七年级上册有理数的混合运算
人教版七年级数学教案:1.5有理数的混合运算

(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数混合运算的基本概念、顺序法则和在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对有理数混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-运用运算律的灵活应用:学生难以在复杂运算中找到运用运算律简化的方法,导致计算过程繁琐。
例:讲解-1 + 2 × (-3) - 4 ÷ (-2)的计算过程,引导学生运用结合律和交换律简化计算。
-解决实际问题时,建立数学模型:学生在解决实际问题时,往往难以将问题转化为有理数混合运算的形式。
例:讲解温度变化、速度等实际问题,引导学生运用有理数混合运算进行建模和求解。
例:讲解3 + 4 × (-2) - 1 ÷ (-5)的计算过程,强调先乘除后加减的顺序,以及运用运算律简化计算。
2.教学难点
-有理数混合运算的符号处理:学生容易在运算过程中忽略正负号的处理,导致计算错误。
例:讲解(-3) × (-2) + 4 ÷ (-8)的计算过程,强调同号得正、异号得负的规律。
-合作学习中分工与协作:学生在小组合作学习时,如何合理分配任务、发挥各自优势,提高学习效率。
针对上述教学难点,教师应采取以下教学方法帮助学生突破:
-对于符号处理问题,设计符号判断练习,让学生多次练习,形成条件反射。
-对于运算律的灵活应用,通过典型例题和练习,引导学生发现运算规律,培养灵活运用能力。
-对于实际问题,引导学生通过画图、列表等方式,将问题转化为数学运算,提高建模能力。
七年级上册数学有理数加减乘除混合运算

七年级上册数学有理数加减乘除混合运算一、有理数混合运算的基本概念有理数混合运算是基于有理数的加、减、乘、除四则运算,以及乘方和开方的运算。
有理数包括正数、负数和0。
在混合运算中,我们需要注意运算的顺序和法则。
二、数的加减法数的加减法遵循以下法则:1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 相反数:a=-(-a)4. 0的任何非零有理数(0除外)相加,结果为0。
三、数的乘除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
除法法则:两数相除,同号得正,异号得负,并把绝对值相除,0不能作除数。
四、混合运算的顺序混合运算的顺序是先乘方,再乘除,最后加减;如果有括号,先算括号里面的。
五、代数式的值代数式的值是指将字母的取值代入代数式后得到的数值。
求代数式的值有两种方法:一种是直接代入求值;另一种是整体代入求值。
六、方程的基本概念方程是一种含有未知数的等式。
一元一次方程是指只含有一个未知数,并且未知数的次数是1的方程。
解一元一次方程就是求出使方程成立的未知数的值。
七、一元一次方程的解法解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1等步骤。
通过这些步骤,我们可以将复杂的一元一次方程简化,并求出未知数的值。
八、实际问题的数学模型实际问题中,我们可以通过建立数学模型来解决问题。
数学模型是指用数学语言描述实际问题,并把问题的数量关系和数学规律联系起来的一种工具。
通过建立数学模型,我们可以更好地理解和解决实际问题。
九、综合应用举例有理数加减乘除混合运算在实际生活中有着广泛的应用。
例如,购物时计算花费、计算物品的总重量或总价、计算速度和路程等等都需要用到有理数混合运算的知识。
通过这些实际应用的例子,我们可以更好地理解和掌握有理数混合运算的知识。
初一上册数学有理数的混合运算

有理数的混合运算一、有理数的运算1、有理数的加法 (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
例20 计算下列各式①(– 3)–(– 4)+7 ② )()(32312105--+--- ③()3.5-+()2.3-()5.2--()8.4+-(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c)知识窗口:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
例21 计算下列各式①2)10()8()3()7(+-+++++- ②)25.0()3211()813(413125.0-+++-++ 2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。
转化后它满足加法法则和运算律。
例22 计算:59117+---例23 月球表面的温度中午是C o101,半夜是C o153-,中午比半夜高多少度?例24 已知m 是6的相反数,n 比m 的相反数小5,求n 比m 大多少? 3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba ;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac 。
北师大版数学七年级上册2.11《有理数的混合运算》教学设计

北师大版数学七年级上册2.11《有理数的混合运算》教学设计一. 教材分析《有理数的混合运算》是北师大版数学七年级上册第2章“有理数的运算”中的一个知识点。
本节课主要让学生掌握有理数加法、减法、乘法、除法混合运算的法则,能正确进行混合运算,并培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的加法、减法、乘法、除法运算,但对混合运算法则的理解和应用还不够熟练。
因此,在教学过程中,需要引导学生通过观察、分析、归纳总结出混合运算的法则,并通过大量的练习加以巩固。
三. 教学目标1.知识与技能目标:使学生掌握有理数加法、减法、乘法、除法混合运算的法则,能正确进行混合运算。
2.过程与方法目标:通过观察、分析、归纳总结出混合运算的法则,培养学生的运算能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:有理数加法、减法、乘法、除法混合运算的法则。
2.难点:混合运算过程中,如何正确进行运算顺序的判断和调整。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过观察、分析、归纳总结出混合运算的法则,并通过大量的练习加以巩固。
同时,运用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.教师准备:精通教材,了解学生,设计教学过程和练习题目。
2.学生准备:预习教材,了解有理数加法、减法、乘法、除法运算。
3.教学工具:黑板、粉笔、多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问方式复习旧知识,引导学生回顾有理数的加法、减法、乘法、除法运算。
然后提出本节课的主题:有理数的混合运算。
2.呈现(10分钟)教师通过多媒体展示混合运算的例子,引导学生观察、分析,发现混合运算的规律。
同时,教师在黑板上板书混合运算的法则。
3.操练(10分钟)教师布置练习题目,让学生独立完成。
学生在完成后,教师选取部分题目进行讲解和分析,巩固所学知识。
人教版七年级上册数学第1章 有理数 有理数的混合运算 (4)

C.2S2-2S
D.2S2-2S-2
【点拨】因为2100=S,所以2100+2101+2102+…+2199+2200 =S+2S+22S+…+299S+2100S =S(1+2+22+…+299+2100) =S(1+2100-2+2100) =S(2S-1) =2S2-S.
【答案】A
*10.(2020·德州)如图是用黑色棋子摆成的美丽图案,按照 这样的规律摆下去,第10个这样的图案需要黑色棋 子的个数为( )
第一章 有理数
1.5 有理数的乘方 第2课时 有理数的混合运算
提示:点击 进入习题
1 见习题 2 见习题 3 C
4D
答案显示
5D
6C
7 见习题 8 特殊到一般 9 A 10 C
11 见习题 12 见习题 13 见习题 14 见习题
1.有理数混合运算的顺序:
(1)先__乘__方______,再___乘__除_____,最后__加__减______; (2)同级运算,从______到______进行; (3) 如 有 括 号 , 先 做左_______右_ 的 运 算 , 按 _计算: (1)(2020·山西)(-4)2×-123- (-4+1);
解:原式=16×-18-(-3)=-2+3=1. (2)(中考·宜昌)23×1-14×0.5;
原式=8×1-14×12=8×34×12=3.
(3)--22-3÷-13+0×-23;
解:原式=-4-3÷(-1)+0×(-8)=-4+3+0=-1.
______括号、____括__号括内号依次进行. 小
中
大
2 . 计 算 : - 16 - 14 ×[5 - ( - 3)2] = __-__1__- 14 ×(5 - ___9_____) = ___-__1___-14×__(-__4_)___=___-__1___-__(-__1_)___=___0_____.
七年级上册数学有理数的加减混合运算

第一部分:引言在学习数学的过程中,有理数的加减混合运算是一个非常重要的内容。
它不仅需要我们掌握基本的加减运算规则,还需要我们能够灵活运用这些规则解决实际问题。
本文将从简单到复杂,由浅入深地探讨七年级上册数学有理数的加减混合运算,希望能够帮助你更好地理解和掌握这一知识点。
第二部分:基本概念让我们回顾一下有理数的加法和减法。
在有理数的加法中,同号为正,异号为负,我们只需要将它们的绝对值相加,并保持原来的符号不变。
而在有理数的减法中,我们可以将减法转化为加法,即将减数取相反数,再与被减数相加。
这些基本的加减法规则在混合运算中仍然适用。
第三部分:混合运算举例接下来,让我们通过一些例子来深入理解有理数的加减混合运算。
假设我们有一个混合运算的式子:2+(-5)-(-3)+7。
我们要将减法转化为加法,即将减数取相反数,得到2+(-5)+3+7。
我们按照顺序进行加法运算,得到7。
通过这个例子,我们可以看到,混合运算中的关键是要按照规定的顺序进行加减法,并且要注意负号的使用。
第四部分:实际问题解决除了简单的混合运算例子外,有理数的加减混合运算还可以帮助我们解决一些实际的问题。
在计算温度变化、海拔高度等问题时,我们经常需要进行有理数的混合运算。
通过这些实际问题的练习,我们可以更好地掌握混合运算的技巧,提高我们的解决问题的能力。
第五部分:个人观点和总结在我看来,有理数的加减混合运算是数学中的重要知识点之一。
通过深入理解和灵活运用这些规则,我们可以更好地解决实际问题,提高数学水平。
当然,要掌握混合运算并不是一件容易的事情,需要我们多加练习,多思考,才能够真正掌握其中的精髓。
七年级上册数学有理数的加减混合运算是一个需要我们认真对待的知识点。
只有深入理解其规则和原理,并不断进行练习和实际应用,我们才能真正掌握这一知识点。
希望通过本文的介绍和讨论,你能够对有理数的混合运算有更清晰的认识,并能够在以后的学习中更好地运用这些知识。
人教版数学七年级上册: 第一章 有理数的混合运算

有效数字:
【练7】下列由四舍五入法得到的近似数, 各精确到哪一位?有几个有效数字? (1)132.4精确到______,有 __个有效数字,分别为_________。 (2) 0.0572精确到______,有 __个有效数字,分别为_________。
(3)2.4 万精确到______,有 __个有效数字,分别为__________。 (4)2.4×104精确到______,有 __个有效数字,分别为_______。
有效数字:
由四舍五入得到的近似数,从左边第一个不是0 的数字起,到末位数字为止的所有数字都 叫做这个数的有效数字。
如:1.50有3个有效数字:1,5,0 0.0307有3个有效数字:3,0, 7 0.03070有4个有效数字:3,0,7,0
有效数字:
【例7】下列由四舍五入法得到近似数,各精确到哪一位,各有哪几个有效数字?
C.c<b<a
D.c<a<b
有理数的混合运算:
【练2-4】下列计算对吗?如果不对,应如何改正?
(1)24 22 20 24 4 20 20 20 1 (2)23 8 3 1 8 8 1 0
3 (3) 3 22 (2 3) (6)2 (1) 36 1 37
有理数的混合运算:
2
−9×
2
−1
3
+
3
−1 16
答案:3313.
答案:24.
实际应用:
【例3】学校将建一圆形花坛,半径为3m,中间雕塑的底面是边长为1.2m的正方形(如图), 你能用算式表示该花坛的实际种花面积吗?这个算式有哪几种运算?这个花坛的实际种花面积 是多少?(π取3.14)
解析:
【例3】学校将建一圆形花坛,半径为3m,中间雕塑的底面是边长为1.2m的正方形(如图), 你能用算式表示该花坛的实际种花面积吗?这个算式有哪几种运算?这个花坛的实际种花面积 是多少?(π取3.14)
初中数学人教版七年级上册 第一章有理数(7)有理数的加减混合运算

1.3.2 有理数的减法(第3课时)加减混合运算:1.有理数加减混合运算的方法和步骤: 第一步:用减法法则将减法转化为加法;第二步:运用加发法则、加法交换律、加法结合律进行简便运算。
2.混和运算应注意的技巧:①先把相同符号的数相加,在把最后的一个正数和一个负数相加。
②互为相反数的两数先相加。
③分母相同或易于通分的分数可以先求他们的。
④有相加后得数为整数的若干个数应先相加。
⑤再交换加数的位置时切记要连同前面的符号一齐交换。
2. 运算律:(1) 加法交换律:a b b a +=+(2) 结 合 律:()()a b c a b c ++=++ (3) 减法的性质:a -b -c=a -(b +c)a +b -c=a +b +(-c)一.计算题(口算):(1) (-4)+(-6)=(2) (+4)+(+6)=(3) (+8)+(-4)=(4) (+9)+(-2)=(5) (-9)+(+2)=(6) (+2)+(+8)=(7) (-12)―(-18)=(8) (-1)―(+9)=(9) (-16)+(-17)=(10) (+7)+(-8)=(11) (-9)-(-3)=(12) (-4)+(+3)=(13) (-8)+(+4.5)=(14) (-7)+(-3)=(15) |-7|+|-9|=(16) 15+(-22)=(17) (-13)+(-8)=(18) 6.25―(-7.75)=(19) (-2.4)―(+4.6)=(20) 12-(-18)= (21) (-7)-15 =(22) (-13)-(+9)=(23) (-8)-(-17)=(24) (+15)-(+20)=(25) (-16)-(+23)=(26) (-3)+(-7) =(27) (-25)+(-37)=(28) (-21)+(+16)=(29) (+45)+(-38)=(30) (-73)+(+73)=(31) (+78)+(+45)=(32) (-4)-(-3) =(33) 9-|-9|=(34) 5+|-19|=(35) (-3.1)+(6.9)=(36) 4.23-(-2.76)=(37) |-8| + 3 =(38) -(+9)+(-4)=(39) (+4)-(-11)=(40) (-2)-(+7)=二、计算题-2+3+1-3+2 -9+4-5+823-17+638-27-15-5 43-77+37-23 18-12-21+2 -21-19+12+5 -4-4.85-3.25-25+56-39-7+11-13+9-2+9-3-7-30-18-52-13-7-9+3-5-16+36-1210-16-5-1325.3-7.3-13.7+7.3-4.27+3.8-0.73+1.2-20+3-5+7-4.2+5-8.8-1.9+3.6-10.1+1.4-7.2-0.9+5.6-1.7=104.87.52.4+-+--3.7+4.2+0.7-4.27.27.27.2---+-0.5-3+2.75-75.8-3.6-7.3-3 2134-3121+-3231757--+2131--434318-83325.4+-215.0+-41311--218.0-2111722--+-=-21-32+-658-14-5-0.25213132----26.54-6.4-18.54+6.4-3.75+2.85+3.15-2.567()()51313-+--=-5.5-3.2-2.5-4.8 433411215-+111(3)(8)(5)424-+++-51[(8.6)(5)]( 1.4)166-+-+-+112.43(1)( 1.6)36-++-+-217432)25.3(210-+---)524()31()4.2()323(-----+-79.2121421.782117-+-545[4(6)](4)858+-+-1432213211--+-114731322---558.51066--+13.211 3.212--+216)4118(214837--+-++-115125116127+-+-712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(-31)+(+52)+(+53)+(-132)(-3.125)+(+381)31+(-43)+(-31)+(-41)+1918)5.2()7416(5.12)733(-+-++-(-21)+(+31)+(-41)+(+81))25213(1789)16.2(11333-++-+)1713(134)174()134(-++-+-)412(216)313()324(-++-+-)2117(4128-+(-21)+341+2.75+(-621))814()75(125.0)411(75.0-+-++-+25()()( 4.9)0.656-+----⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---52114321)83()31(8132-+---2170)3113()2143(4318-+---++--2128216529++--()5.5-+()2.3-()5.2---4.810725.37.841+--33.1-10.7-(-22.9)-1023-111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12411()()()23523+-++-+-(.)()⨯--÷-11120516312()()-+÷-⨯-528522514(-2)×(-3)×(-4)×111234⎛⎫-+- ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册有理数的混合运算The document was prepared on January 2, 2021第三十六课时一、课题§有理数的混合运算(2)二、教学目标1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;2.培养学生的运算能力及综合运用知识解决问题的能力.三、教学重点和难点重点:有理数的运算顺序和运算律的运用.难点:灵活运用运算律及符号的确定.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1.叙述有理数的运算顺序.2.三分钟小测试计算下列各题(只要求直接写出答案):(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);(二)、讲授新课例1当a=-3,b=-5,c=4时,求下列代数式的值:(1)(a+b)2; (2)a2-b2+c2;(3)(-a+b-c)2; (4) a2+2ab+b2.解:(1)(a+b)2=(-3-5)2 (省略加号,是代数和)=(-8)2=64; (注意符号)(2) a2-b2+c2=(-3)2-(-5)2+42(让学生读一读)=9-25+16 (注意-(-5)2的符号)=0;(3) (-a+b-c)2=[-(-3)+(-5)-4]2(注意符号)=(3-5-4)2=36;(4)a2+2ab+b2=(-3)2+2(-3)(-5)+(-5)2=9+30+25=64.分析:此题是有理数的混合运算,有小括号可以先做小括号内的,=+=.在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写例4已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995=x2-x-1.当x=2时,原式=x2-x-1=4-2-1=1;当x=-2时,原式=x2-x-1=4-(-2)-1=5.三、课堂练习1.当a=-6,b=-4,c=10时,求下列代数式的值:2.判断下列各式是否成立(其中a是有理数,a≠0):(1)a2+1>0; (2)1-a2<0;七、练习设计1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:2.当a=,b=6,c=48,d=时,求下列代数式的值:3.计算:4.按要求列出算式,并求出结果.(2)-64的绝对值的相反数与-2的平方的差.5*.如果|ab-2|+(b-1)2=0,试求九、教学后记1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.第三十七课时一、课题§有理数复习课二、教学目标1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;2、培养学生综合运用知识解决问题的能力;3、渗透数形结合的思想三、教学重点和难点重点:有理数概念和有理数运算难点:负数和有理数法则的理解四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、讲授新课1、阅读教材中的“全章小结”,给关键性词语打上横线2、利用数轴患讲有理数有关概念本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数地范围在不断扩大从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的0也不再是最小的数了数轴上的点所表示的数从左向右越来越大,A点所表示的数小于B点所表示的数,而D点所表示的数在四个数中最大我们用两个大写字母表示这两点间的距离,则AO>BO>CO,这个距离就是我们说的绝对值由AO >BO >CO 可知,负数的绝对值越大其数值反而越小由上图中还可以知道CO=DO ,即C ,D 两点到原点距离相等,即C ,D 所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数 利用数轴,我们可以很方便地解决许多题目例1 (1)求出大于-5而小于5的所有整数;(2)求出适合3<x <6的所有整数; (3)试求方程x =5,x 2 =5的解; (4)试求x <3的解解:(1)大于-5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0(2)3<x <6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有-5,-4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5所以 适合3<x <6的整数有±4,±5 (3)x =5表示到原点距离有5个单位的数,显然原点左、右侧各有一个,分别是-5和5所以x =5的解是x=5或x=-5 同样x 2=5表示2x 到原点的距离是5个单位,这样的点有两个,分别是5和-5.所以2x=5或2x=-5,解这两个简易方程得x=25或x=-25 (4) x <3在数轴上表示到原点距离小于3个单位的所有点的集合.很显然-3与3之间的任何一点到原点距离都小于3个单位 所以 -3<x <3例2 有理数a 、b 、c 、d 如图所示,试求c b d a c a c -+-,,, 解:显然c 、d 为负数,a 、b 为正数,且.d a 〈c =-c , (复述相反数定义和表示)c a -=a-c ,(判断a-c >0)da +=-a-d ,(判断a+d <0) cb -=b-c (判断b-c >0)3、有理数运算(1)+17+20; (2)-13+(-21); (3)-15-19; (4)-31-(-16); (5)-11×12;(6)(-27)(-13); (7)-64÷16; (8)(-54)÷(-24); (9)(-21)3; (10)-(23)2; (11)-(-1)100; (12)-2×32; (13)-(2×3)2; (14)(-2)3+32 计算[4(21)2÷2(-21)]÷[(-21)2+(-21)3+(-21)+1] 4、课堂练习(1)填空:①两个互为相反数的数的和是_____;②两个互为相反数的数的商是_____;(0除外)③____的绝对值与它本身互为相反数;④____的平方与它的立方互为相反数;⑤____与它绝对值的差为0;⑥____的倒数与它的平方相等;⑦____的倒数等于它本身;⑧____的平方是4,_____的绝对值是4;⑨如果-a >a ,则a 是_____;如果3a =-a 3,则a 是______;如果22a a -=,那么a 是_____;如果a -=-a ,那么a 是_____; 10 如果x 3=1476,(-2453)3=-14760,那么x=____(2)用“>”、“<”或“=”填空:当a <0,b <0,c <0,d <0时: ①a cd ____0; ②b a a +-____0; ③c b a +_____0;④d c ab +____0;⑤343c b a ____0;⑥333c b a +____0; ⑦b b 2)(-____0; ⑧d ca +2____0;a >b 时,⑨a >0,b >0,则ba 1_____1; 10a <0,b <0,则ba 1_____1. 七、练习设计 1、写出下列各数的相反数和倒数原 数 5 -632 1 0 5 -1 相反数倒 数2、计算:(1)5÷; (2)5÷; (3)5÷;(4)÷;(5)÷;(6)÷3计算: (1)⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛--71112787431; (2)(-81)÷9441+÷(-16); (3)25.0431********-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛-÷ (4)3(-4)+5(-6)(-3)2; (5){[12+4×(3-10)]}÷5; (6)22+(-2)3×5-÷(-2)2(7)[(-3)3-(-5)3]÷[(-3)-(-5)]4分别根据下列条件求代数式y x y x -+22的值: (1)x=,y=; (2)x=65,y=-43§有理数复习(一)知识回顾 (三)例题解析 (五)课堂小结例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和 理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力。