计算机进制之间相互转换
计算机基础进制转换

计算机基础进制转换计算机基础之进制转换一、引言计算机基础是每个计算机科学学生必修的一门课程,其中进制转换是其中的重要内容之一。
进制转换是指将一个数字从一种进制表示转换为另一种进制表示的过程。
本文将介绍常见的进制转换方法及其应用。
二、十进制与二进制的转换1. 十进制转二进制十进制是我们常用的一种进制,而二进制是计算机中最基本的进制。
将十进制数转换为二进制数的方法是通过不断除以2来进行的。
具体步骤如下:(1)将十进制数除以2,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的二进制数。
2. 二进制转十进制将二进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将二进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重2的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
三、十进制与八进制的转换1. 十进制转八进制将十进制数转换为八进制数的方法是通过不断除以8来进行的。
具体步骤如下:(1)将十进制数除以8,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的八进制数。
2. 八进制转十进制将八进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将八进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重8的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
四、十进制与十六进制的转换1. 十进制转十六进制将十进制数转换为十六进制数的方法是通过不断除以16来进行的。
具体步骤如下:(1)将十进制数除以16,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的十六进制数。
其中,余数大于9时,可以用A、B、C、D、E、F来表示。
2. 十六进制转十进制将十六进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将十六进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重16的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
各个进制之间的转化公式

各个进制之间的转化公式
1. 二进制转换为十进制,将二进制数按权展开,然后相加即可。
例如,二进制数1011转换为十进制的计算公式为,12^3 + 02^2 + 12^1 + 12^0 = 8 + 0 + 2 + 1 = 11。
2. 十进制转换为二进制,采用除以2取余数的方法,将余数倒
序排列即可得到二进制数。
例如,十进制数13转换为二进制的计算
公式为,13÷2=6余1,6÷2=3余0,3÷2=1余1,1÷2=0余1,所
以13的二进制表示为1101。
3. 十进制转换为八进制,采用除以8取余数的方法,将余数倒
序排列即可得到八进制数。
4. 八进制转换为十进制,将八进制数按权展开,然后相加即可。
5. 十进制转换为十六进制,采用除以16取余数的方法,将余
数倒序排列即可得到十六进制数。
6. 十六进制转换为十进制,将十六进制数按权展开,然后相加
即可。
以上就是各个进制之间的转化公式,通过这些公式,我们可以在不同进制之间进行转换,从而更好地理解和应用数字。
希望这些信息能对你有所帮助。
计算机进制之间相互转换

计算机进制之间相互转换计算机进制之间的相互转换⼀、进位计数制所谓进位计数制是指按照进位的⽅法进⾏计数的数制,简称进位制。
在计算机中主要采⽤的数制是⼆进制,同时在计算机中还存在⼋进制、⼗进制、⼗六进制的数据表⽰法。
下⾯先来介绍⼀下进制中的基本概念:1、基数数制是以表⽰数值所⽤符号的个数来命名的,表明计数制允许选⽤的基本数码的个数称为基数,⽤R表⽰。
例如:⼆进制数,每个数位上允许选⽤0和1,它的基数R=2;⼗六进制数,每个数位上允许选⽤1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,⼀个数码处在数的不同位置时,它所代表的数值是不同的。
每⼀个数位赋予的数值称为位权,简称权。
权的⼤⼩是以基数R为底,数位的序号i为指数的整数次幂,⽤i表⽰数位的序号,⽤Ri表⽰数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,⽤Ki表⽰第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
⼆、计算机中的常⽤的⼏种进制。
在计算机中常⽤的⼏种进制是:⼆进制、⼋进制、⼗进制和⼗六进制。
⼆进制数的区分符⽤字母B表⽰,⼋进制数的区分符⽤字母O表⽰,⼗进制数的区分符⽤字母D表⽰或不⽤区分符,⼗六进制数的区分符⽤字母H表⽰。
1、⼆进制(Binary System)⼆进制数中,是按“逢⼆进⼀”的原则进⾏计数的。
其使⽤的数码为0,1,⼆进制数的基为“2”,权是以2为底的幂。
2、⼋进制(Octave System)⼋进制数中,是按“逢⼋进⼀”的原则进⾏计数的。
其使⽤的数码为0,1,2,3,4,5,6,7,⼋进制数的基为“8”,权是以8为底的幂。
3、⼗进制(Decimal System)⼗进制数中,是按“逢⼗进⼀”的原则进⾏计数的。
其使⽤的数码为1,2,3,4,5,6,7,8,9,0,⼗进制数的基为“10”,权是以10为底的幂。
二进制 十进制 八进制 十进制相互转换方法

二进制十进制八进制十进制相互转换方法二进制、十进制、八进制是计算机中常用的进制表示方法。
在二进制表示中,每个位数的权值是2的次幂;在十进制表示中,每个位数的权值是10的次幂;在八进制表示中,每个位数的权值是8的次幂。
二进制与十进制、八进制之间的转换是计算机编程中的常见需求。
下面将详细介绍二进制、十进制、八进制的表示方法及相互转换的方法。
1. 二进制表示法:二进制(Binary)是计算机中最常用的一种表示法,由0和1两个数字组成。
二进制中每个位数的权值为2的n次方,其中n表示该位数的位置(从右向左),最右边的位权值为2^0,依次递增。
例如,二进制数1101表示:(1 × 2^3) + (1 × 2^2) + (0 × 2^1) + (1 × 2^0) = 132. 十进制表示法:十进制(Decimal)是我们平时使用的一种表示法,由0-9十个数字组成。
每个位数的权值为10的n次方,其中n表示该位数的位置(从右向左),最右边的位权值为10^0,依次递增。
例如,十进制数123表示:(1 × 10^2) + (2 × 10^1) + (3 × 10^0) = 1233. 八进制表示法:八进制(Octal)是一种较少使用的进制表示法,由0-7八个数字组成。
每个位数的权值为8的n次方,其中n表示该位数的位置(从右向左),最右边的位权值为8^0,依次递增。
例如,八进制数37表示:(3 × 8^1) + (7 × 8^0) = 31二进制、十进制、八进制之间的转换方法如下:1. 二进制转换为十进制:将二进制数从右向左按位展开,然后乘以对应位的权值,最后将这些乘积相加即可得到十进制数。
例如,二进制数1101转换为十进制数的计算过程为:(1 × 2^3) + (1 × 2^2) + (0 × 2^1) + (1 × 2^0) = 132. 十进制转换为二进制:将十进制数不断除以2,将余数从下往上依次排列,直到商为0为止。
计算机基础——进制与进制的转换

计算机基础——进制与进制的转换进制是计量系统中用来表示数字的一种方法,主要包括十进制、二进制、八进制和十六进制。
在计算机科学中,不同进制的转换是基础中的基础,对于理解计算机内部的数据表示方式以及进行编程、网络通信等方面都具有重要作用。
本文将详细介绍不同进制的表示方法和转换方式。
一、进制的定义和表示1. 十进制(Decimal)十进制是我们平时最常用的进制,使用0-9这10个数字来表示数值。
每位的权重是10的n次方,从右到左依次是10的0次方、10的1次方、10的2次方,依此类推。
例如,数值256在十进制中表示为2*10^2+5*10^1+6*10^0=200+50+6=2562. 二进制(Binary)二进制是计算机内部最基本的进制,只使用0和1这两个数字来表示数值。
每位的权重是2的n次方,从右到左依次是2的0次方、2的1次方、2的2次方,依此类推。
例如,数值101在二进制中表示为1*2^2+0*2^1+1*2^0=4+0+1=53. 八进制(Octal)八进制使用0-7这8个数字来表示数值。
每位的权重是8的n次方,从右到左依次是8的0次方、8的1次方、8的2次方,依此类推。
例如,数值73在八进制中表示为7*8^1+3*8^0=56+3=614. 十六进制(Hexadecimal)十六进制使用0-9和A-F这16个数字来表示数值,其中A表示10,B表示11,以此类推。
每位的权重是16的n次方,从右到左依次是16的0次方、16的1次方、16的2次方,依此类推。
例如,数值3F在十六进制中表示为3*16^1+F*16^0=48+15=63二、进制之间的转换十进制到二进制的转换原理是将十进制数不断除以2,直到商为0,然后将每次的余数倒序排列。
例如,将十进制数19转换为二进制:19/2=9余19/2=4余14/2=2余02/2=1余01/2=0余1二进制到十进制的转换原理是将二进制数的每位与对应的权重相乘,然后将乘积相加。
二进制八进制十进制十六进制之间的转换方法

二进制八进制十进制十六进制之间的转换方法二进制、八进制、十进制和十六进制是计算机中常用的数制表示方法。
在进行转换时,可以利用其数制规则和特点来进行相互转换。
以下将详细介绍二进制、八进制、十进制和十六进制之间的转换方法。
1.二进制转八进制:二进制数是由0和1组成的数,八进制数是由0-7组成的数。
每3位二进制数可以转换为1位的八进制数,所以将二进制数从右到左以3位一组进行分组,并用八进制数表示每组即可。
2.二进制转十进制:二进制数转换为十进制数的方法是将二进制数分别乘以2的n次方,并将结果相加,其中n从0开始递增,对应于从右到左的二进制位数。
3.二进制转十六进制:二进制数转换为十六进制数的方法是将二进制数分组为4位一组,然后将每组转换为十六进制数。
4.八进制转二进制:八进制数转换为二进制数的方法是将八进制数的每位转换为对应的3位二进制数。
例如:将八进制数326转换为二进制数,可以将其每位转换为对应的3位二进制数,得到结果:011010110。
5.八进制转十进制:八进制数转换为十进制数的方法是将八进制数分别乘以8的n次方,并将结果相加,其中n从0开始递增,对应于从右到左的八进制位数。
例如:将八进制数326转换为十进制数,可以分别计算3*8^2+2*8^1+6*8^0,得到结果:2066.八进制转十六进制:将八进制数转换为十六进制数,首先将八进制数转换为二进制数,然后将二进制数转换为十六进制数。
例如:将八进制数326转换为十六进制数,可以先将其转换为二进制数011010110,然后将二进制数转换为十六进制数,得到结果:D67.十进制转二进制:将十进制数转换为二进制数的方法是将十进制数不断除以2,然后将余数逆序排列,最后将得到的余数连接在一起。
8.十进制转八进制:将十进制数转换为八进制数的方法是将十进制数不断除以8,然后将余数逆序排列,最后将得到的余数连接在一起。
例如:将十进制数214转换为八进制数,可以依次计算214/8=26余6,26/8=3余2,3/8=0余3、最后将得到的余数逆序排列,得到结果:3269.十进制转十六进制:将十进制数转换为十六进制数的方法是将十进制数不断除以16,然后将余数逆序排列,对于10~15的余数,分别用A~F表示,最后将得到的余数连接在一起。
不同进制数据的相互转换原理
不同进制数据的相互转换原理
在计算机科学中,不同进制数据的相互转换原理是基于数制的概念。
数制是表示数字的方式,它由一个基和一组数字符号组成。
最常见的数制是十进制,它使用的基数是10,所以可以
使用0到9这10个数字符号来表示任意数字。
不同进制之间的转换原理如下:
1. 十进制转其他进制:
- 将十进制数除以目标进制的基,取余数作为该位的数字符号,直到商为零为止。
- 将得到的余数按照从最后一位到第一位的顺序排列,就是
转换后的结果。
2. 其他进制转十进制:
- 将给定进制的每一位的数字符号与对应的进制基的幂相乘,再相加,即可得到对应的十进制数。
3. 其他进制之间的转换:
- 先将给定进制的数转换为十进制数,然后再将十进制数转
换为目标进制的数。
在进行进制转换时,需要注意一些特殊情况,例如:
- 对于八进制和十六进制,可以使用二进制与十进制之间的转
换作为中间步骤,因为八进制和十六进制都是二进制的简化表示方式。
- 当转换为二进制时,可以将十进制数的每一位转换为四位的
二进制数,其中前导零可以省略。
总之,不同进制数据的相互转换原理是将给定进制的数转换为十进制数再转换为目标进制的数,或者直接通过除以基数和取余数来进行转换。
进制间互转的原理
进制间互转的原理一、十进制与二进制之间的转换1、十进制转换为二进制(1)整数部分方法1(除2取余法):每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
举例:将十进制的10转换为二进制第一步,将商10除以2,商5余数为0;第二步,将商5除以2,商2余数为1;第三步,将商2除以2,商1余数为0;第四步,将商1除以2,商0余数为1;第五步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,得结果(1010)2;(2)小数部分(方法:乘2取整法)将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是0,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:将0.45转换为二进制(保留到小数点第四位)0.45*2=0.9取0;0.9*2=1.8取1;0.8*2=1.6取1;0.6*2=1.2取1;0.2*2=0.4取0;0.4*2=0.8取0;0.8*2=1.6取1;大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。
那么,我们可以得出结果将0.45转换为二进制约等于 (0.0111)2。
注:整数的转换是精确的,小数的转换可能出现无穷小数或循环小数的情况。
计算机进制之间的转换
计算机进制之间的转换进制是计算机中用于表示数值的一组符号系统,包括二进制、八进制、十进制和十六进制等。
在计算机科学中,进制转换是一种常见且重要的操作。
本文将详细介绍计算机进制之间的转换方法。
1. 二进制 (Binary) 转换为十进制 (Decimal):方法1:将二进制数从右往左按位展开,每一位的值与2的幂相乘,然后将得到的结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=13方法2:使用公式法。
将二进制数从高位到低位按权展开,并将每一位的值乘以相应权重,然后将结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=132. 十进制 (Decimal) 转换为二进制 (Binary):方法1:使用除二取余法。
将十进制数从右往左不断除以2,直到商为0。
最后,将得到的余数按照从下往上的顺序排列,即为二进制数。
例如,十进制数13转换为二进制,计算过程如下:13÷2=商6、余16÷2=商3、余03÷2=商1、余11÷2=商0、余1将得到的余数按从下往上的顺序排列,即为二进制数1101方法2:使用公式法。
将十进制数转换为相应的二进制幂的和。
例如,十进制数13转换为二进制,计算过程如下:13=(2^3)+(2^2)+(2^0)=11013. 十进制 (Decimal) 转换为八进制 (Octal):方法1:使用除八取余法。
将十进制数从右往左不断除以8,直到商为0。
最后,将得到的余数按从下往上的顺序排列,即为八进制数。
例如,十进制数86转换为八进制,计算过程如下:86÷8=商10、余610÷8=商1、余21÷8=商0、余1将得到的余数按从下往上的顺序排列,即为八进制数126方法2:使用公式法。
将十进制数转换为相应的八进制幂的和。
计算机进制之间相互转换
计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。
在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。
每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的。
其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机进制之间的相互转换
一、进位计数制
所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。
在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:
1、基数
数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权
在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。
每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式
在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)
二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)
八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)
十进制数中,是按“逢十进一”的原则进行计数的。
其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
4、十六进制(Hexadecimal System)
十六进制数中,是按“逢十六进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,十进制数的基为“16”,权是以16
为底的幂。
三、进位计数制相互转换
1、二进制转换成八进制
转换原则:以小数点为中心,整数部分从右向左,小数部分从左向右,“三位一体,不足补零。
”
举例:(.1111)B =(010 101 100)O=()O
2、二进制转换成十进制
转换原则:让二进制各位上的系数乘以对应的权,然后求其和。
举例:()B =(1×22+1×21+1×20+1×2-1+1×2-2)D=()D
3、二进制转换成十六进制
转换原则:以小数点为中心,整数部分从右向左,小数部分从左向右,“四位一体,不足补零”。
举例:()B =(0001 0101 )H = (1 5 )H
4、八进制转换成二进制
转换原则:将八进制上每一位数码“一分为三”,即可得二进制。
举例:()O =(111 110 011)B
5、八进制转换成十进制
转换原则:让八进制各位上的系数乘以对应的权,然后求其和。
举例:()O =(1×82+2×81+3×80+1×8-1+3×8-2)D =()D
6、八进制转换成十六进制
转换原则一:先将八进制转换成十进制,再由十进制转换成十六进制。
举例:()O = ()D=()H
转换原则二:先将八进制转换成二进制,再由二进制转换成十六进制。
举例:()O =(111 111)B =(0011 1100)B =()H
7、十进制转换成n(n=2,8,16)进制
转换原则:整数部分:“除n取余倒着写”
小数部分:“乘n取整顺着写”,小数部分一般保留三位,末位“四舍五入”。
举例:1、()D = ()H
2、()D = ()O
3、()D = ()B
8、十六进制转换成二进制
转换原则:将十六进制上每一位数码“一分为四”,即可得二进制。
举例:()H =(1111 1110 1001)B
9、十六进制转换成八进制
转换原则一:先将十六进制转换成十进制,再由十进制转换成八进制。
举例:()H = ()D=()O
转换原则二:先将十六进制转换成二进制,再由二进制转换成八进制。
举例:()H =(0011 1100)B=(111 111)B=()O
10、十六进制转换成十进制
转换原则:让十六进制各位上的系数乘以对应的权,然后求其和。
举例:()H =(1×162+2×161+15×160+12×16-1)D =()D
二、进制与编码
四种常用的数制及它们之间的相互转换:
二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法
1.二进制与十进制间的相互转换:
(1)二进制转十进制
方法:“按权展开求和”
例:()2=(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10
=(8+0+2+1+0+)10
=()10
规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
注意:不是任何一个十进制小数都能转换成有限位的二进制数。
(2)十进制转二进制
·十进制整数转二进制数:“除以2取余,逆序排列”(短除反取余法)
例:(89)10=(1011001)2
2 89
2 44 (1)
2 22 0
2 11 0
2 5 (1)
2 2 (1)
2 1 0
0 (1)
·十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)
例:(0.625)10= (0.101)2
0.625
X 2
1.25 1
X 2
0.5 0
X 2
1.0 1
2.八进制与二进制的转换:
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。
例:将八进制的转换成二进制数:
3 7 .
4 1 6
011 111 .100 001 110
即:()8 =(11111.)2
例:将二进制的转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:()2=()8
3.十六进制与二进制的转换:
二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。
十六进制数转换成二进制数:把每一个八进制数转换成4位的二进制数,就得到一个二进制数。
例:将十六进制数转换成二进制:
5 D F .9
0101 1101 1111 .1001
即:()16=(.1001)2
例:将二进制数转换成十六进制:
0110 0001 .1110
6 1 .E
即:()2=()16
注意:以上所说的二进制数均是无符号的数。
这些数的范围如下表:。