BIM技术应用方案(建筑信息模型)
建筑工程BIM技术应用方案

建筑工程BIM技术应用方案随着科技的不断进步和建筑行业的发展,建筑信息模型(Building Information Modeling, BIM)技术在建筑工程中的应用越来越广泛。
BIM技术通过数字化的建模和协调,为建筑项目的规划、设计、施工和维护提供了全新的解决方案。
本文将探讨建筑工程BIM技术的应用方案,以及其带来的优势和挑战。
一、应用方案1.1 建筑设计阶段应用方案在建筑设计阶段,BIM技术可以将建筑师、结构工程师和设备工程师的设计模型整合在一个协同平台上,实现实时的信息共享和协作。
这样可以更好地协调各个专业之间的设计,减少错误和冲突,提高设计质量和效率。
1.2 建筑施工阶段应用方案在建筑施工阶段,BIM技术可以将设计阶段的模型转化为施工图,并与施工进度计划相结合,实现施工过程的可视化管理。
通过BIM技术,施工方可以更好地规划施工流程、优化资源配置,并及时发现和解决施工中可能出现的问题,提高施工效率和质量。
1.3 建筑运维阶段应用方案在建筑运维阶段,BIM技术可以为建筑设备的管理和维护提供支持。
通过BIM技术,运维人员可以实时获取建筑模型和设备的相关信息,了解设备的运行状态和维护情况,并进行智能化的运维管理。
这样可以降低设备故障率,延长设备寿命,提高设备的利用效率。
二、优势2.1 提高设计效率和质量BIM技术可以实现多专业之间的协同设计和信息共享,避免了传统设计过程中不同专业之间的信息不对称和误差累积。
这样可以提高设计效率,减少设计错误,提高设计质量。
2.2 提高施工效率和质量BIM技术可以将设计模型转化为施工图,并与施工进度计划相结合,实现施工过程的可视化管理。
这样可以帮助施工方规划施工流程、优化资源配置,并及时发现和解决施工中可能出现的问题,提高施工效率和质量。
2.3 提升运维管理水平BIM技术可以为建筑设备的管理和维护提供支持,实现设备运维过程的数字化管理。
通过BIM技术,运维人员可以实时获取设备的相关信息,了解设备的运行状态和维护情况,并进行智能化的运维管理。
建筑信息模型(BIM)技术应用指南

建筑信息模型(BIM)技术应用指南第一章建筑信息模型(BIM)基础 (2)1.1 BIM概述 (2)1.2 BIM发展历程 (2)1.3 BIM与传统设计模式的区别 (3)第二章 BIM技术标准与规范 (3)2.1 BIM标准体系 (3)2.1.1 BIM国家标准 (3)2.1.2 BIM行业标准 (4)2.1.3 BIM地方标准 (4)2.2 BIM技术规范 (4)2.2.1 BIM设计规范 (4)2.2.2 BIM施工规范 (4)2.2.3 BIM运维规范 (4)2.3 BIM应用指南 (4)2.3.1 BIM应用流程 (4)2.3.2 BIM技术应用要点 (4)2.3.3 BIM技术应用案例 (5)2.3.4 BIM培训与考核 (5)第三章 BIM建模技术 (5)3.1 建模软件概述 (5)3.2 建模流程与方法 (5)3.3 建模技巧与注意事项 (6)第四章 BIM模型管理与维护 (6)4.1 模型管理原则 (6)4.2 模型维护与更新 (7)4.3 模型数据交换与共享 (7)第五章 BIM在设计阶段的应用 (8)5.1 设计协同 (8)5.2 设计优化 (8)5.3 设计变更与审批 (8)第六章 BIM在施工阶段的应用 (9)6.1 施工进度管理 (9)6.2 施工成本控制 (9)6.3 施工安全管理 (10)第七章 BIM在运维阶段的应用 (10)7.1 设施管理 (10)7.2 能源管理 (11)7.3 设备维护与维修 (11)第八章 BIM与绿色建筑 (11)8.1 绿色建筑设计原则 (11)8.2 BIM在绿色建筑设计中的应用 (12)8.3 BIM与绿色建筑评价 (12)第九章 BIM与建筑工业化 (13)9.1 建筑工业化概述 (13)9.2 BIM在建筑工业化中的应用 (13)9.3 BIM与建筑工业化发展趋势 (14)第十章 BIM与大数据 (14)10.1 大数据概述 (14)10.2 BIM与大数据的融合 (14)10.3 BIM大数据应用案例 (15)第十一章 BIM与人工智能 (15)11.1 人工智能概述 (15)11.2 BIM与人工智能的融合 (15)11.3 BIM人工智能应用案例 (16)第十二章 BIM技术在国内外的发展趋势 (17)12.1 国内外BIM政策与发展现状 (17)12.1.1 国外BIM政策与发展现状 (17)12.1.2 我国BIM政策与发展现状 (17)12.2 BIM技术未来发展趋势 (18)12.3 我国BIM技术发展策略与建议 (18)第一章建筑信息模型(BIM)基础1.1 BIM概述建筑信息模型(Building Information Modeling,简称BIM)是一种数字化的建筑设计、施工和运维管理方法。
BIM技术应用方案

BIM技术应用方案BIM(Building Information Modeling)是一种通过数字化建筑模型与信息管理相结合的技术,可以实现建筑全生命周期的数据集成和协同管理,提高建筑设计、施工和运维的效率和质量。
以下是一个BIM技术应用方案的详细介绍:1.BIM在设计阶段的应用:在设计阶段,BIM可以帮助建筑师和工程师更加直观地展示他们的设计意图,通过3D建模方法,可以准确地模拟出建筑的外形和内部空间。
通过设置可视化效果、光照渲染、动画演示等功能,可以提供更加真实和逼真的设计展示效果,并帮助相关人员更好地理解和审查设计方案。
2.BIM在施工阶段的应用:BIM在施工阶段的应用主要体现在两个方面:协调和优化。
首先,BIM可以帮助施工团队协调各个设计团队的工作,通过BIM软件中的协同工作功能和冲突检测工具,可以及时发现不同设计团队之间的冲突,从而提前采取解决措施,避免在施工过程中产生重大问题。
其次,BIM可以优化施工过程,通过4D模拟和施工进度管理功能,可以实现对施工进度的精确控制和协调,从而提高施工效率,减少浪费。
3.BIM在运维阶段的应用:在建筑交付使用后的运维阶段,BIM仍然发挥着重要作用。
首先,BIM可以提供建筑设备和设施的详细信息,包括设备的规格、维护记录、维修历史等,帮助运维人员进行设备管理和维修计划的制定。
此外,通过将BIM模型与建筑设备的传感器和监控系统相连接,可以实时监测设备的运行状态,并进行预测性维护,提高设备的可靠性和运行效率。
此外,BIM还可以为建筑维护人员提供建筑内部管线和设备分布的准确位置和路径信息,方便维修人员进行维修和检修工作。
4.BIM在建筑数据管理中的应用:BIM通过集成建筑模型和信息,可以实现对建筑数据的全生命周期管理。
在设计阶段,BIM可以帮助构建建筑的几何模型和属性信息,包括建筑材料、规格、价格等,这些信息可以与供应商和承包商进行数据交流,帮助进行成本估算和材料采购。
bim技术应用实施方案

bim技术应用实施方案BIM技术应用实施方案一、引言BIM(Building Information Modeling)即建筑信息模型技术是目前建筑与土木工程领域中最先进的技术之一。
BIM技术通过将建筑与土木工程设计、施工、管理等各个环节中所涉及的各种信息进行集成、管理与协同,从而实现整个工程生命周期的信息化管理,提高工程质量和效益。
本文主要就BIM技术在建筑工程中的具体应用进行说明,并提出相应的实施方案。
二、BIM技术在建筑工程中的应用1. 设计阶段在设计阶段,BIM技术可以通过三维建模和可视化效果展示的方式,为设计人员提供更直观、真实的视图,从而提高设计效率和准确性。
此外,通过BIM技术,可以对建筑的结构、材料、设备等进行虚拟模拟,以评估其性能和可行性,从而更好地指导设计方案的优化与改进。
2. 施工阶段在施工阶段,BIM技术可以通过将设计图纸与施工图纸进行整合,实现设计信息的共享和协同。
通过BIM技术,可以对建筑的施工过程进行模拟和优化,合理安排施工工序和资源,以提高施工质量和效率。
同时,通过BIM技术,可以进行冲突检测和资源协调,减少变更和错误,降低施工风险。
3. 运维阶段在运维阶段,BIM技术可以实现建筑信息的动态更新和管理。
通过BIM技术,可以对建筑的设备、设施和维护保养等信息进行录入和管理,实现对建筑的全生命周期管理。
通过BIM技术,可以对建筑的运行状况进行监控和分析,及时发现问题并进行预防和处理,提高建筑的运行效率和可持续性。
三、BIM技术应用实施方案1. 项目立项和规划在项目立项和规划阶段,应提前确定BIM技术的应用范围和目标,并制定相应的实施方案和时间表。
同时,应制定相关的标准和规范,统一各方的工作要求和规范。
2. 人员培训和技术支持在项目实施过程中,应根据实际情况,进行相关人员的培训和技术支持。
包括设计人员、施工人员、运维人员等各个阶段的相关人员,提高他们对BIM技术的理解和运用能力。
建筑行业建筑信息模型(BIM技术应用方案

建筑行业建筑信息模型(BIM技术应用方案第一章概述 (3)1.1 建筑信息模型(BIM)简介 (3)1.2 BIM技术发展历程 (3)1.3 BIM技术在我国建筑行业的应用现状 (3)第二章 BIM技术基础 (4)2.1 BIM技术核心概念 (4)2.1.1 定义 (4)2.1.2 特点 (4)2.2 BIM软件工具介绍 (5)2.2.1 Autodesk Revit (5)2.2.2 Bentley Systems Bentley BIM (5)2.2.3 Graphisoft ArchiCAD (5)2.2.4 其他BIM软件 (5)2.3 BIM数据交换与协同工作 (5)2.3.1 BIM数据交换 (5)2.3.2 BIM协同工作 (5)第三章 BIM在设计阶段的应用 (6)3.1 设计阶段BIM应用流程 (6)3.1.1 项目启动与策划 (6)3.1.2 建立BIM模型 (6)3.1.3 模型协同与信息共享 (6)3.1.4 设计审核与修改 (6)3.1.5 设计成果输出 (6)3.2 BIM技术在建筑方案设计中的应用 (7)3.2.1 建筑布局优化 (7)3.2.2 建筑外观设计 (7)3.2.3 建筑日照分析 (7)3.3 BIM技术在结构设计中的应用 (7)3.3.1 结构建模与分析 (7)3.3.2 结构构件优化 (7)3.3.3 结构施工图绘制 (7)3.4 BIM技术在机电设计中的应用 (7)3.4.1 机电系统设计 (7)3.4.2 机电管线综合 (7)3.4.3 机电施工图绘制 (7)3.4.4 机电系统模拟与分析 (7)第四章 BIM在施工阶段的应用 (7)4.1 施工阶段BIM应用流程 (8)4.2 BIM技术在施工模拟中的应用 (8)4.3 BIM技术在施工组织设计中的应用 (8)4.4 BIM技术在施工进度管理中的应用 (8)第五章 BIM在运维阶段的应用 (9)5.1 运维阶段BIM应用流程 (9)5.2 BIM技术在设施管理中的应用 (9)5.3 BIM技术在能源管理中的应用 (9)5.4 BIM技术在资产管理中的应用 (10)第六章 BIM技术在项目管理中的应用 (10)6.1 项目管理BIM应用流程 (10)6.1.1 前期准备 (10)6.1.2 BIM模型创建与维护 (10)6.1.3 BIM数据协同与管理 (10)6.1.4 BIM技术在项目管理中的应用 (10)6.2 BIM技术在项目成本管理中的应用 (10)6.2.1 成本估算与预算 (11)6.2.2 成本分析 (11)6.2.3 成本监控与预警 (11)6.3 BIM技术在项目质量管理中的应用 (11)6.3.1 质量计划与控制 (11)6.3.2 质量检查与验收 (11)6.3.3 质量分析 (11)6.4 BIM技术在项目风险管理中的应用 (11)6.4.1 风险识别 (11)6.4.2 风险评估与分级 (11)6.4.3 风险应对与监控 (11)第七章 BIM技术在绿色建筑中的应用 (12)7.1 绿色建筑与BIM技术的关系 (12)7.2 BIM技术在绿色建筑设计中的应用 (12)7.3 BIM技术在绿色建筑施工中的应用 (12)7.4 BIM技术在绿色建筑运维中的应用 (13)第八章 BIM技术在建筑行业协同工作中的应用 (13)8.1 建筑行业协同工作概述 (13)8.2 BIM技术在项目协同中的应用 (13)8.2.1 项目管理协同 (13)8.2.2 项目沟通协同 (14)8.3 BIM技术在专业协同中的应用 (14)8.3.1 结构专业协同 (14)8.3.2 设备专业协同 (14)8.4 BIM技术在产业链协同中的应用 (15)8.4.1 产业链上游协同 (15)8.4.2 产业链下游协同 (15)第九章 BIM技术培训与人才培养 (15)9.1 BIM技术培训体系 (15)9.1.1 培训目标 (15)9.1.2 培训内容 (15)9.1.3 培训方式 (16)9.2 BIM人才培养模式 (16)9.2.1 学历教育 (16)9.2.2 在职培训 (16)9.2.3 国际合作与交流 (16)9.3 BIM技术在实际项目中的应用案例分析 (16)第十章 BIM技术发展趋势与展望 (17)10.1 BIM技术发展趋势 (17)10.2 BIM技术在建筑行业的未来发展前景 (18)10.3 BIM技术在建筑行业中的应用挑战与对策 (18)第一章概述1.1 建筑信息模型(BIM)简介建筑信息模型(Building Information Modeling,简称BIM)是一种数字化的建筑设计、施工及管理方法。
建筑bim技术方案

建筑bim技术方案建筑BIM(建筑信息模型)技术方案BIM技术(Building Information Modeling)是一种基于数字化模型的建筑设计、施工、运维管理等综合应用技术。
通过将建筑物的各个组成部分以三维模型的形式进行数字化表达,BIM 技术实现了多领域、多专业的协同工作,提高了建筑的设计效率、质量和可持续性。
在这份技术方案中,我们将介绍建筑BIM技术的基本原理、应用领域、优势以及实施步骤,以期能够对您的项目提供有价值的参考。
1. 基本原理:BIM技术的核心思想是以建筑物的模型为基础,将建筑物的各种信息(包括几何形状、材料、尺寸、空间布局、构件连接方式等)以统一的标准存储在一个共享的数据库中,实现各个专业之间的协同工作。
通过实时更新、模拟和分析,BIM技术能够帮助设计师、工程师和其他相关人员快速理解和评估建筑物的性能和效果。
2. 应用领域:BIM技术在建筑行业的各个阶段都有广泛的应用,包括建筑设计、结构分析、施工管理、设备运维等。
在设计阶段,BIM技术可以实现建筑造型、空间布局、建筑能耗等方面的优化,提高设计效率和项目质量;在施工阶段,BIM 技术可以实现建筑构件的智能化检测、施工进度的实时监控、材料的自动订购等,提高施工效率和工作安全性;在运维阶段,BIM技术可以实现建筑设备的在线监测、故障预警、维护计划的优化等,提高设备的可靠性和使用寿命。
3. 优势:BIM技术相比传统的设计和管理方式有许多优势。
首先,BIM技术可以实现设计-施工-运维等全生命周期的无缝集成,提高各个阶段的工作效率;其次,BIM技术可以实现多专业之间的协同工作,减少信息传递和数据重复输入的错误;再次,BIM技术可以实现多尺度、多视角的模型展示,帮助设计师、工程师和业主更好地理解和决策;最后,BIM技术可以实现建筑能耗的模拟和优化,提高建筑的可持续性和节能性能。
4. 实施步骤:要实施BIM技术,首先需要建立一个统一的BIM平台和数据库,将建筑的各种信息集中管理;然后,需要对相关人员进行培训,使其熟练掌握BIM软件的使用方法和工作流程;接下来,需要制定一个详细的BIM实施计划,明确各个阶段的工作任务和时间节点;最后,需要与项目的其他相关方进行有效的沟通和协调,确保BIM技术能够得到充分的应用。
建筑行业建筑信息模型(BIM应用推广方案

建筑行业建筑信息模型(BIM应用推广方案第1章 BIM技术概述 (3)1.1 BIM的定义与特点 (3)1.2 BIM在建筑行业中的应用价值 (3)第2章 BIM应用现状分析 (4)2.1 国内外BIM应用现状 (4)2.2 我国建筑行业BIM应用挑战与机遇 (4)第3章 BIM推广策略 (5)3.1 政策与法规支持 (5)3.2 行业标准制定 (5)3.3 人才培养与选拔 (6)第4章 BIM技术在设计阶段的应用 (6)4.1 概念设计与方案优化 (6)4.1.1 建筑形态 (6)4.1.2 空间分析 (6)4.1.3 结构分析与优化 (6)4.2 施工图设计与管理 (7)4.2.1 施工图绘制 (7)4.2.2 设计信息管理 (7)4.2.3 协同设计 (7)4.3 绿色建筑与节能分析 (7)4.3.1 绿色建筑评价 (7)4.3.2 节能分析 (7)4.3.3 可持续设计 (7)第5章 BIM技术在施工阶段的应用 (7)5.1 施工进度管理 (7)5.1.1 施工进度计划的制定 (8)5.1.2 施工进度的实时更新与调整 (8)5.2 施工成本控制 (8)5.2.1 成本估算与预算 (8)5.2.2 施工成本分析与优化 (8)5.3 施工质量控制与安全管理 (8)5.3.1 施工质量控制 (8)5.3.2 施工安全管理 (8)5.3.3 施工过程中的沟通与协作 (9)第6章 BIM技术在运维阶段的应用 (9)6.1 设施管理与维护 (9)6.1.1 设施信息管理 (9)6.1.2 设施维护计划 (9)6.1.3 设施巡检与维修 (9)6.2 能耗分析与优化 (9)6.2.1 能耗监测 (9)6.2.2 能耗分析 (9)6.2.3 能源管理优化 (9)6.3 空间管理与改造 (10)6.3.1 空间信息管理 (10)6.3.2 空间规划与调整 (10)6.3.3 空间改造 (10)6.3.4 空间资产评估 (10)第7章 BIM协同工作与信息共享 (10)7.1 BIM协同工作模式 (10)7.1.1 协同工作原理 (10)7.1.2 协同工作实施策略 (11)7.2 信息共享与数据交换 (11)7.2.1 信息共享机制 (11)7.2.2 数据交换技术 (11)7.3 云计算与大数据在BIM中的应用 (12)7.3.1 云计算在BIM中的应用 (12)7.3.2 大数据在BIM中的应用 (12)第8章 BIM与先进技术的融合 (12)8.1 BIM与3D打印技术 (12)8.1.1 设计与制造一体化 (12)8.1.2 构件定制化 (12)8.1.3 施工现场应用 (13)8.2 BIM与虚拟现实技术 (13)8.2.1 项目预览与评审 (13)8.2.2 施工模拟 (13)8.2.3 安全培训与教育 (13)8.3 BIM与人工智能技术 (13)8.3.1 智能设计优化 (13)8.3.2 施工过程监控 (13)8.3.3 建筑运维管理 (13)第9章 BIM应用案例分析 (14)9.1 国内BIM应用案例 (14)9.1.1 上海中心大厦项目 (14)9.1.2 北京大兴国际机场项目 (14)9.1.3 广州东塔项目 (14)9.2 国外BIM应用案例 (14)9.2.1 美国纽约哈德逊城市广场项目 (14)9.2.2 英国伦敦奥林匹克体育场项目 (14)9.2.3 澳大利亚悉尼歌剧院翻新项目 (15)9.2.4 新加坡滨海湾金融中心项目 (15)第10章 BIM应用推广实施建议 (15)10.1 政策与市场环境优化 (15)10.2 技术研发与创新 (15)10.3 行业合作与交流 (16)10.4 企业推广策略与实践经验分享 (16)第1章 BIM技术概述1.1 BIM的定义与特点建筑信息模型(Building Information Modeling,简称BIM)是一种基于数字技术的建筑设计、施工和管理的方法。
bim 应用实施方案

bim 应用实施方案BIM(建筑信息模型)是一种集成的、系统化的数字化化设计和施工的方法论,并在建筑生命周期中建立并使用一种数字模型。
下面是一份BIM应用实施方案的例子,包含了项目准备、BIM技术培训、BIM模型构建、BIM协同设计和施工、BIM数据管理等方面的内容。
一、项目准备1.制定BIM应用计划,明确项目中BIM的使用目标和范围。
2.组建BIM实施团队,包括项目经理、BIM专家、CAD技术人员等。
3.收集和整理项目相关的数据和资料,包括设计文档、施工图纸等。
二、BIM技术培训1.安排BIM培训课程,培训BIM实施团队成员,提高其BIM技术水平和应用能力。
2.策划BIM技术研讨会,邀请行业内的专家分享最新的BIM技术和经验。
三、BIM模型构建1.根据项目需求,确定BIM模型的范围和细节,并与设计师和工程师进行充分的沟通和协调。
2.使用BIM软件进行模型构建,包括建筑结构、设备、管道等。
3.将原有的设计文档和施工图纸转化为BIM模型,并进行模型审核和优化。
四、BIM协同设计和施工1.建立BIM协同平台,实现设计和施工各方的信息共享和协同工作。
2.通过BIM模型进行设计方案的快速比对和优化,提高设计质量和效率。
3.在模型中添加施工相关的信息,包括工期、进度、材料等,优化施工流程。
五、BIM数据管理1.建立BIM数据管理体系,包括BIM模型的版本管理和变更控制。
2.制定BIM数据交换标准,实现与不同软件和系统的数据集成和交流。
3.建立BIM模型库,对历史数据进行存档和管理,方便项目后期的维护和更新。
以上是一份BIM应用实施方案的简要例子,实际的实施方案需要根据具体项目的情况进行细化和完善。
BIM的应用可以提高建筑设计和施工的效率和质量,减少问题和错误,促进设计和施工各方的合作和沟通,实现数字化建造的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑信息模型技术应用方案第一节 BIM简介与应用设想1 BIM技术与平台介绍1.1 BIM技术简介BIM是Building Information Modeling的缩写,中文翻译为建筑信息模型,是21世纪初出现的全新概念,是信息技术发展到一定阶段对建筑业产生影响的必然产物。
其通过特定工具软件,将建筑内全部构件、系统赋予相互关联的参数信息,直观地以三维可视化的形式进行设计、修改、分析,并形成可用于方案设计、建造施工、运营管理等建筑全生命周期所参考的文件。
建筑信息模型不是简单的将数字信息进行集成,它还是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因为这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型,可将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。
因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,如建筑物的日照、外部维护结构的传热状态等。
同时BIM可以四维模拟实际施工,以便于在早期设计阶段就发现后期真正施工阶段所将出现的各种问题,提前进行处理,为后期活动打下坚固的基础。
在后期施工时能作为施工的实际指导,也能作为可行性指导,以提供合理的施工方案及人员,实现材料使用的合理配置,从而最大范围内实现资源合理运用。
1.2 BIM应用现状在现阶段BIM应用中,各专业应用软件种类不同,标准不统一,造成模型成果信息无法实现共享,难以发挥其整体优势。
1.3 BIM技术总承包集成管理平台基于此现状,我司与中国建筑科学研究院联合开发了具有统一标准的BIM技术总承包集成管理平台。
该平台能够通过国际标准的IFC格式无损识别建筑、结构、钢结构、幕墙、机电各专业、精装修不同软件建立的模型,并能选择性的导入、合并模型数据,实现设计、施工、运维全过程中的信息传输及共享,全面掌控施工各阶段信息,打造施工管理、虚拟建造、物料追踪和后期运维一体化的BIM总承包管理。
我司将在北京CBD核心区Z3地块项目总承包工程应用全新的BIM总承包管理模式,铸就真正的价值工程精品。
2 BIM系统应用目标及方向2.1 本工程BIM系统应用目标本工程BIM系统应用目标:总承包施工管理运用BIM系统达到100%。
具体为:在施工全过程中通过基于BIM的总承包管理平台对深化设计、施工工艺、工程进度、施工组织及协调配合方面高质量运用BIM技术进行总承包管理,实现工程项目管理由3D向4D、5D发展,提高本工程管理信息化水平,提高工程管理工作的效率,为本工程全生命周期管理中提供施工管理阶段数字化信息,充分保障业主后期工程运营管理。
2.2 本工程BIM系统应用方向本工程BIM系统应用方向:进行本工程建造过程中信息的建立与集成。
具体为:在整个工程深化设计、施工进度、资源管理及施工现场等各个环节,进行信息的建立与收集,最终形成完整的竣工信息模型,从而完成工程全生命周期管理环节中施工环节的信息建立,保证从设计到施工的BIM信息的延续性和完整性。
具体的总承包项目业务过程中BIM的应用如下图所示:3 BIM模型建立、过程实施的时间计划及安排根据总进度计划,拟定本工程BIM模型建立时间及过程实施时间计划如下表所示:第二节对专业分包的BIM协调管理以及顾问方的配合1 总承包BIM团队建设1.1 总承包BIM团队组织构架我司总承包项目部成立BIM管理部,指定一名专职BIM负责人,并且设置建筑、结构、幕墙、机电、进度、造价、现场施工等相关专业工程师至少各一名,作为BIM服务过程中的具体执行者,负责将BIM成果应用到具体的施工工作中。
并按不同专业,对分包单位进行协调管理,全面与业主BIM团队对接。
如下图:总承包BIM团队组织构架1.2 BIM团队岗位职责本工程BIM团队岗位职责如下表:2 BIM实施相关制度(如周BIM例会内容、模型下发及各专业模型审核安排)3 对专业分包的BIM协调与管理在本工程BIM系统运用中,总承包BIM团队将协调管理整个工程参建单位的BIM系统建立、实施等一系列工作,各分包单位的BIM管理成员纳入总承包管理范畴,进行工程模型的共享,协同作业。
组织协调各专业进行综合技术和工艺的协调,进度计划的协调,施工方案协调等工作。
如下图:总承包BIM团队组织与协调总承包、业主在专业分包工程和独立分包工程合同中明确各分包单位建立和维护BIM模型的责任,总承包负责协调、审核和集成各专业分包单位、专业供应单位、独立分包单位等提供的BIM模型及相关信息。
4 对BIM顾问的配合(业主可能已选聘第三方BIM咨询公司)总承包项目部设立BIM管理部和BIM负责人,确定BIM团队人员组织架构和工作职责,完成BIM模型建立的信息收集整理、维护及协调工作,总承包组织协调全体相关参建单位参与使用BIM进行综合技术和工艺协调。
总承包深化设计,随工程进展绘制土建-机电-装修综合图,并交BIM顾问配合形成深化设计BIM模型。
总承包应使用BIM模型对总控施工计划、总体施工方案进行模拟演示。
总承包与业主BIM管理团队密切配合,完成和实现BIM模型的各项功能,并积极利用BIM技术手段指导施工管理。
第三节 BIM平台的建立1 平台搭建有总承包团队搭建BIM管理平台,即PKPM施工管理平台,并组织各分包专业单位加入平台管理中。
PKPM 施工管理平台是BIM技术在施工领域应用的成果。
平台基于目前最为流行的BIM技术,结合Project、PKPT等主流的进度计划软件,可根据用户不同需求,整合工程项目全过程信息,将施工场地及设备、设施的BIM模型与施工进度计划相连接,实现施工场地布置可视化和各种施工设备、设施的动态管理,有助于实现施工管理和控制的信息化、集成化、可视化和智能化。
该平台上可以把RVT模型转为PKPM数据格式,结合国内的计算规则,自动套取清单项、自动套取地方定额、自动生成清单项目特征等,然后汇总生成各种类型的表格。
在清单统计模式下可同时按清单规则、定额规则平行扣减,并自动套取清单和定额做法。
形成工料机表,可能进度提取材料,形成具有工料机成本的5D施工模拟。
2 软硬件配备2.1 BIM系统应用软件根据本工程BIM系统信息化平台特点,我们采用以下软件来实现本工程BIM系统运行,确保工程信息化模型管理。
BIM系统应用软件2.2 支持本工程BIM系统运作硬件支持支持本工程BIM系统运作硬件注:目前我司正在筹备建立BIM的“私有云”,建成后将大大提升BIM协同作业能力并降低BIM技术对硬件设备的需求。
第四节 BIM施工管理过程实施1 BIM主导预制加工1.1 BIM主导预制加工在机电工程的应用1.1.1 工厂预制加工的优势预制加工是我司BIM应用的一个主推方向,它主要具有以下几大优势:(1)可大大节省现场的材料加工和周转场地,针对一些城市CBD地段施工场地狭小的项目非常必要;(2)工厂批量化生产,产品质量有保证;(3)现场只处理组合安装阶段工作,可以缩短工期和节省人工;(4)与有实力的材料供应集团建立战略合作关系,实现材料集团化采购,打造公司核心竞争力。
本工程机电专业承包范围内的水管道、风管道等大批量材料以及机房等安装尺寸要求高的地方均可以考虑预制装配技术来完成。
1.1.2 基于BIM技术的工厂预制化流程(1)模型完善及精准尺寸控制模型搭建前期做好两手准备,一是了解所选厂家产品的详细尺寸参数表,一对一完善族库;二是了解设计各专业的空间信息,如土建的面墙做法,钢结构梁的防火喷涂厚度等可能影响空间尺寸的因素,合理排布管线。
(需密切与相关专业配合,积极获取相关信息)(2)模型分段及装配化图纸绘制对于风水管系统、机房的主干管等,根据厂家资料和现场实况,采用相关手段对模型进行分段处理,导出装配化图纸和材料清单。
(3)工厂预制及过程监控设专人对接工厂,指导厂家的技术人员理解图纸和清单,监控订单的批量化生产。
(4)现场安装策略及误差控制现场的安装误差始终无法避免,在实践过程中,我司总结出通过以下方式来控制误差,即“先定位设备阀门,后排布管道;先定位弯头,后安装直管;先主管,后支管”。
在现场设立小型加工作业平台,用于查漏补缺。
以下为我司在某项目的风管预制加工实例。
装配简图材料清单风管加工“L”型风管出厂现场风管合缝拼装风管吊装1.2 BIM主导预制加工在幕墙工程的应用2 模型定位管理由于结构三维坐标非常复杂,涉及建筑结构安全,影响大。
建议由业主聘请专业的BIM顾问提供三维电脑模型,我司会使用一套以上的三维专业软件计算每层施工用坐标,同时对比钢结构和幕墙计算成果以防出错。
我司会提供三维坐标给其他专业分包以便于组织现场施工定位等,保证场外加工、场内装配尺寸的准确性。
3 深化设计管理(BIM模型出图)针对本工程专业设计复杂的特点,在BIM共享管理平台下,全面协调各专业的深化设计工作。
3.1 图纸入库平台上开辟共享的图档库,各专业设计图纸及过程中设计变更都集中统一管理,保证图纸的标准化和及时性。
3.2 碰撞检查及出图建立全专业三维数据模型,对建筑、结构、机电、设备、幕墙等进行综合碰撞检测,提前发现并协调解决设计图纸相关碰撞及缺陷,导出优化图纸,指导现场施工。
3.3 方案论证BIM验证应用于施工组织设计审核流程3.3.1 总平面动态布局模拟3.3.2 机械设备性能模拟3.3.3 施工进度计划4D模拟针对关键性的施工方案,如塔吊选型及定位,核心筒模架爬升,机电设备吊装等,运用BIM 可视化模拟多套备选方案相互对照,以选取最优施工方案,保证施工顺利进行。
3.4 BIM验证应用于二次深化设计审核流程钢结构二次深化构件制作模拟、土建、机电、精装、幕墙复杂节点施工模拟;3.4.1 钢结构深化设计阶段应用(钢结构工程二次深化构件制作模拟)3.4.1.1 钢结构BIM模型钢结构BIM三维实体建模出图进行深化设计的过程,其本质就是进行电脑预拼装、实现所见即所得的过程。
首先所有的杆件、节点连接、螺栓、焊缝、混凝土梁柱等信息都通过三维实体建模进入整体模型,该BIM三维实体模型与以后实际建造的建筑完全一致。
其次,所有施工详图(包括布置图、构建图、零件图)均是利用三维远离投影生成,图纸中所有尺寸,包括杆件长度、断面尺寸、杆件相交角度等均是从三维实体模型上直接投影产生的。
3.4.1.2 钢结构详图BIM模型的创建BIM三维实体建模出图进行深化设计的过程中分为三个阶段,每一个深化设计阶段都将有校对人员参与,实施过程控制,由校对人员审核通过后才能进行下一阶段工作。
第一阶段,根据结构施工图建立轴线布置和搭建杆件实体模型。