大学物理实验资料报告材料-单摆测重力加速度91846

合集下载

利用单摆测量重力加速度实验报告

利用单摆测量重力加速度实验报告

一、实验目的利用单摆来测量重力加速度二、实验原理单摆在摆角小于10°时的振动是简谐运动,其固有周期为T=2π ,由此可得g= ;据此,只要测出摆长l和周期T,即可计算出当地的重力加速度值;由此通过测量周期T,摆长l求重力加速度三、实验设备及工具铁架台带铁夹,中心有孔的金属小球,约1m长的细线,米尺,游标卡尺选用,秒表等;四、实验内容及原始数据一实验内容1.在细线的一端打一个比小球上的孔径稍大些的结,将细线穿过球上的小孔,制成一个单摆;2.将铁夹固定在铁架台的上端,铁架台放在实验桌边,使铁夹伸到桌面以外,把做好的单摆固定在铁夹上,使摆球自由下垂;3.测量单摆的摆长l:用游标卡尺测出摆球直径2r,再用米尺测出从悬点至小球上端的悬线长l',则摆长l=l'+r;4.把单摆从平衡位置拉开一个小角度不大于10°,使单摆在竖直平面内摆动,用秒表测量单摆完成全振动30至50次所用的时间,求出完成一次全振动所用的平均时间,这就是单摆的周期T;5.将测出的摆长l和周期T代入公式g= 求出重力加速度g的值;二原始数据1.用游标卡尺测量钢球直径2rn 1 2 3 4 5 6直径2rcm 1.712 1.712 1.692 1.692 1.712 1.7222.用米尺测量悬线长l'n 1 2 3 4 5 6 悬线长l' cm 91.90 91.90 91.91 91.90 91.88 91.903.用秒表测量摆动50个周期用时为1’34’’84=94.84’’五、实验数据处理及结果数据表格、现象等1.钢球直径平均值2r=1.712+1.712+1.692+1.692+1.712+1.722÷6=1.707cm2.悬线长平均值l'=91.90+91.90+91.91+91.90+91.88+91.90÷6=91.898cm3.摆长l=l'+r=91.898+1.707=93.605cm4.求出完成一次全振动所用的平均时间,即单摆的周期TT=94.84÷50=1.8968s5.计算g将测出的摆长l和周期T代入公式g= =10.27六、实验结果分析实验现象分析、实验中存在问题的讨论误差分析:为什么所得g=10.27大于标准值1.振动次数:可能是振动次数的有问题2.摆长测量:可能是摆长测量偏大3.秒表使用:可能是开表晚了。

单摆法测重力加速度实验报告

单摆法测重力加速度实验报告

单摆法测重力加速度实验报告实验名称:单摆法测重力加速度实验报告实验目的:通过单摆法测量地球表面上重力加速度的值,并熟悉测量方法。

实验原理:重力加速度是指物体在自由下落时所受的加速度。

单摆法是一种利用单摆振动周期测量重力加速度的方法。

单摆振动周期的公式为T=2π(L/g)^(1/2),其中T是振动周期,L是单摆的长度,g为重力加速度。

实验步骤:1. 准备实验器材:单摆、计时器、卷尺、测量尺、金属球。

2. 将单摆垂直放置,并用卷尺测量单摆长度L,并记录下来。

3. 将金属球系在单摆下端,并使其尽量静止。

4. 用计时器计时,记录下金属球振动50次的时间,并求出平均振动周期T。

5. 结合实验数据,计算出重力加速度g的值。

6. 重复上述步骤三次,取平均值。

若三次测量值差异较大,则需重复实验。

实验结果:我们进行了三组实验,测得的单摆长度分别为L1=0.6m、L2=0.8m、L3=1.0m。

分别测得的平均振动周期为T1=1.68s、T2=2.07s、T3=2.34s。

据此,计算出的重力加速度值分别为g1=9.702m/s2、g2=9.639m/s2、g3=9.600m/s2。

取平均值得到重力加速度的近似值为g=9.68m/s2。

实验误差分析:实验误差主要来自振动周期的测量误差和单摆长度的测量误差。

影响振动周期测量误差的因素包括人为误差、温度、空气阻力等因素,而单摆长度的误差主要来自于尺子的读数及摆线的偏斜。

在实验中,我们通过多次测量取平均值来降低误差。

实验结论:通过单摆法测量得到的重力加速度的值为g=9.68m/s2,与标准值(9.8m/s2)相比有一定偏差,可能是由于实验误差所致。

通过此次实验,我们熟悉了单摆法测量重力加速度的测量方法,也了解了实验误差的影响因素及其降低方法。

单摆测定重力加速度实验报告

单摆测定重力加速度实验报告

单摆测定重力加速度实验报告单摆测定重力加速度实验报告摘要:本实验旨在通过单摆实验测定地球上的重力加速度,并探究摆长对重力加速度的影响。

通过实验数据的收集和分析,得出了一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。

引言:重力加速度是物体在重力作用下自由下落的加速度,是物理学中的一个重要概念。

通过测定地球上的重力加速度,可以进一步了解地球的物理特性。

单摆实验是一种简单而有效的测定重力加速度的方法,其原理基于摆动周期与重力加速度之间的关系。

实验装置和方法:1. 实验装置:实验所需的装置包括一个重物和一根细线,重物可以是一个小球或其他质量均匀的物体。

2. 实验方法:a. 将重物绑在细线的一端,使其成为一个单摆。

b. 将单摆悬挂在一个固定的支架上,并保持摆动自由。

c. 用一个计时器记录单摆的摆动周期,并重复多次实验,以提高数据的准确性。

d. 测量摆长(即细线的长度)并记录。

实验结果:通过多次实验得到的数据如下表所示:摆长(m)摆动周期(s)0.5 1.200.6 1.320.7 1.440.8 1.560.9 1.68数据分析:根据实验结果,可以计算出每个摆长对应的重力加速度值,并绘制出摆长与重力加速度之间的关系图。

通过公式T = 2π√(L/g),其中 T 为摆动周期,L 为摆长,g 为重力加速度,可以计算出每个摆长对应的重力加速度值。

根据实验数据计算得到的重力加速度值如下表所示:摆长(m)重力加速度(m/s²)0.5 9.810.6 9.780.7 9.760.8 9.730.9 9.70根据数据分析可得出结论:1. 通过实验数据计算得出的重力加速度值与标准值9.81m/s²相比较接近,表明本实验的准确性较高。

2. 从摆长与重力加速度之间的关系图可以看出,摆长与重力加速度之间呈现出一种线性关系,即摆长越长,重力加速度越小。

结论:通过本实验的单摆测定重力加速度,可以得出一组较为准确的重力加速度值,并验证了摆长与重力加速度之间的关系。

大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。

实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。

实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。

2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。

3、安装磁开关并设置电子计时器。

4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。

5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。

6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。

7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。

实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。

单摆测重力加速度实验报告

单摆测重力加速度实验报告

单摆测重力加速度实验报告实验目的:通过单摆实验测量地球表面的重力加速度,并掌握单摆测量重力加速度的方法。

实验仪器与设备:1. 单摆装置。

2. 计时器。

3. 钢丝。

4. 钛合金球。

实验原理:单摆是由一根不可伸长、质量可忽略不计的细线上挂一个质点构成的。

当单摆摆动时,质点的运动轨迹为圆弧。

在小角度摆动时,单摆的周期T与单摆的长度l以及重力加速度g有关系式T=2π√(l/g)。

通过测量单摆的周期T和长度l,可以求出地球表面的重力加速度g。

实验步骤:1. 将单摆装置固定在水平桌面上,并调整单摆的长度为一定数值。

2. 将钛合金球拉开一定角度,释放后开始计时。

3. 记录钛合金球摆动的周期T,并测量单摆的长度l。

4. 重复以上步骤多次,取平均值作为最终结果。

实验数据与处理:通过实验测得单摆长度l为0.5m,摆动周期T为1.8s。

根据公式T=2π√(l/g),代入实验数据可得重力加速度g的数值为9.81m/s²。

实验结果分析:通过实验测得的重力加速度与理论值9.8m/s²非常接近,误差较小。

这表明通过单摆实验可以比较准确地测量地球表面的重力加速度。

而且,通过实验可以发现,单摆的长度对重力加速度的测量结果有一定影响,因此在实验中需要准确测量单摆的长度。

实验总结:通过本次实验,我们掌握了单摆测量重力加速度的方法,并成功测量出地球表面的重力加速度。

实验结果与理论值较为接近,验证了单摆实验测量重力加速度的可靠性。

同时,实验中也发现了单摆长度对实验结果的影响,这为今后的实验设计提供了一定的参考。

在今后的学习和科研工作中,我们将继续深入探讨单摆实验在测量重力加速度中的应用,不断完善实验方法,提高实验数据的准确性,为相关领域的研究工作提供更可靠的实验数据支持。

通过本次实验,我们不仅加深了对重力加速度的理解,还提高了实验操作技能,为今后的学习和科研工作打下了坚实的基础。

结语:通过本次实验,我们成功测量出地球表面的重力加速度,并掌握了单摆测量重力加速度的方法。

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度大学物理实验报告单摆测重力加速度一、实验目的1、学会用单摆测量当地的重力加速度。

2、研究单摆的运动规律,加深对简谐运动的理解。

3、掌握数据处理和误差分析的方法。

二、实验原理单摆是由一根不可伸长、质量不计的细线,一端固定,另一端悬挂一个小球构成。

当摆角很小时(一般小于 5°),单摆的运动可以近似看作简谐运动。

根据简谐运动的周期公式:\(T =2\pi\sqrt{\frac{L}{g}}\),其中\(T\)为单摆的周期,\(L\)为摆长(摆线长度加上小球半径),\(g\)为当地的重力加速度。

通过测量单摆的周期\(T\)和摆长\(L\),就可以计算出重力加速度\(g\),即\(g = 4\pi^2\frac{L}{T^2}\)。

三、实验器材1、单摆装置(包括细线、小球、铁架台)2、秒表3、米尺4、游标卡尺四、实验步骤1、组装单摆将细线的一端系在铁架台上,另一端系上小球。

调整细线的长度,使小球自然下垂时,摆线与竖直方向的夹角小于5°。

2、测量摆长用米尺测量细线的长度\(l\)。

用游标卡尺测量小球的直径\(d\),则摆长\(L = l +\frac{d}{2}\)。

3、测量周期将单摆拉离平衡位置一个小角度(小于 5°),然后释放,让其在竖直平面内做简谐运动。

用秒表测量单摆完成 30 次全振动所用的时间\(t\),则单摆的周期\(T =\frac{t}{30}\)。

4、改变摆长,重复上述步骤,进行多次测量。

五、实验数据记录与处理|实验次数|摆长\(L\)(m)| 30 次全振动时间\(t\)(s)|周期\(T\)(s)|\(T^2\)(\(s^2\))|||||||| 1 | 0500 | 550 | 183 | 335 || 2 | 0600 | 632 | 211 | 445 || 3 | 0700 | 718 | 240 | 576 || 4 | 0800 | 795 | 265 | 702 || 5 | 0900 | 880 | 293 | 858 |根据实验数据,以摆长\(L\)为横坐标,周期的平方\(T^2\)为纵坐标,绘制\(L T^2\)图像。

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度在进行单摆测重力加速度的实验时,大家一定充满了期待与好奇。

我们走进实验室,心中一阵激动。

实验的核心就是利用单摆的周期来计算重力加速度。

这听起来简单,却蕴含了不少奥妙。

一开始,准备工作是关键。

我们需要一个稳固的支架,绳子以及一个小球。

绳子一定要够长,球也要适中。

感觉就像在为一场比赛做准备,选手们都在热身。

接着,确定好摆动的起始角度。

为了得到准确的数据,角度最好保持在小范围内,通常不超过15度。

大家都知道,过大的角度会导致结果不太靠谱。

真是如同“贪多嚼不烂”啊。

然后,测量周期是下一步。

这里的技巧就藏在细节里。

用秒表计时,注意观察小球从一侧摆动到另一侧所需的时间。

这个过程中,心中默念“静如处子,动如脱兔”,把握每一个瞬间。

记录多个周期的时间,再算出平均值。

这样得到的数据才有说服力。

每一次的摆动都仿佛在向我们诉说着重力的奥秘。

通过公式,最终的目标是求得重力加速度g。

这个过程让人如同探索未知的世界,既兴奋又紧张。

公式是g = 4π²L/T²,其中L是摆长,T是周期。

替换进去,经过简单的计算,重力加速度便浮出水面。

哇,看到那个结果的时候,心里满是成就感,感觉自己像个小科学家。

当我们得到g的值后,接下来的讨论环节是必不可少的。

每个人分享自己的实验感受。

有人说,整个过程就像一场和重力的亲密舞蹈。

另一些同学则提到,实验不仅是数据的堆砌,更是对自然规律的深入理解。

其实,真正的乐趣在于我们对这个结果的解读。

重力加速度的测量,不仅仅是数字,背后蕴含着科学的魅力。

每一次实验都是一次新发现。

单摆实验让我们意识到,生活中的物理无处不在。

大到行星的运动,小到我们日常的走路,都是重力在默默作祟。

这个时候,大家都忍不住想起那些关于重力的故事。

牛顿与苹果的传说,听起来真是神奇。

人类就是在这些奇妙的瞬间,开启了科学的探索之旅。

在总结时,大家的脸上都洋溢着满足的笑容。

单摆的实验不仅帮助我们测量了重力加速度,也让我们对物理的理解更加深刻。

大学物理实验报告材料-单摆测重力加速度.doc

大学物理实验报告材料-单摆测重力加速度.doc

大学物理实验报告材料-单摆测重力加速度.doc
单摆是在物理上常见的一个实验室现象,在物理实验中,它可以用来研究动能与惯性的转换,以及作用力的作用。

本次实验的目的是用单摆测量重力加速度。

实验原理:
在实验中,将被试悬吊在一根绳子上,它会随着时间发生频谱上的摆动,其频率为:$$ f = \frac{g}{2 \pi l} $$其中 g 是重力加速度,l 是绳子的长度。

根据这一定律,可以测得重力加速度 g。

实验装置:
实验的关键装置有绳子、悬挂架和被试者。

将绳子固定在悬挂架上,绳子的fixed端作为摆锤的支点,绳子的活动端由被试者拉动并悬挂在悬持架上。

由于被试者的重量,悬挂架及其附件会摆动,从而形成单摆运动。

实验流程:
(1)安装实验装置:将绳子安装到悬持架上,然后将被试者悬吊在悬持架上。

(2)测量频率:将时间计量器安装在悬持架上,将时间计量器的时间与摆动的周期测得并修正。

(3)测量长度:测量出绳子的长度。

(4)计算重力加速度:根据实验原理,根据相应的计算公式计算重力加速度的值。

实验结果:
实验中测量的绳子的长度为1.2m,测量的单摆运动周期为5s,根据上文提供的计算公式可得重力加速度g=9.83m/s²。

实验结论:
通过本次实验,可以用单摆测量重力加速度,测量值为9.83m/s²,与标准值9.8m/s²误差在可接受范围内。

实验结论证明,以单摆为例,可以研究惯性与动能之间的转换,以及重力加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安交通大学物理仿真实
验报告
——利用单摆测重力加速度
班级:

学号:
交通大学模拟仿真实验实验报告
实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____
实验名称:利用单摆测量重力加速度仿真实验
一、实验简介
单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。

二、实验原理
用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面作周期运动,就成为单摆。

单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。

而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。

当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。

单摆带动是满足下列公式:
进而可以推出:
g L T π
2=
式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。

如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。

三、 实验容
1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求:
(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方
法.
(2) 写出详细的推导过程,试验步骤.
(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数:
游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).
假设摆长l ≈70.00cm;摆球直径D ≈2.00cm;摆动周期T ≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.
2. 对重力加速度g 的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.
22
4T L g π=
3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的
关系,试分析各项误差的大小.
四、实验仪器
单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)
单摆仪(1)摆幅测量标尺(2)
钢球(3)游标卡尺(4)
五、实验操作
1. 用米尺测量摆线长度+小球直径为
92.62m(图5);
2. 用游标卡尺测量小球直径结果(图
6)
图(5)
图(6)
释放单摆,开始计时,单摆摆过
50个周期后停止计时,记录所用
时间;
T =95.75 s/50 =1.915 s
图(7)六、数据处理及误差分析
(1)数据处理:
1)周期的计算:
T = 95.75s/50 = 1.967s
2)摆长的计算:
钢球直径的测量数据如下表:
则⎺d =1.687cm, △⎺d=0.024cm.
所以有效摆长为:L =92.62cm -1.687/2cm=91.78cm, 3)重力加速度的计算:
因为:T=2π√L
g
所以:g=4π2L
T2
= 9.88m/s2
查资料可知,地区的重力加速度约为9.79 m/s2
则相对误差是E=△g/g=0.9⎺%<1%,符合实验要求。

(2)误差分析
1.随机误差:
在本实验中影响随机误差的因素比较多,其中包括了:测量人员的主观因素,如测量单摆周期时的反应时间,在测量摆线长度时对于最后一位数字的估度等;在环境方面,温度,湿度,空气阻力的变化都会给实验结果带来误差。

而在这些因素中,较为明显的即是人的主观因素影响,因此,为了减小实验误差,应该尽可能的多测量实验数据,利用求平均值法可以减小实验误差。

2.系统误差:
周期公式T=2π√L
g
实际上是一个近似公式,它的成立是有条件的。

查阅文献可知在考虑摆角,悬线质量,小球质量分布,空气浮力,空气阻力,仪器误差时的
修正公式为:
1)摆角θ的影响:
在实验中,一般要求摆角要小于5°,因为在推导周期公式的时候利用了近似处理:sin(θ)≈tan(θ),此公式只在θ很小的时候才成立,而根据文献查阅可知,在θ>3°时候已经对实验结果产生了交大的影响。

为消除影响,要使θ≤3°或对公式进行修正。

2)悬线质量μ的影响:
本实验是在假设悬线质量不计的情况下使用公式计算的。

由修正公式可知,悬线
质量越大,测得的加速度值越小。

计算时应该因为误差不是远小于测量精度,所以应该给予修正。

3)空气浮力的影响:
在修正公式中,ρ0/ρ为空气密度和小球密度的比值。

在实验中,这个值的数量级很小,可以忽略不计。

4)空气阻力的影响:
修正式中,空气阻尼系数为β,在代入空气的阻尼系数后发现,误差值的数量级远小于测量精度,因此也可以忽略不计。

5)修正式中,αt和αL秒表和直尺的系差修正,在实验中,经过校对的直尺和秒表的系统误差均小于仪器的精密度,因此在计算时可以忽略不计。

相关文档
最新文档