诉次数
客户持有产品 客户渠道使用
统计分析
客户历史交易 客户资金往来
... ...
... ... ...
... ...
客户风险等级 ...
SDK/API/ 接口
? 采集内容:央行征信、银联交
第一方数据
易等合作方数据
● 20?大数类据格式:可支持各种第二方
● 1,0?00数独+据特子格优类式势:支持多种数据格式1,,000 万+媒体
● 200+按媒需体采标集签,灵维活度、易扩展
标签 :
大数据平台
合作方数据
抓取系统
? 抓取内容:媒体资讯、贴吧、微博、 搜索引擎、…
? 怎么识别客户全方位的特征? ? 怎样有效细分客户? ? 怎样提取客户的共同需求? ? 怎样利用不同模型 /算法生
成客户多样化标签? ? 怎样进行客户行为偏好分析? ?…
? 如何与客户实时交互 ? 如何及时响应客户的需求 ? 如何提供满意的客户体验 ? 如何降低客户流失 ? 如何控制客户维系成本 ? 如何对客户进行精准营销 ?…
? 独特优势:精确的流量控制、JS引 擎、模拟登录、模拟用户行为、功能 全面、操作简单
互联网开放数据
01: 海量多源异构数据的整合
实时用户行为
业第务三系统方数数据 据
日志数据
? 采集内容:用户行为轨迹
? 采集内容: CRM、信用卡等
? 采集内容:Txt、CSV、Excel、
● ● ●
? 数据格式:自定义、高度灵活