《最短路径问题(1)》教案

合集下载

最短路径问题学案教案

最短路径问题学案教案

最短路径问题【目标导航】1.理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”. “饮马问题”,“造桥选址问题”.考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.2.解题总思路:找点关于线的对称点实现“折”转“直”.关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理.这对于我们解决此类问题有事半功倍的作用. 【合作探究】探究一:(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l 是一条河,A 、B 是两个村庄,欲在l 上的某处修建一个水泵站M ,向A 、B 两地供水,要使所需管道M A +M B 的长度最短,在图中标出M 点.(3)如图3,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段C D 表示.试问:桥C D 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥C D 的位置.画出示意图,并用平移的原理说明理由.变式1.在边长为2㎝的正方形ABC D 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝.变式2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为__________第2题 第3题 第4题 变式3.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为_________变式4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是A D 和AB 上的动点,则B M+MN 的最小值是____.变式5.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,则PC +PD 的最小值________,此时P 点的坐标为________. 探究二:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马, 先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线.A DE P BC 第5题O x y B D A C P变式1.如图,已知平面直角坐标系中,A ,B 坐标为A (-1,3),B (-4,2),设M ,N 分别为x 轴,y 轴上一动点,问是否存在这样的点M (m ,0),N (0,n )使四边形AB MN 的周长最短?并求m ,n 的值.第1题 第2题 第3题 第4题变式2.如图,在△ABC 中,D 、E 为边AC 上的两个点,试在AB ,BC 上各取一个点M ,N ,使四边形DMNE 的周长最短.变式3.如图,已知平面直角坐标系,A 、B 两点的坐标分别为A (2,-3),B (4,-1).若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a = 时,四边形AB D C 的周长最短. 变式4.如图,抛物线23212--=x x y 与直线y=x -2交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点B .若使点P 运动的总路径最短,则点P运动的总路径的长为 . 探究三:1.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B 是这个台阶的两个相对端点,A点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是 寸.第1题 第2题 第3题 第4题 第5题 第6题 2.如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽A D 平行且大于A D ,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精确到0.01米)3.如图所示,是一个圆柱体,A BCD 是它的一个横截面,A B=,BC=3,一只蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为 .4.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .5.有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为 .6.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是 .y O x P D B (40)A , (02)C ,【课后练习】1.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.2.如图,已知点A (-4,8)和点B (2,n )在抛物线y=ax 2上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2)平移抛物线y=ax 2,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′C D 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.3. 如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC ,已知AB=5,DE =1,BD =8,设CD=x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式224(12)9x x ++-+的最小值.小结:上式中,原式=22222(12)3x x ++-+,而22a b +的几何意义是以a 、b 为直角边的直角三角形斜边长.【拓展提升】 1.阅读材料: 例:说明代数式221+(3)4x x +-+的几何意义,并求它的最小值.解:2222221+(3)4(0)1+(3)2x x x x +-+=-+-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(0)1x -+可以看成点P 与点A (0,1)的距离,22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度 之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A ′,则PA=PA ′,因此,求PA+PB 的最小值,只需求PA ′+PB 的最小值,而点A ′、B 间的直线段距离最短,所以PA ′+PB 的最小值为线段A ′B 的长度.为此,构造直角三角形A ′CB ,因为A ′C =3,CB =3,所以A ′B =32,即原式的最小值为32. 根据以上阅读材料,解答下列问题: (1)代数式22(1)1+(2)9x x -+-+的值可以看成平面直角坐标系中点P (x ,0)与点 A (1,1)、点B 的距离之和.(填写点B 的坐标) (2)代数式2249+1237x x x +-+的最小值为 .2.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4 x2 2A8 -2 O-2 -4 y 6 B C D -44((2)①图)4 x2 2 A ′8-2 O -2 -4 y 6 B ′ CD -4 4 A ′′((2)②图)4 x2 2 A ′8 -2 O-2 -4 y6 B ′ C D -4 4 A ′′B ′′。

八年级数学上册---《最短路径问题》课堂设计

八年级数学上册---《最短路径问题》课堂设计

八年级数学上册---《最短路径问题》课堂设计最短路径问题(第一课时) 在我们的学习生活中,接触过很多“最值问题”:最多最少,最长最短。

思考以下两个问题:复习1:如图,连接A 、B 两点的所有连线中,哪条最短?为什么?答:路线2最短,因为两点的所有连线中,线段最短,简称:两点之间,线段最短 复习2:点P 是直线l 外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?为什么?答:PC 最短,因为连接直线外一点与直线上各点的所有线段中,垂线段最短。

设计意图:复习“两点之间,线段最短”和“垂线段最短”,为最短路径问题做好铺垫。

通过识别,也让学生有动态的思想,在比较中,找到最短路径。

lC PA B D教师:刚刚的两个问题都是识别最短路径,接下来,我们尝试通过画图,找到最短路径。

引例1:如图,在直线l上求作一点C,使得CA+CB最短。

教师:(1)点C是直线l上的一个动点。

我们不妨先画一个一般的点C,连接CA,CB,我们的目标:找到一个点C,使得CA+CB最小。

(2)观察几何画板的演示:当C在运动的过程中,线段CA,CB也在移动,观察:什么时候线段和最短?(3)同学们可以观察到:当C是线段AB和l的交点,即ACB共线时,CA+CB 最短。

依据是:两点之间,线段最短。

作图方法:连接AB,交直线l于点C,点C即为所求。

总结:从一般的点C出发,从运动变化的角度观察图形,并用到“两点之间,线段最短”解决问题。

教师:接下来,我们用这样的方法,研究数学史上经典的“牧马人饮马问题”。

例1:如图,牧马人从A地出发,到一条笔直的河边l 饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?BAl练习:有两棵树位置如图,树的底部分别为A,B,地上有一只昆虫沿着A—B 的路径在地面上爬行。

小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处。

问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置。

13.4课题学习 最短路径问题教学设计

13.4课题学习 最短路径问题教学设计

13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。

2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。

从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。

本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。

本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。

二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。

(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。

体会数学在实际生活中的价值。

2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。

达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。

三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。

八年级数学上册《最短路径问题》教案、教学设计

八年级数学上册《最短路径问题》教案、教学设计
3.合作交流:分组讨论,分享各自的解题方法,互相借鉴。
4.方法指导:教师引导学生运用坐标系、网格纸等工具,将实际问题转化为数学模型。
5.课堂小结:总结解决最短路径问题的方法,提炼数学思想。
第二课时:巩固提高,解决实际问题
1.创设情境:提供一些实际生活中的问题,让学生运用所学知识解决。
2.自主探究:学生独立思考,尝试解决实际问题。
2.培养学生面对困难时,勇于挑战、积极思考的良好品质。
3.培养学生合作交流、共同解决问题的团队意识,提高沟通能力。
4.培养学生将所学知识运用到实际生活中的意识,增强学生的实践能力。
5.使学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,提高学生对数学学科的认识。
二、学情分析
八年级的学生已经具备了一定的数学基础,对于坐标系、距离计算等概念有初步的了解。在此基础上,他们对最短路径问题充满好奇心,但可能尚未形成系统性的解题思路和方法。因此,在本章节的教学中,应关注以下几个方面:
b.请学生尝试研究:在给定的条件下,如何判断两点之间是否存在最短路径?若存在,如何求解?
作业要求:
1.学生需独立完成作业,确保解题过程清晰、规范。
2.鼓励学生在解决最短路径问题时,尝试不同的方法和思路,培养创新意识。
3.做完作业后,学生应认真检查,确保答案正确,并对解题过程进行总结和反思。
4.作业完成后,及时上交,教师将进行批改和反馈。
五、作业布置
为了巩固本节课所学知识,提高学生解决最短路径问题的能力,特布置以下作业:
1.必做题:
a.请学生绘制一幅包含五个点的坐标系图,任意指定两个点作为起点和终点,找出所有可能的最短路径,并计算出它们的长度。
b.从教材或课外资料中选择两道最短路径问题的题目,运用课堂所学方法进行解答。

最短路径问题教学设计

最短路径问题教学设计

最短路径问题教学设计【教材分析】【教学目标】【知识与技能】1、通过最短路径问题的探索,进一步了解和掌握两点之间线段最短和垂线段最短,感悟转化思想。

2、能做出一个图形经过轴对称变化后的图形。

3、能利用轴对称变化解决日常生活中的问题。

【过程与方法】让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想和方法。

【情感态度价值观】在数学学习中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受到数学与现实生活的密切联系。

【教学资源】网络教室及作图工具。

【教具】作图工具、黑板、粉笔网络教室。

有助自主学习,和探索的问题情境使【学生在活动丰富,思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识构建的方向发展。

【教学策略】利用教学资源网站,通过创设具有启发性的、学生感兴趣的【教学重难点】重点:应用所学知识解决最短路径问题。

难点:选择合理的方法解决问题。

一、创设情境思考:1、两点的所有连线中,最短;2、连接直线外一点与直线上各点的所有线段中,最短。

我们研究过以上这两个问题,我们称它们为最短路径问题。

同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径。

(揭示课题)二、问题探究师:利用多媒体出示问题1.问题1:如图,牧马人从A地出发,到一条笔直的河边L饮马,然后到B地,牧马人到河边的什么地方饮马,可是所走的路径最短?图(1)师:现在假设点A、B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?生:举手回答师:归纳结果连接AB与直线L相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求。

思考:如果点AB分别是直线L同侧的两个点,又应该如何解决?图(2)生:讨论交流.思考:1、牧马人到笔直的河边饮水,可以近似看成一个条直线,假设到C点饮水,要保证所走的路径最短和哪些线段有关?2、要利用我们学过的哪些知识?要经过怎样的图形变换转移到一条线段上?生:分组交流合作,在小组内达成共识的基础上,推选代表进行板演。

17.1勾股定理的应用最短路径问题(教案)

17.1勾股定理的应用最短路径问题(教案)
五、教学反思
在今天的教学中,我重点关注了勾股定理在实际问题中的应用,尤其是最短路径问题的求解。通过这节课的教学,我发现以下几点值得反思:
1.学生对勾股定理的理解程度。在授课过程中,我发现部分学生对勾股定理的理解还不够深入,导致在实际问题中不知如何运用。针对这个问题,我需要在今后的教学中加强对勾股定理原理的讲解,让学生真正理解并掌握这个定理。
4.学生参与度。在课堂教学中,我注意到部分学生的参与度不高,可能是因为他们对课程内容不感兴趣或跟不上教学进度。为了提高学生的参与度,我需要关注每一个学生,及时了解他们的需求和困惑,调整教学节奏和策略。
5.课堂氛围的营造。在今天的教学中,课堂氛围较为活跃,学生们积极讨论、互动。我认为这是一个好的现象,说明学生们对课程内容感兴趣。在今后的教学中,我需要继续保持这种氛围,让学生在轻松愉快的氛围中学习。
17.1勾股定理的应用最短路径问题(教案)
一、教学内容
本节课选自教材第十七章第一节,主要围绕勾股定理的应用——最短路径问题展开。内容包括:
1.勾股定理的复习与巩固:引导学生回顾勾股定理的内容及其证明,理解直角三角形边长之间的数量关系。
2.最短路径问题引入:通过实际生活中的例子(如城市规划、园林设计等),引出最短路径问题,激发学生兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。它是解决最短路径问题的关键工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用勾股定理在实际中找到两点之间的最短路径,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的运用和最短路径问题的求解方法这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。

最短路径优秀教案.doc

最短路径优秀教案.doc

课题学习最短路径问题(笫1课时)教学目标1.了解将军饮马及造桥选址两个常见类型.2.会解答将军饮马及造桥选址中的最短路径问题.3.能初步应用将军饮马及造桥选址两个常见类型完成类似题目.教学重点难点1.将实际问题抽象为数学问题.2.解决最短路径问题教学内容将军饮马.教学过程一、导入新课问题1如下图,牧马人从A地出发,到一条笔直的河边/饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?二、探究新知1.将实际问题抽象为数学问题师生活动:学生尝试回答,并相互补充,最后达成共识.(1)把A、B两地抽象为两个点;(2)把河边Z近似地看成一条直线(下图),C为直线Z上的一个动点,那么,上面的问题可以转化为:当点C在/的什么位置时,AC与CB的和最小.2.尝试解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A, 〃分别是直线?异侧的两个点,如何在2上找到一个点,使得这个点到点A、点〃的距离的和最短?•B利用已经学过的知识,可以很容易地解决上面的问题,即:连接与直线/相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.(2)现在要解决的问题是:点A, B分别是直线2同侧的两个点,如何在2 上找到一个点,使得这个点到点A、点B的距离的和最短?(3)如何能把点B移到2的另一侧处,同时对直线2上的任一点C,都保持CB 与CB,的长度相等,就可以把问题转化为“上图”的情况,从而使新问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点歹吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作出点B关于/的对称点B',利用轴对称的性质,可以得到CB'=CB (下右图).连接AB',则A夕与/的交点即为所求.3.师生共同分析,合作证明“AC+BC”最短.证明:如上右图,在直线/上的任一点C (与点C 不重合),连接AC, BC, BG 由轴对称的性质知:BC=B'C, BC=BC:.AC+BC=AC+B ,C=AB ,f AC ,+BC ,=AC+B f C ,.在△ ABC 中,AB ,<AC ,+B ,C ,,・•・ AC+BC<AC+BC. 即AC+BC 最短.提问:证明AC+BC 最短时,为什么要在直线/上任収一点C (与点C 不重合),证 明AC+BC<AC+BC2这里“C”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.三、巩固练习已知P 是△ABC 的边BC 上的点,你能在AB 、AC 上分别确定一点Q 和几 使△P0R 的周长最短吗?学生独立完成,必要时教师点拨指导.课堂小结总结用数学解决实际问题的步骤.教学反思: 证明"I'・B'。

最短路径问题教案

最短路径问题教案

最短路径问题教案目标:通过教学学生如何解决最短路径问题的基本方法和算法。

预备知识:- 图的基本概念和表示:- 顶点(节点)和边(连接节点的线段)- 有向图和无向图- 图的存储方法:- 邻接矩阵- 邻接表引入最短路径问题:- 解释最短路径问题的定义和场景(例如,在道路网络中找到两个位置之间的最短路程)解决最短路径问题:1. 单源最短路径(从一个顶点出发,找到到达其他所有顶点的最短路径)- 方法:- 迪杰斯特拉算法(Dijkstra Algorithm)- 贝尔曼-福特算法(Bellman-Ford Algorithm)2. 多源最短路径(从任意一个顶点到达其他所有顶点的最短路径)- 方法:- 弗洛伊德算法(Floyd-Warshall Algorithm)详细讲解迪杰斯特拉算法(Dijkstra Algorithm):1. 解释算法的基本思想(通过逐步更新当前节点到其他节点的最短距离)2. 介绍算法的步骤:- 创建一个距离集合,用于存储从源节点到其他节点的当前最短距离(初始值为无穷大);- 遍历所有节点,选取一个未被访问的节点作为当前节点;- 更新当前节点到其他节点的距离;- 选择下一个未被访问的节点作为当前节点,重复前面两个步骤,直到所有节点都被访问;- 最终得到源节点到每个节点的最短距离。

3. 通过一个示例图进行演示和详细讲解算法的步骤和执行过程。

4. 讲解算法的复杂度分析:- 时间复杂度:O(V^2),其中 V 是顶点数,对于稀疏图可以使用堆优化的方式将时间复杂度优化到 O((V+E)logV)。

- 空间复杂度:O(V),用于存储距离集合。

应用和实际问题:- 最短路径问题在实际生活中的应用- 导航系统- 网络路由- 物流配送优化等练习和作业:1. 练习手动计算给定图的最短路径。

2. 通过编程实现迪杰斯特拉算法,并测试不同的图和输入情况。

授课方法:- 结合课堂讲解、示例图演示和实践编程练习- 鼓励学生提问和参与讨论- 可以结合图形化工具展示算法执行过程评估方式:- 练习题和作业的完成情况- 对算法执行过程的理解和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《最短路径问题(1)》教案13.4.1 将军饮马问题【一】教学目标(一) 学习目标1.会利用轴对称解决简单的最短路径问题;2.会利用轴对称解决简单的周长最小问题;3.体会轴对称变换在解决最值问题中的作用,感悟转化思想.〔二〕教学重点教学重点:利用轴对称知识将最短路径问题的实际问题转化为〝两点之间,线段最短〞和〝垂线段最短〞的问题.〔三〕教学难点教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【二】教学过程〔一〕课前设计1.预习任务前面我们研究过一些关于〝两点的所有连线中,〞,〝连接直线外一点与直线上各点的所有线段中,〞等的问题,我们称它们为问题.【答案】线段最短,垂线段最短,最短路径2.预习自测⑴如下图,从A地到B地有三条路可供选择,你会选走路最近.你的理由是.【设计意图】让学生回顾旧知〝两点之间,线段最短〞,为引入新课作准备.【知识点】两点之间、线段最短【答案】②,两点之间,线段最短〔或者三角形中两边之和大于第三边〕⑵:如图,A,B在直线l的两侧,在l上求一点P,使得PA+PB最小.【知识点】两点之间线段最短【思路点拨】依据〝两点(直线异侧)一线型〞,和〝两点之间,线段最短〞,那么AP+PB的最小值为线段AB的值.【解题过程】连接AB交于直线l于点P,那么点P就是所求的点.【答案】如图,那么点P就是所求的点.⑶如图,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?【知识点】两点之间线段最短【思路点拨】将A、B两镇抽象为两个点,将燃气管道l抽象为一条直线.类比预习自测〔1〕,根据〝两点之间,线段最短〞,连接AB即可.【解题过程】连接AB,线段AB与直线l交于点P,那么点P就是所求的点.【答案】泵站修在管道的点P处时,可使所用的输气管线最短.⑷如图,A,B在直线l的同侧,在l上求一点P,使得PA+PB最小,那么点P可能的个数为〔〕个A. 3B. 2C. 1D.0【知识点】两点之间线段最短、轴对称的性质【思路点拨】将〝A,B在直线l的同侧〞利用轴对称转化为〝A,B 在直线l的异侧〞,又根据〝两点之间线段最短〞可得出只有唯一的点P.【答案】C【设计意图】通过完成预习自测让学生进一步感受〝两点之间,线段最短〞,为新课中〝同侧的两点〞转化为〝异侧的两点〞做铺垫.〔二〕课堂设计1.知识回顾⑴两点的所有连线中,线段最短;⑵连接直线外一点与直线上各点的所有线段中,垂线段最短;⑶三角形三边的数量关系:三角形中两边之和大于第三边.2.问题探究实际问题转化为数学问题探究一〝两点一线〞的最短路径问题★▲今天我们借助〝轴对称的知识〞和〝两点之间线段最短〞一起来解决生活中的〝最短路径问题〞.●活动①创设情境,引入新知师:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:问题1. 如图,A为马厩,B为帐篷.某一天牧马人要从马厩A出发,牵出马到一条笔直的河边l 饮马,然后蹚水过河,回到对岸的帐篷B、牧马人到河边什么地方饮马,可使马所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用几何知识回答了这个问题.你能将这个问题抽象为数学问题吗?【知识点】两点之间线段最短【解题过程】连接AB,线段AB与直线l交于点C,到河边l的C处饮马可使马所走的路线全程最短.【思路点拨】将A,B两地抽象为两个点,将河l 抽象为一条直线,那么AC+BC的最小值为线段AB的值.此情况可简称为〝两点(直线异侧)一线型〞.【答案】如图,那么点C就是所求点,即在河边l的C处饮马可使他所走的路线全程最短点:●活动②整合旧知,探究新知师:问题解决了,可是将军思考了片刻,又提出了一个新的问题:问题2.牧马人觉得蹚水过河很不方便,决定将帐篷B搬到河的另一侧即与马厩A 位于河的同侧.如图,牧马人从图中的A 地出发,到一条笔直的河边l 饮马,然后回到B地.到河边什么地方饮马,可使马所走的路线全程最短?学者海伦认真思索,利用轴对称的知识回答了这个问题.这就是著名的〝将军饮马问题〞.你能将这个问题抽象为数学问题吗?l将问题2抽象为数学问题:如图,点A,B 在直线l 的同侧,能不能在直线l上找到一点C,使AC 与BC的和最小?【知识点】轴对称的知识、两点之间线段最短【思路点拨】将A,B 两地抽象为两个点,将河l 抽象为一条直线.那么〝所走的路线全程最短〞转化为〝在直线l上找到一点C,使AC+BC 最小〞的数学问题. 此情况可简称为〝两点(直线同侧)一线型〞.【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的模型.学生将实际问题抽象为数学问题,即将最短路径问题抽象为〝线段和最小问题〞.3.尝试解决数学问题●活动③大胆猜想,建立模型【解题过程】〔1〕作点B 关于直线l 的对称点B′;〔2〕连接AB′,与直线l 相交于点C、那么点C 即为所求.【答案】如图,那么点C就是所求的点,即在河边l的C处饮马可使马所走的路线全程最短点.师生活动:学生独立思考,尝试画图,相互交流.学生假设有困难,教师可作如下提示:假设点B与点A在直线异侧,如何在直线l上找到一点C,使AC 与BC的和最小;现在点B与点A在直线同侧,能否将点B移到l 的另一侧点B′处,且满足直线l上的任意一点C,都能保持CB= CB′?⑶你能根据轴对称的知识,找到〔2〕中符合条件的点B′吗?【设计意图】一步一步引导学生,将同侧的两点转化为异侧的两点,为问题的解决提供思路. 通过搭建台阶,为学生探究问题提供〝脚手架〞,将〝同侧〞难于解决的问题转化为〝异侧〞容易解决的问题,渗透转化思想.4.证明AC +BC 〝最短〞●活动④反思过程,验证新知证明〝最短作图〞的正确性:追问1 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点C′〔与点C 不重合〕,连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′,∴AC+BC=AC+ C B′=AB′,AC′+ C′B=AC′+ C′B′.又在△AB′C′中,AB′﹤AC′+B′C′,∴A C+BC﹤AC′+BC′,即AC +BC 最短.●活动⑤集思广益,理解新知追问2:证明AC +BC最短时,为什么要在直线l上任取一点C′(与点C不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:假设直线l 上任意一点〔与点C不重合〕与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【设计意图】让学生进一步体会作法的正确性,提高逻辑思维能力.追问3:回顾探究过程,我们是通过怎样的过程、借助什么来解决问题的?师生活动:学生回答,相互补充.【设计意图】让学生在反思的过程中,体会轴对称的〝桥梁〞作用,感悟转化思想,丰富数学活动经验.●活动⑥反思总结,归纳新知【方法归纳】1、〝两点(直线同侧)一线型〞在直线上求一点到两点和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点和另一点与直线的交点就是所求的点.2、求两条线段和最小,关键是运用轴对称的知识将不在同一条直线上的两条线段转化到同一条直线上.练习有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A→B 的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】〔1〕将树顶C,D抽象为两个点,将路径A→B抽象为一条直线;〔2〕如图,作D关于AB的对称点D′,连接CD′交AB于点E,那么点E就是所求的点.【思路点拨】此题为〝同侧两点一线型〞,通过〝作D关于AB的对称点D′〞转化为〝异侧两点一线型〞,再根据〝两点之间,线段最短〞解决.【答案】如图,那么点E就是所求的点.师:海伦善于观察与思考,一天他在旅游途中遇到了一个不同情景的〝将军饮马问题〞:探究二〝一点两线型〞的最短周长问题问题3. 如图,有一条河流和一块草地,马厩A建在河流和草地所成的∠MON内部.牧马人某一天要从A牵出马,先到笔直的草地边牧马,再到笔直的河边饮马,然后回到马厩A. 请你帮他确定马这一天行走的最短路线.【知识点】轴对称知识、两点之间线段最短【数学思想】转化、类比【解题过程】分别作点A关于OM、ON的对称点A′、A′′,连接A′A′′分别交OM、ON于E、F,此时△AEF周长有最小值;【思路点拨】〔1〕将OM,ON抽象为两条相交的直线,将马厩A 抽象为一个点;〔2〕抽象为数学问题:如图,点A在∠MON内部,试在OM、ON上分别找出两点E、F,使△AEF周长最短;〔3〕当AE、EF和AF三条边的长度恰好能够表达在一条直线上时,三角形的周长最小,类比〝探究一〞作图.求三角形周长最短,即求AE+EF+AF的最小值为A′A′′的值,根据轴对称的性质得AE=A′E,AF=A′′F,再由〝两点之间,线段最短〞解决.此情况简称为〝一点两线型〞.1,使△AEF周长有最小值.师:能不能类比探究一,证明一下〝周长最短作图〞的正确性:【理由简要分析】如图2,在OM上任取一个异于E的点E′,在ON 上任取一个异于F的点F′,连接AE′,A′E′,E′F′,A″F′,AF′,那么AE′=A′E′,AF′=A″F′,且A′E′+E′F′+F′A″>A′A″=A′E+EF+FA″= AE+EF+FA,所以△AEF的周长最小,故E,F 就是我们所求使△AEF周长最短的点.练习如下图,点P为∠AOB内一点,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于点E,交OB于点F.假设P1P2=9,那么△PE F的周长是〔〕A.7B.8C.9D.10【知识点】轴对称知识【解题过程】因为P1、P2分别是点P关于OA、OB的对称点,根据轴对称的性质得PE= P1E,PF=FP2,所以PE+EF+PF= P1E+EF+ P2F=P1 P2=9 .【思路点拨】根据轴对称知识,PE+EF+PF= P1E+EF+ P2F= P1 P2,故答案选C.【答案】C师:回到家的海伦继续思考:如果在草地和河流所成的区域里有马厩和帐篷,又怎样设计行走的最短路线呢?探究三〝两点两线型〞的最短路径问题问题4 如图,A为马厩,B为帐篷,牧马人某一天要从马厩A牵出马,先到草地边MN的某一处牧马,再到河边l饮马,然后回到帐篷B.请你帮他确定马这一天行走的最短路线.【知识点】轴对称知识、两点之间线段最短【解题过程】(1) 作点A关于MN的对称点A′,作B点关于l的对称点B′;F(2)连接A′B′,分别交MN于点C、交l于点D,那么沿A→C→D →B的路线行走,马一天行走的路程最短.【思路点拨】马一天行走的路程最短即求AC+CD+DB的最小值,AC +CD+DB的最小值为A′B′的值,根据轴对称的性质得CA=CA′,DB= DB′,再由〝两点之间,线段最短〞即可解决.此情况简称为〝两点两线型〞.【答案】如下图,牧马人沿A→C→D→B的路线行走,所行走的路线最短.练习某中学八(2)班举行文艺晚会,桌子摆成如图1所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再去拿糖果,然后到D处座位上,请你帮他设计一条行走路线,使其所走的总路程最短.(保留作图痕迹,不写作法)图1图2【知识点】轴对称知识、两点之间线段最短【解题过程】作法:(1)作点C关于OA的对称点C1,作D点关于OB 的对称点D1,(2)连接C1D1,分别交OA于P、交OB于Q,那么当小明沿C→P→Q→D的路线行走时,所走的总路程最短.【思路点拨】〝两点两线型〞求路径最短,所求CP+PQ+QD的最小值为线段C1D1的值.【答案】作图如图2,小明沿C→P→Q→D的路线行走,所走的总路程最短.【设计意图】考查学生解决〝最短路径问题〞的综合能力.【方法归纳】〝一点两线型〞求三角形周长最短问题,先作点分别关于两直线的对称点,再连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形. 〝两点两线型〞,也可以为求四边形C PQD的周长最短问题,类比〝一点两线型〞即可解决.3. 课堂总结师:让我们共同回顾一下古希腊著名的学者海伦所遇到的〝将军饮马问题〞,总结一下他所解决〝最短路径问题〞的所用的原理与方法.知识梳理1、利用轴对称知识解决最短路径问题,主要依据〝两点之间线段最短〞和〝垂线段最短〞;2、运用轴对称的知识将〝不在同一条直线上的两条线段〞转化到〝同一条直线上〞,然后用〝两点之间线段最短〞解决问题.重难点归纳:最短路径问题的主要类型▲〔三〕课后作业基础型自主突破1.如图,假设将河看作直线l,河的同侧有两个村庄P、Q.现要在l上的某处修建一个水泵站,分别向P、Q两个村庄供水,图中实线表示铺设的管道,下面的四种修建方案中,所需管道最短的是〔〕【知识点】轴对称知识、两点之间线段最短【解题过程】〔1〕作点P 关于直线l 的对称点P′;〔2〕连接QP′,与直线l 相交于点M;那么在l上的点M修建一个水泵站所需管道最短.【思路点拨】根据〝两点一线型〞的最短路径模型,应选D.【答案】D2.如图,在平面直角坐标系中,点A〔-2,4〕,B〔4,2〕,在x轴上取一点P,使得点P到点A、点B的距离之和最小,那么点P的坐标是〔〕A. 〔-2 ,0〕B.〔4 ,0〕C. 〔2 ,0〕D.〔0 ,0〕【知识点】轴对称知识、两点之间线段最短【解题过程】如图,作点B 关于x轴的对称点B′〔4,-2〕,过点A 作AC⊥x轴,B′C⊥y轴于E,AC和B′C相交于点C,连接A B′交x轴于点P,交y轴于点D∵A〔-2,4〕,B′〔4,-2〕∴C〔-2,-2〕,E〔0,-2〕,AC= B′C= 6. 又∵AC⊥B′C,∴∠CA B′= ∠A B′C=45°. ∵DE∥AC,∠DEB′=90°,∴∠ED B′=∠DB′E=45°,∴DE = EB′=4,D〔0,2〕.同理可得∠OD P =∠OP D =45°,OP=OD=2 ,∴P〔2,0〕【思路点拨】在直角坐标系中抽出〝两点一线型〞的最短路径模型:在直线x轴的同侧有点A和点B点,在直线x轴上找一点P,使PA+PB最小.作图如图,再由图可构造得等腰直角△AC B′,求出坐标.【答案】C3.如图,等边△ABC的边长为6,AD是边BC上的中线,E是AD边上的动点,F是AC边上的一点.假设AF=3,当EF+EC取得最小值时,∠E CF的度数是〔〕A.15°B.22.5°C.30°D.45°【知识点】等腰三角形的〝三线合一〞、轴对称知识、两点之间线段最短【解题过程】〔1〕因为等边△ABC的边长为6,又AF=3,所以点F为AC中点.取AB中点F′,那么点F与点F′关于直线AD对称;〔2〕连接CF′,与直线AD 相交于点E,此时EF+EC取得最小值.因为CF′是等边△ABC的边AB上的中线,所以CF′平分∠ACB,那么∠ECF的度数是3 0°.〔做题前应先忽略原图中的点E,如图1,再根据〝两点一线型〞的最短距离的模型作图,如图2:〕【思路点拨】分离出点F、点C和直线AD,找出〝两点一线型〞的基本模型是解决此题的关键.连接CF′〔或者连接BF〕与直线AD交于点E,此时EF+EC取得最小值为CF′〔或者BF〕,但题目要求∠ECF的度数,那么只能连接CF′,根据等腰三角形〝三线合一〞的性质求解.【答案】C4.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,且BD⊥C D,∠ADB=∠C. 假设P是BC边上的动点,那么DP长的最小值为.【知识点】等角的余角相等、角平分线的性质、垂线段最短【解题过程】过点D作DP⊥BC于P,∵∠A=90°,BD⊥CD ,∴△BAD和△BDC都是直角三角形. 又∵∠ADB=∠C,∴∠ABD=∠DBC. ∴BD是∠ABC的平分线,∴垂线段DP=DA=3.【思路点拨】由题意可得△BAD和△BDC都是直角三角形,又因为∠ADB=∠C,所以∠ABD=∠DBC,那么BD是∠ABC的平分线,根据〝垂线段最短〞和〝角平分线的性质〞求出DP长的最小值为3.【答案】35.如图,要在河道l边上建立一个水泵站,分别向A、B两个村庄引水,水泵站建在河道的什么地方,才能使输水管道最短?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】〔1〕将村庄A、B两地抽象为两个点,将河道l抽象为一条直线;〔2〕作点B 关于直线l 的对称点B′,连接AB′,与直线l 相交于点C.【思路点拨】〝两点(直线同侧)一线型〞,在直线l上找一点C,使A C+CB′最小,AC+CB′的最小值为线段AB′的值,再根据〝两点之间,线段最短〞解决.【答案】如图,点C 即为水泵站建所在的位置:6.,如下图,甲、乙、丙三个人做传球游戏,游戏规那么如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.假设甲站在∠AO B内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P关于OA、OB的对称点P′、P′′,连接P′P′′交OA于E、交OB于F,此时△PEF周长有最小值,即乙站在E处、丙站在F处使球从甲到乙、乙到丙、最后丙到甲这一轮路程和最短,所用的时间也最少.【思路点拨】甲、乙、丙三人的传球速度相同,那么当路程和最短时所用的时间最少,这样就转化为〝一点两线型〞求三角形周长最短问题.在OA、OB上分别找点E、点F,PE+EF+PF的最小值为P′P′′的值,根据轴对称的性质得PE=P′E,PF=FP′′,再由〝两点之间,线段最短〞解决.【答案】如下图,因为乙站在OA上,丙站在OB上,所以当乙站在O A上的E处,丙站在OB上的F处时,才能使传球所用时间最少.能力型师生共研7.八年级〔6〕班同学做游戏,在活动区域边放了一些球〔如图〕,那么小明按怎样的线路跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】作〝小明〞关于小明关于活动区域边线OP的对称点A′,连接AA′交直线OP于点B,那么按〝小明〞→B→A的线路跑,去捡B 处的球,才能最快拿到球跑到目的地A.【思路点拨】〝两点(直线同侧)一线型〞,在直线l上找一点B,使A B+BA′最小,AB+BA′的最小值为线段AA′的值,再根据〝两点之间,线段最短〞解决.【答案】如图,小明行走的路线是:〝小明〞→B→A,即在B处捡球,才能最快拿到球跑到目的地A.8.如图,∠AOB=30°,点P为∠AOB内一点,OP=6cm,点M、N分别在OA、OB上,求△PMN周长的最小值.【知识点】轴对称知识、两点之间线段最短、等边三角形的判定【解题过程】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于点M,交OB于点N,此时△PMN周长有最小值= P1P2,∵根据轴对称的性质得∠1=∠2,∠3=∠4,OP1 = OP =O P2,∴∠P1OP2=∠1+∠2+∠3+∠4=2∠AOB=2×30°=60°,∴△P1OP2为等边三角形,∴P1 P2= OP1 =O P2 =6 cm,即△PMN周长的最小值为6cm.【思路点拨】该题属于〝一点两线型〞求三角形周长最短问题,所求△PMN周长PM+MN+PN的最小值为P1P2的值;根据轴对称的性质可求得∠P1OP2=60°,OP1 = OP =O P2,△P1OP2为等边三角形,P1P2=6c m.【答案】6cm探究型多维突破9、如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,假设A到河岸CD的中点的距离为500 m. (1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处;(保留作图痕迹,不写作法)(2)求出最短路程.【知识点】轴对称知识、两点之间线段最短、全等三角形的判定【解题过程】(1)作法:①如图作点A关于CD的对称点A′;②连接A′B交CD于点M. (2)由(1)可得直线CD是点A与点A′的对称轴,M 在CD上,∴AM=A′M,A′C=AC,又∵AC=BD,∠A′CM=∠BD M=90°,∠A′MC=∠BMD,∴△A′CM≌△BDM,∴CM=DM,A′M=BM,∴M为CD的中点,且A′B=2 AM,∵AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程1000 m.【思路点拨】⑴该题为〝两点(直线同侧)一线型〞求最短路径问题,在直线l上找一点M,使A′M+MB最小,A′M+MB的最小值为线段A′B 的值,再根据〝两点之间,线段最短〞解决;⑵由条件〝AC=BD〞可推出△A′CM ≌△BDM,从而得到最短距离A′B=2AM=1000m 【答案】(1)如图,点M即为所求的点; (2) 最短路程为1000 m.10.如图,在五边形ABCDE中,①在BC,DE上分别找一点M,N,使得△AMN周长最小;(保留作图痕迹,不写作法)②假设∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠A MN+∠ANM的度数为________.【知识点】轴对称知识,两点之间线段最短,三角形的内角〔外角〕知识【解题过程】①取点A关于BC的对称点P、关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,如图1,PQ的长度即为△A MN的周长最小值,如图2;②如图3,∵∠BAE=125°,∴在△APQ中,∠P+∠Q=180°-125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠AN M=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°【思路点拨】①转化为〝一点两线型〞求三角形周长最短问题,所求△AMN周长AM+MN+AN的最小值为线段PQ的值. ②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【答案】①作图如图2,此时△AMN周长最小;②∠AMN+∠ANM =110°.自助餐1. 如图,在直角坐标系中,点A、B的坐标分别为〔2,8〕和〔6,0〕,点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△AB C的周长最小时,点C的坐标是〔〕A.〔0,0〕B.〔0,2〕C.〔0,4〕D.〔0,6〕【知识点】轴对称知识、两点之间线段最短、等腰直角三角形的知识【解题过程】作B点关于y轴对称点B′点,连接AB′交y轴于点C′,当点C在C′处时△ABC的周长最小. 过点A作AE⊥x轴于点E,∵点A、B 的坐标分别为〔2,8〕和〔6,0〕,∴B′点坐标为〔﹣6,0〕,E〔2,0〕,AE=8,OE=2.∴B′E=8,∴B′E =AE ,O B′=B′E-OE=6. 又∵AE⊥B′B,∴∠A B′E=∠B′AE=45°,∵C′O∥AE ,∠C′O B′=90°,∴∠C′B′O = ∠B′C′O =45°,∴C′O = B′O =6,∴点C′的坐标是〔0,6〕,当点C在C′处时△ABC的周长最小,应选D、【思路点拨】分离出〝两点一线型〞的最短路径模型:在y轴的同侧有点A和点B,点,在y轴上找一点C,使AC+CB最小.作图时应忽略图中的点C,再由图可构造等腰直角△AC B′,求出坐标.【答案】D2. 如下图,点P为∠AOB内一点,OP=9,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于点E,交OB于点F.当△PEF的周长是9时,∠AOB的度数为〔〕A.15°B.30°C.45°D.60°【知识点】轴对称知识、两点之间线段最短、等边三角形的知识【解题过程】连接O P1,O P2. ∵OP=9 ,P1、P2分别是点P关于OA、OB的对称点,∴根据轴对称知识O P1=O P2=OP=9,PE= P1E,P F=FP2 . ∴PE+EF+PF= P1E+EF+ P2F=P1 P2=9,∴O P1=O P2= P1 P2,∴△OP1 P2是等边三角形.又∵由轴对称知识得∠P1 OP2=∠P1 OP+∠POP2=2〔∠AOP+∠POB〕=2∠AOB,∴2∠AOB=60°,∴∠AOB=30°【思路点拨】根据轴对称知识,PE+EF+PF= P1E+EF+ P2F= P1 P2,如图连接O P1,O P2易得证△OP1 P2是等边三角形,故答案选B 【答案】B3.如图,小河边有两个村庄A、B,要在河边建一自来水厂向A村与B 村供水.(1)假设要使厂部到A,B村的距离相等,那么应选择在哪建厂?(2)假设要使厂部到A ,B 两村的水管最短,应建在什么地方?(保留作图痕迹,不写作法)【知识点】垂直平分线的知识,轴对称知识,两点之间线段最短【解题过程】(1)作线段AB 的垂直平分线,与EF 交于点P ,交点P 即为符合条件的点.如图1,取线段AB 的中点G ,过中点G 作AB 的垂线,交EF 于P ,那么P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于21AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,那么P 到A ,B 的距离和最短.【思路点拨】 ⑴到A ,B 两点距离相等,可联想到〝线段垂直平分线上的点到线段两端点的距离相等〞,又在河边EF 上,所以作AB 的垂直平分线与EF 的交点即为符合条件的点.⑵要使厂部到A 村、B 村的距离之和最短,可联想到〝两点之间线段最短〞,结合 〝两点一线型〞的最短路径模型,作A(或B)点关于EF 的对称点,连接对称点与B 点 (或A),与EF 的交点即为所求.【答案】(1)如图1,自来水厂部建在点P 处,到A ,B 村的距离相等.(2)如图2,自来水厂部建在点P 处,到A 、B 的距离和最短.4.公园内两条小河MO ,NO 在O 处汇合,两河形成的半岛上有一处景点P(如下图).现计划在两条小河上各建一座小桥Q 和R ,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P 关于OA 、OB 的对称点P ′、P ′′,连接P ′P ′′分别交OM 、ON 于Q 、R ,此时△PQR 周长有最小值,即此时使在半岛上修建的三段小路路程和最小,才能使修路费用最少.【思路点拨】要使修路费用最少,那么应使三段路程和最小,这样就转化为 〝一点两线型〞求三角形周长最小的问题.【答案】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,那么P′Q=PQ,PR=P″R,那么Q,R就是小桥所在的位置,修路费用最少.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R 的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,那么PQ′=P′Q′,PR′=P″R′,P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,Q,R就是我们所求的小桥的位置.5.如下图,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.【知识点】轴对称知识、两点之间线段最短【解题过程】(1)作点P关于直线BC的对称点P′;(2)连接P′Q,交BC于点R,那么点R就是所求作的点,如下图.【思路点拨】P,Q为△ABC边上的两个定点,所以PQ长为定值,使△PQR的周长最小,只需要PR+QR最小.故分离出〝一点两线型〞的模型:在直线BC的同侧有点P和点Q,在直线BC上找一点R,使PR+QR最小.【答案】如下图,点R就是所求作的点.6.如图,一艘游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上某处,再返回P 处,请画出游船航行的最短路径.【知识点】轴对称知识、两点之间线段最短【数学思想】转化思想【解题过程】如图1,作点P关于直线BC 的对称点P′,连接QP′,与直线BC相交于点R. 那么游船航行路线是:P→Q→R→P,即将游客送到河岸BC的R,游船航行的路径最短.〔或作点Q关于直线BC 的对称点Q′同样得解,如图2〕.【思路点拨】将河岸抽象为一条直线BC,这样问题就转化为〝点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小〞.由于P、Q为定点,所以线段PQ 长为定值,航行路径中的必经线路PQ为。

相关文档
最新文档