氢氘光谱

合集下载

氢与氘原子光谱

氢与氘原子光谱

氢灯
5)拍摄氢(氘)谱:换上装好底片(药面对光)的暗 盒,调节暗盒在15mm处,拍下氢光谱,曝光时间参考值:30 -60秒 ;(换上氘灯,暗盒调到35mm处,拍下氘光谱,曝 光时间参考值:2-5分钟)。
刻度 暗盒移动旋轮
6)拍摄铁谱:暗盒 移到25、45mm处,打开铁弧,调 节光稳定和光路,拍下铁光谱,曝光时间1-5秒。关闭暗 盒铁皮取下。
d1 、d 2 、d x
λx 为待测谱,
分别为它们的坐标刻度值,则:
λ2 − λ1
d 2 − d1
=
λx − λ1
d x − d1
dx
λx λ2 d2
d x − d1 λx = λ1 + (λ2 − λ1 ) d 2 − d1
λ1 d1
实验装置
小型棱镜摄谱仪 或多功能组合光栅光谱仪
实验内容பைடு நூலகம்步骤
谱片 放大倍数调节 标记点 谱片投影
调焦 标准谱片
(外)左右移动
(内)前后移动

标准 谱片
注意:谱片投影 和标准谱片的 谱线波长变化 方向要一致 查标准谱片 找出其波长

特征 谱线 基本 对准
波长越长
铁 谱 谱 片 投 待 影 测 谱
λ1
λ2
λx
标记点
提示:通过查待测量谱线的理论波长 值,在理论值附近找就容易认出谱线.
多功能组合光栅光谱仪
多功能组合光栅光谱仪是一种新型测谱仪,由 单色仪、光接收单元、电控箱、计算机等组成。
显示器 单色仪 接收单元 电控箱 计算机 打印机
键盘、鼠标
多功能组合光栅光谱仪
狭缝调节轮 PMT CCD(背后) 电控箱
DVD
TP RWDS-8型组合多功能光栅光谱仪电控箱

试验原理1氢氘原子光谱氢原子光谱的规律氢光谱由许多谱线

试验原理1氢氘原子光谱氢原子光谱的规律氢光谱由许多谱线

实验原理1、 氢、氘原子光谱(1) 氢原子光谱的规律氢光谱由许多谱线组成,其中巴耳末线系的规律可表示为)121(122nR H -=λ (1.1) 式中,λ为谱线波长,H R 为氢的里德伯常数,n=3,4,5,……巴耳末线系是本实验拍摄和研究的对象.对应于n =3,4,5,…的谱线分别称H α,H β,H γ……它们的波长间隔、谱线强度都随n 的增大而有规律地减小.(2) 氢、氘原子光谱的异同设氢核质量为M H ,同位素氘核质量为M D .它们的里德伯常数R H 和R D 分别为mM M R R H H H +=∞ (1.2) mM M R R D D D +=∞ 其中,m 为电子质量,R ∞是认为原子核质量无限大时的里德伯常数.以λH 和λD 代表对应于同一n 值的氢和氘谱线的波长,则巴耳末系可表示为)121(122n R H H-=λ )121(122n R D D -=λ (1.3) 由于M D ≠M H ,由式(1.2)知R D ≠R H ,则式由(1.3)可知,对同一n 值,λD ≠λH .可见,氢、氘原子光谱既有如式(1.3)所示的相同规律,对同一n 值,波长λH 和λD 又有差异.只是其差值一般都小于0.2nm .所以在谱片上氢、氘谱线总是靠得很近.(3) 关于M D /M H ,由式(1.2)知)/()/(m M M m M M R R H H D D H D ++= 从中解得mM R R R R M M H H D H D H D /)1/(1/--= (1.4) 由式(1.3)知,R D /R H =λH /λD ,故式(1.4)可化为mM M M H H D H D H D /)1/(1/--=λλλλ (1.5) 取M H /m =1836,对每一对氢氘谱线测得λH 和λD ,由式(1.5)即可求得M D /M H .2 测算波长波长无法直接测量,需要寻找一个与波长有关又能直接测量的量. (1) 光栅光谱的特点 光栅摄谱仪的色散率d λ/d l 几近常数.两谱线波长差和距离成正比.这一特点将谱线的波长和谱线的坐标联系在一起.谱线在谱片上的坐标正是一个与波长有关又能直接测量的量.由谱线坐标即可推算其波长.(2) 线性内插法图1.1为光栅摄谱仪拍得的三条谱线.其中左右两条的波长λ1,λ2为已知,且λ2>λ1,中间谱线的波长λ待求.若能测定三条谱线的坐标x 1、x 和x 2,根据光栅光谱的特点应有111212x x x x --=--λλλλ从中解出)(112121x x x x ---+=λλλλ (1.6)由式(1.6)知:在谱片上,对任何一条未知波长的谱线,只要在其周围找到两条波长λ1和λ2已知的谱线,并测定三者的坐标x 1,x 和x 2即可推算出未知波长λ.实验中,常将铁谱和待测谱线上下并排拍在一张谱片上,每条铁谱的波长都可由特制的光谱图查得.应用式(1.6)的条件是波长λ和坐标x 有线性关系.若二者只在很小的范围内接近线性关系,如棱镜摄谱仪拍得的谱片,则在|x 2-x 1|较小的条件下也可应用.此时应在待测谱线两侧适当小的范围内选取已知波长的谱线.这就是在光谱实验中经常用以计算波长的“线性内插法”.实 验 装 置平面光栅摄谱仪,交流电弧发生器,氢氘灯,铁电极,阿贝比长计,光谱投影仪和光谱图.(1) 光路原理一般平面光栅摄谱仪的光路如图1.2所示.图中,M 1,M 2是同一大凹球面反射镜的下、上两个不同框形部分.光源A 发出的光,经三透镜照明系统L 1,L 2,L 3后均匀照亮狭缝S ,通过S 的光经小平面反射镜N 反射转向π/2后射向M 1,因S 由N 所成的虚像正好处在M 1的焦面上,所以狭逢上一点S 发出的光经M 1反射后成了微微向上射出的平行光,并正好射到N 后上方的平面反射光栅G 上.G 把入射光向M 2方向衍射.M 2把来自不同刻纹的同一波长的平行衍射光会聚成一点S λ’, S λ’正好落在照相胶版B 上.G 相邻刻纹的衍射光传播到S λ’的程差δ=d (sin i +sin θ),图 1.1式中d是光栅常数,I,θ分别是入射光、衍射光相对于G的法线的夹角,sinθ取+号是因为θ,i在法线的同侧.显然,Sλ’要是个亮点,必须δ=kλ,于是得光栅方程d(sin i+sinθ)=kλ,式中λ是光波波长,k=0¸±1, ±2,…叫衍射级.除0外,对同一k,因i相同而λ不同则θ将不同,也就是不同波长的像点Sλ'将落在B的左右不同位置,成为一个单色像Sλ'.狭缝S是连续的点的集合,所以Sλ'是一条亮线.对同一k,A发出的所有波长所形成的所有单色像构成A的光谱,用胶版B就可以把它们拍摄下来.图 1.2(2)中心波长和光栅转角的关系.Sλ'落在B中心线附近的波长λB叫中心波长.显然,这时θ=i,对1级谱,光栅方程变为2d sin I=λ0,所以中心波长λ0和i有—一对应关系.光栅安装在一个金属齿盘上,盘底的轴插在机座的轴套上,盘边有一蜗杆和齿轮啮合,蜗杆用一连杆和机壳外的手柄联结;转动手柄就可以转动光栅,并在手柄边上可以读出光栅转角i.仪器色散能力较大,一次摄谱B只能容下相差约100nm的波长范围,所以拍摄不同波段的光谱时,必须把光栅转到相应的i角位置.(3)谱级分离.设B上某点δ=600nm,对λ1=600nm的光波,k=1,得到了加强;对λ2=300nm 的光波,k=2,也得到了加强.这样在B上δ=600nm处出现的谱线,就无法确定它是λ1还是λ2,这叫谱级重叠.但λ2是紫外光,它不能透过玻璃,在狭缝前放一无色玻璃作为滤色片,所有紫外光便都到不了B,从而简单地实现了1级可见光谱和2级紫外光谱的分离,滤色后在δ=600nm处出现的谱线一定是λ1.(4)拍摄比较光谱的操作原则.谱线是狭缝的单色像.让12mm高的狭缝全部露出来被光照亮,可得到12mm 高的一系列谱线;让上端6mm露出,就得到上端6mm高的谱;让下端6mm露出,就得到下端6 mm高的谱.设想用Na(钠)黄光照亮S,先让上端6 mm露出摄谱后,保持胶版B和光栅转角i都不动,再换为下端 6 mm摄谱.这样摄得的4条谱线,一定是后二条在前二条的延长线上,因为它们只是同一狭缝上、下二段成像先后不同而已.Na黄双线的波长大家都很熟悉,由此我们推想:把先摄下的二条谱线看成波长未知的被测谱线,后二条看成“波长标尺”上波长已知的二条刻度线,显然测得的结果非常准确.由此得出操作原则:拍摄互相比较的两列光谱时,不能移动胶版,不能转动色散元件,只能在换光源后换用狭缝的相邻部位摄谱.换用狭缝的不同部位很简单,狭缝前有一金属薄圆盘,叫哈特曼光栏盘,盘上不同位置开了不同高度的方孔,转动盘子让狭缝在所需的孔中露出就行了.“波长标尺”也现成,Fe(铁)的光谱线相当丰富,波长都已知,把Fe的光谱拍在被测光谱的旁边,也就相当于摆上了一把“波长标尺”.Fe光谱可以用电弧发生器激发.(5) 氢氘光谱灯.氢氘光谱灯(或放电管)内所充的纯净氢氘气体,在高压小电流放电时分解成原子并被激发到高能态,在跃迁到低能态的退激过程中发出原子光谱.。

氢氘光谱(2014)

氢氘光谱(2014)

氢氘光谱实验
实验内容:
1.打开光谱仪控制箱电源和微机电源,根据显示器上的提示,选择“光电倍增管”.光电倍增管的负高压用手动调节,由仪表读数。

获得Hg光谱时负高压取380-520(v);获得氢氘光谱时负高压取800(v)左右。

2.阅读光栅光谱仪使用说明书,理解光谱仪的工作原理和工作界面中“参数设置”、“光谱扫描”、“读取数据”、“波长线性校正”、“检索”等功能键的意义,掌握获得光谱、读取光谱数据及保存光谱数据的方法。

3. 选择合适的实验参数,获得Hg光谱:
适当选取上述实验参数,如“负高压”、“增益”等,运行软件,获得Hg光谱;读取其峰值,并记录Hg光谱各标准波长值。

4.谱线的定标和测量:
以Hg435.84nm谱线为基准,运行软件进行波长修正。

读出修正后Hg光谱的各波长值,即Hg光谱波长的测量值。

作Hg光谱标准波长与Hg光谱测量波长的关系拟合图,获得光谱波长的修正公式。

5、选择合适的实验参数,获得氢氘光谱:
点燃氢氘灯,选取“工作方式”、“工作范围”、工作状态“中的相关参数,运行软件,获得氢氘巴尔末线系在可见光范围内的4对谱线(谱线波长在400nm-660nm 之间)。

测量的测氢氘巴尔末线系可见光区各波长值;根据光谱波长修正公式,修正氢氘光谱波长值,计算氢氘里德伯常数值。

附图:定标用Hg光谱的谱图
序号波长(nm)序号波长(nm)
1 365.0
2 6 435.84
2 365.48 7 546.07
3 366.3 8 576.96
4 404.66 9 579.07
5 407.78。

实验六 原子光谱实验—氢氘光谱的测量.

实验六 原子光谱实验—氢氘光谱的测量.

实验六 原子光谱实验—氢氘光谱的测量一、 实验目的(1)熟悉光栅光谱仪的基本原理,了解它的性能和使用方法。

(2)熟悉测量氢-氘和其他原子光谱的方法。

(3)计算氢和氘原子核的质量比。

(4)了解并观察钠、汞原子的主要光谱线。

二、 实验原理(1) 测量公式的导出:根据玻尔(Bohr )原子理论,一个电子绕正电荷为Ze 、质量为M z 的原子核作圆周运动时,其能量是量子化的,可表示为2Z 22220242n1R hcZ n 1h )4(Z e 2E -=πεμπ-= (6-0) 其中ZZ M m mM +=μ 为核与电子的折合质量,ZZ 32042Z Z 32042Z M m 11R M m 11c h )4(me 2M m M c h )4(me 2R +=+πεπ=+πεπ=∞ 称为里德堡(Rydberg )常数,ε0为真空介电常数,m 为电子质量,h 和c 分别为普朗克常数和真空中的光速,n=1,2,3…,称为能级量子数,而常数1-32042m 10973731ch )4(me 2R =πεπ=∞ 为忽略原子核运动时(即认为原子核质量M Z 趋于无穷)的里德堡常数。

当原子从高能级向低能级跃迁时,便辐射出光子,并满足能量守恒:)m1n 1(hcZ R h 222Z --=ν 其中ν为光子频率,n 为上能级量子数,m 为下能级量子数。

对于氢原子,Z=1,并且对于落在可见区的巴耳末线系m=2(参见图6-0),此时发射出的光谱以波数表示为)n141(R c 1~2H -=ν=λ=ν n= 3,4,5,… (6-1)图6-0 氢原子能级图其中R H 为氢原子的里德堡常数:HH H 3204232042H M m 11R M m mM c h )4(e 2c h )4(e 2R +=+πεπ=πεμπ=∞ (6-2) 同理,对于氢的同位素氘,设核的质量为M D ,其里德堡常数为DD M m 11R R +=∞ (6-3) 将式(6-3)除以式(6-2),有D H HDM m 1M m 1R R ++= 解出M D /M H ,得 )1R R (m M 1R R M M HD H H DH D --= (6-4) 式中M H /m 为氢原子核质量与电子质量之比,采用公认值1836.5。

氢氘光谱

氢氘光谱

实验五 氘原子光谱一.实验目的1.了解造成光谱的同位素移位的原因。

2.了解利用氢原子光谱的同位素移位测量质子与电子质量比的原理。

3.学会使用多功能光栅光谱仪。

二.实验器材氢氘灯 多功能光栅光谱仪 三.实验原理同位素是英国人索迪于1911年开始使用的。

1919年英国物理学家阿斯顿(F. W. Aston )制成了用来分离不同质量并测定粒子质量的粒子质谱仪,把研究同位素的方法提高了一大步。

阿斯顿利用质谱仪在71种元素之中,陆续找到了202种同位素之多,这为我们认识同位素,开始积累了大量资料。

为了寻找氢的同位素,人们前后用了十几年的时间,而没有得出肯定的结果。

1931年初,有人从理论上推导,认为应该有质量数为2的氢同位素存在,并且估算出2H:1H=1:4500的比例。

1931年年底,美国哥伦比亚大学的尤里教授和他的助手们,把四升液态氢在三相点14°K 下缓慢蒸发,最后只剩下几立方毫米液氢,然后用光谱分析。

结果在氢原子光谱的谱线中,得到一些新谱线,它们的位置正好与预期的质量为2的氢谱线一致,从而发现了重氢(deuterium ),即氘,符号D 。

自然界中许多元素都存在同位素,它们的原子核具有相同数量的质子,但中子数不同,在谱线上,同位素对应的谱线会发生移位,称同位素移位。

移位大小与核质量有关:核质量越轻,移位效应越大,因此氢具有最大的同位素移位。

据玻尔理论,原子的能量是量子化的,即具有分立的能级;当电子从高能级跃迁到低能级时,原子释放出能量,并以电磁波形式辐射。

氢与类氢原子的巴耳末系对应光谱线波数为)121()1()4(22230442nm m c h Z e m z e e -+=πεπσ则类氢原子的里德伯常数可写成()⎪⎪⎭⎫ ⎝⎛+=z e e Z mm c h Z e m R 1142320242πεπ∞→z m 即假定原子核不动,则有()ch z e m R e 32024242πεπ=∞因此有ze Z m m R R +=∞1R Z 随原子核质量m z 变化,对于不同元素或同一元素的不同同位素R Z 值不同,m z 对R z 影响很小,因此氢和它的同位素的相对波数很接近,在光谱上开成很难分辨的双线或多线。

氢与氘原子光谱

氢与氘原子光谱

调 节
5
2.旋转6使右边圆盘读 数中的0对准指针位置.
9 8 7 6 5 4 3 2 1 0
10 6
4 5 6 9 2 8 1 3
5 15
10
1.旋转5将5mm刻度线拉到十 分之一毫米刻度线0的位置.
7


读数
95
9 8 7 6 5 4 3 2 1 0
0
4 10 2 8
5 6 9 3 1
4
5 30
11. 计算有关量.
氢与氘原子光谱
实验目的
1、通过拍摄氢(氘)、铁原子光谱,或利用多功 能组合光栅光谱仪采集氢(氘)光谱,求出里德伯 常数,以达到初步掌握光谱定性分析的基本方法; 2、测定氘氢原子核质量比; 3、理想精确测量的意义。
实验原理
1.氢光谱巴尔末线系(在可见光区)的规律为
n2 λH = 364.56 2 nm n −4
R∞ RH = (1 + m / M ) R∞ H RA = ⇒ R∞ (1 + m / M A ) RD = (1 + m / M D ) MD m λH = ⋅ M H M H (λD − λH + λD m / M H )
3.比较光谱法测定谱线的波长
λ1 , λ2 分别为标准谱,
6.求谱线波长 6.求谱线波长 测谱线的坐标:谱片放在阿贝比长仪上,读取标 准谱(铁谱) 准谱(铁谱)和待测谱的坐标。
阿贝比长仪
4 10 2 8 1 5 6 9 3
1.工作台 2.导板 3.主标尺 4.视物显微镜 5.微米计转轮 6.微调旋钮 7.微移转轮 8.固定板 9.读数显微镜 10.热辐射屏罩
点击
8. 峰值检索.

氢氘光谱

氢氘光谱

实验题目:氢氘光谱实验目的:本实验以氘原子光谱为研究对象,研究获得同位素光谱的实验方法、分析方法及其在微观测量中的应用。

实验仪器:WGD-8型多功能光栅光谱仪、氢氘灯、汞灯、微机等。

实验原理:(点击跳过实验原理)1. 原理:根据玻尔理论,原子的能量是量子化的,即具有分立的能级。

当电子从高能级跃迁到低能级时,原子释放出能量,并以电磁波形式辐射。

氢和类氢原子的巴耳末线系对应光谱线波数为:)121()1()4(222320242nm m c h Z e m Ze e -+=πεπσ(1)其中m Z 为原子核质量,m e 为电子质量,e 为电子电荷,h 为普朗克常数,ε0为真空介电常数,c 为光速,Z 为原子序数。

因此类氢原子的里德伯常数可写成:)1(1)4(2320242Ze e Z m m ch Ze m R +⋅=πεπ(2)若∞→Z m ,即假定原子核不动,则有:ch Ze m R e 320242)4(2πεπ=∞ (3)因此:)1(Ze Z m m R R +=∞ (4)由此可见,R Z 随原子核质量m Z 变化,对于不同的元素或同一元素的不同同位素R Z 值不同。

m Z 对R Z 影像很小,因此氢和它的同位素的相应波数很接近,在光谱上形成很难分辨的双线或多线。

设氢和氘的里德伯常数分别为R H 和R D ,氢、氘光谱线的波数σH 、σD 分别为:⎪⎭⎫ ⎝⎛-=22121n R H Hσn=3,4,5 (5)⎪⎭⎫⎝⎛-=22121n R D D σ n=3,4,5… (6)氢和氘光谱相应的波长差为:)1()1()1(DH H DH H HD H D H R R -=-=-=-=∆λσσλλλλλλλ(7)因此,通过实验测得氢和氘的巴耳末线系的前几条谱线的谱长及其波长差,可求得氢与氘的里德伯常数R H 、R D 。

根据式(4)有:⎪⎪⎭⎫ ⎝⎛+=∞H e Hm m R R 1/ (8) ⎪⎪⎭⎫⎝⎛+=∞D e D m m R R 1/(9) 其中m H 和m D 分别为氢和氘原子核的质量。

氢、氘光谱实验报告

氢、氘光谱实验报告
控制软件根据需要设置。前置放大器的增益现为1,2,…,7七个档
次,数越大放大器的增益越高。光电倍增管的负高压也分为1,2,…,
7七个档次,数越大所加的负高压越高,每档之间负高压相差约200V。
CCD的积分时间可以在10ms-40s之间任意改变。
扫描控制是利用步进电机控制正弦机构(根据光栅方程,波长和光
图4 多色仪光学原理图 CCD是电荷耦合器件(Charge-Coupled Device)的简称,是一种以 电荷量表示光强大小,用耦合方式传输电荷量的器件,它具有自扫描、 光谱范围宽、动态范围大、体积小、功耗低、寿命长、可靠性高等优 点。将CCD一维线阵放在光谱面上,一次曝光就可获得整个光谱。目 前,二维面阵CCD已大量用于摄像机和数字照相机。
【实验步骤】
由于线的波长为656.28nm,线为410.17nm,波长间隔达246nm。超
过CCD一次测量的光谱范围159nm的范围,所以要分两次测量。测量线 (波长为656.28nm)时的波长时,采用汞灯的(546.07nm,576.96 nm,579.07 nm)三条谱线作为标准谱线来定标;测量,,线(波长分 别为486.13nm,434.047nm,410.174nm)的波长时,采用汞灯的 (404.66nm, 407.78nm,435.84nm)三条谱线作为标准谱线来定标。
制、信号处理和光谱显示。其工作原理如图4所示。
光电信号 前置放大器 放大的 光电信号 增益控制信号 系统控制信号 光谱数字信号 / 变换 / 变换 步进电机控制信号 负高压 控制信号 负高 压电源 步进电机 驱动电源 负高压
2 1 3 1
电子计算机 步进电机 驱动脉冲
图4光谱仪的工作原理
光谱仪的探测器为光电倍增管或CCD,用光电倍增管时,出射光通
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实 验 报 告19系 04级 姓名 王承乐 日期06.04.08, 06.04.15评分实验题目:同位素光谱——氘原子光谱实验目的: 以氘原子光谱为研究对象,研究获得同位素光谱的实验方法、分析方法及其在微观测量中的应用。

实验原理:根据玻尔理论,原子的能量是量子化的,即具有分立的能级。

当电子从高能级跃迁到低能级时,原子释放出能量,并以电磁波形式辐射。

氢和类氢原子的巴耳末线系对应光谱线波数为 )121()1()4(222320242nm m c h Z e m Zee -+=πεπσ (1) 其中Z m 为原子核质量,e m 为电子质量,e 为电子电荷,h 为普朗克常数,0ε为真空介电常数,c 为光速,Z 为原子序数。

因此类氢原子的里德伯常数可写成)1(1)4(2320242Zee Z m m ch Z e m R +⋅=πεπ (2) 若∞→Z m ,即假定原子核不动,则有c h Z e m R e 320242)4(2πεπ=∞ (3) 因此)1(ZeZ m m R R +=∞(4) 由此可见,Z R 随原子核质量Z m 变化,对于不同的元素或同一元素的不同同位素Z R 值不同。

Z m 对Z R 影响很小,因此氢和它的同位素的相应波数很接近,在光谱上形成很难分辨的双线或多线。

设氢和氘的里德伯常数分别为H R 和D R ,氢、氘光谱线的波数H σ、D σ分别为⎪⎭⎫ ⎝⎛-=22121n R H H σ n=3,4,5 (5)⎪⎭⎫ ⎝⎛-=22121n R D D σ n=3,4,5 (6)氢和氘光谱相应的波长差为 )1()1()1(DH H D H H H D H D H R R-=-=-=-=∆λσσλλλλλλλ (7) 因此,通过实验测得氢和氘的巴耳末线系的前几条谱线的谱长及其波长差,可求得氢与氘的里德伯常数H R 和D R 。

根据式(4)有 )1(H eH m m R R +=∞(8) )1(DeD m m R R +=∞(9) 其中H m 和D m 分别为氢和氘原子核的质量。

式(8)除以式(9),得DeHeHD m m m m R R ++=11 (10)从式(10)可解出HDm m ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=11H De H H D H D R R m m R R m m (11)式中eHm m 为氢原子核质量与电子质量比,公认值为1836.1515。

因此将通过实验测得的H D R R 代入式(11),可求得氘与氢原子核的质量比HD m m。

实验方法1.用氢氘放电管作为光源,用摄谱仪拍摄光谱,氢氘放电管是将氢气和氘气充入同一放电管中,当一定的高压加在放电管两极上时,管内的游离电子受到电场作用飞向阳极,并因此获得越来越大的动能。

当它们与管中的氢、氘分子碰撞时,使氢氘分子离解为氢原子和氘原子,并进入激发状态,当它们回到低能级时产生光辐射。

用碳棒与铁棒作为电极的两极,加高压击穿空气,得到铁弧光.用摄谱仪在同一张底片分别拍摄氢氘光谱和铁光谱.2.测量谱线波长采用线性插入法。

其基本原理是,在光谱图片间隔很小的范围内,摄谱仪的线色散可认为是常数,即谱线间隔与谱线波长差成正比.由于铁弧光谱谱线丰富,遍布整个可见及紫外范围,其各谱线波长已被精确测定并制成铁光谱图,因此常作为测定未知谱线的标准比较光源.为此,常利用摄谱仪的哈德曼光阑,在不移动暗盒的情况下,并排拍摄未知光谱和铁光谱,并根据铁谱测定未知谱线的波长,测定方法如下:待测谱线X λ位于铁谱线1λ和2λ之间, 1λ和2λ两条谱线相距为d ,d ∆为1λ和X λ之间的距离,则)(121λλλλ-∆+=ddX 实验步骤:1.先在暗室中装好底片.2.调节摄谱仪,按照规定的时间分别拍下铁和氢氘光谱.在拍摄同组光谱时不能移动底片盒.3.拍摄好后,在暗室中取出底片,显影十分钟,定影十分钟.即可得到谱图.4.在映谱仪下利用标准铁谱图识别底片上氢氘光谱及其附近的铁谱线.5.用阿贝比长仪精密的测量谱线间的距离,以线性插入法计算各条光谱线的波长,并计算各谱线的里德伯常数,求H R 和D R 的平均值,并求出氢氘原子核质量比。

实验数据及计算:已知常数:1710097373177.1-∞⨯=m R 1515.1836=e Hm m 标准值A nm E hc 429.65711429.657)4.3(51.112421==---=∆=λ A nm E hc 588.48700588.487)4.3(85.012422==---=∆=λ A nm E hc 739.43488739.434)4.3(544.012423==---=∆=λ A nm E hc 861.41099861.410)4.3(378.012424==---=∆=λ17710096775854.11515.18361110097373177.1)1(-∞⨯=+⨯=+=m m m R R H e H 1710097074434.1)21()1(-∞∞⨯=+=+=m m m R m m R R He D e D 2=H Dm m1.6500A 附近,即为3=n 时的谱线A d d D 370.6552)193.6546158.6569(1900.385778.431900.386391.39193.6546)(121=---+=-∆+=λλλλA d d H 218.6554)193.6546158.6569(1900.385778.431900.380727.40193.6546)(121=---+=-∆+=λλλλ)1()1()1(DH H D H H H D H D H R R-=-=-=-=∆λσσλλλλλλλ 999718.0218.6554370.6552218.655411=--=∆-=∴H D H R R λλ 1722102210098529222.1)3121(10218.65541)121(1--⨯=-⨯⨯=-=m n R H H λ1722102210098839046.1)3121(10370.65521)121(1--⨯=-⨯⨯=-=m n R D D λ相对误差:%26.0429.6571218.6554429.6571=-=H λδ%16.010*********.110096775854.110098529222.1777=⨯⨯-⨯=H δ%16.010097074434.110097074434.110098839046.1777=⨯⨯-⨯=D δ07502.2)1999718.01(1515.183********.0111=--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=H De H H D H D R R m m R R m m2.4800A 附近, 即为4=n 时的谱线A d d D 048.4860)746.4859325.4871(8709.212523.198709.218027.21746.4859)(121=---+=-∆+=λλλλA d d H 302.4861)746.4859325.4871(8709.212523.198709.215190.21746.4859)(121=---+=-∆+=λλλλ999742.0302.4861048.4860302.486111=--=∆-=∴H D H R R λλ 1722102210097099776.1)4121(10302.48611)121(1--⨯=-⨯⨯=-=m n R H H λ1722102210097382852.1)4121(10048.48601)121(1--⨯=-⨯⨯=-=m n R D D λ相对误差%22.0588.4870048.4860588.4870=-=H λδ%03.010096775854.110096775854.110097099776.1777=⨯⨯-⨯=H δ%03.010097074434.17=⨯=D δ90109.1)1999742.01(1515.183********.0111=--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=H De H H D H D R R m m R R m m3.4300A 附近,即为5=n 时的谱线A d d D 206.4349)049.4337737.4352(5023.1359836.1385023.1352000.138049.4337)(121=---+=-∆+=λλλλA d d H 450.4350)049.4337737.4352(5023.1359836.1385023.1354760.138049.4337)(121=---+=-∆+=λλλλ999737.0450.4350306.4349450.435011=--=∆-=∴H D H R R λλ 1722102210094577518.1)5121(10450.43501)121(1--⨯=-⨯⨯=-=m n R H H λ1722102210094890599.1)5121(10206.43491)121(1--⨯=-⨯⨯=-=m n R D D λ相对误差%01.0739.4348206.4349739.4348=-=H λδ%20.010096775854.17=⨯=H δ%20.010*********.110097074434.110094890599.1777=⨯⨯-⨯=D δ93281.1)1999737.01(1515.183********.0111=--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=H De H H D H D R R m m R R m m4.4100A 附近,即为6=n 时的谱线A d d D 612.4100)187.4098128.4104(2361.1815551.1822361.1817746.181187.4098)(121=---+=-∆+=λλλλA d d H 714.4101)187.4098128.4104(2361.1815551.1822361.1810192.182187.4098)(121=---+=-∆+=λλλλ999731.0714.4101612.4100714.410111=--=∆-=∴H D H R R λλ 1722102210097102333.1)6121(10714.41011)121(1--⨯=-⨯⨯=-=m n R H H λ1722102210097397169.1)6121(10612.41001)121(1--⨯=-⨯⨯=-=m n R D D λ相对误差%20.0861.4109714.4101861.4109=-=H λδ%03.010*********.110096775854.110097102333.1777=⨯⨯-⨯=H δ%03.010097074434.110097074434.110097397169.1777=⨯⨯-⨯=D δ97704.1)1999731.01(1515.183********.0111=--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=H De H H D H D R R m m R R m m综上:17777710096827212.1410097102333.110094577518.110097099776.110098529222.1-⨯=⨯+⨯+⨯+⨯=m R H 17777710097127417.1410097397169.110094890599.110097382852.110098839046.1-⨯=⨯+⨯+⨯+⨯=m R D 相对误差%005.010096775854.110096775854.110096827212.1777=⨯⨯-⨯=H δ%005.010*********.110097074434.110097127417.1777=⨯⨯-⨯=D δ999726.010*********.110096827212.177=⨯⨯=D HR R 01361.2)1999726.01(1515.183********.0111=--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=H De H H D H D R R m m R R m m %68.0201361.22=-=m δ思考题1.画出氢原子巴耳末线系的能级图,并标出前四条谱线对应的能级跃迁和波长数。

相关文档
最新文档