数列ppt课件

合集下载

《数列概念》课件

《数列概念》课件

《数列概念》PPT课件
数列是一系列按一定规律排列的数值。本课件将介绍数列的基本概念,不同 类型的数列,以及数列的应用。
什么是数列
数列是一系列按照特定规律排列的数值,可以通过公式或递推关系来表示。 数列的概念在数学和实际生活中都有广泛的应用。
数列的基本形式
1 等差数列
数列中的每个数与它前一个数之差相等。
等差数列的求和公式
求和公式:Sn = n/2[2A1 + (n-1)d],其中Sn表示前n项和,A1表示第一项,d 表示公差。
等比数列
等比数列是一种数列,其中每个数与它前一个数之比相等。可使用通项公式和求和公式来计算等比数列 的任意项和总和。
等比数列的通项公式
通项公式:An = A1 * r^(n-1),其中An表示第n项,A1表示第一项,r表示公比。
单调有界数列的极限
根据单调有界数列的性质,可以推导出单调有界数列必定存在极限。极限可以是数列的最大值或最小值。
数列的应用
数列不仅在数学中有广泛应用,还在其他学科和实际生活中有很多应用,如 物理学、经济学、生态学等。
数列在物理学中的应用
物理学中的许多自然现象可以用数列来描述和解释,如运动轨迹、震动频率、 量子力学等。数列为解决实际问题提供了重要数学工具。
斐波那契数列的递推公式
递推公式:F(n) = F(n-1) + F(n-2) (n > 2)。
斐波那契数列的通项公式
通项公式:F(n) = (phi^n - (-phi)^(-n)) / sqrt(5),其中phi = (1 + sqrt(5)) / 2。
序列的极限
极限是数列中数值随着项数无限增加时的趋势或稳定值。极限理论既是数学学科中的重要内容,也有广 泛的应用。

数列数列的概念ppt课件

数列数列的概念ppt课件
当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N*). (3)由an+1=2an+1,得an+1+1=2(an+1). 令bn=an+1,所以{bn}是以2为公比的等比数列. 所以bn=b1·2n-1=(a1+1)·2n-1=2n+1, 所以an=bn-1=2n+1-1(n∈N*).
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

《数列的定义》课件

《数列的定义》课件

数列的基本性质
数列具有很多有趣的性质,包括有界性、有序性、递增性或递减性等。这些 性质对于研究数列的规律和特点非常重要。
等差数列的定义和性质
等差数列是一种特殊的数列,其中每一项与前一项之差都相等。它具有一些 独特的性质,例如公式推导、通项公式和求和公式等。
等比数列的定义和性质
等比数列是一种特殊的数列,其中每一项与前一项之比都相等。它也具有一 些独特的性质,例如公比、通项公式和求和公式等。
《数列的定义》PPT课件
通过本PPT课件,我们将深入探讨数列的各个方面,从定义到性质,从常见 题型到思维拓展,帮助您系统地理解和运用数列。
数列的定义
数列是按照一定顺序排列的一列数字或数学对象组成的序列。它是数学研究中常见的ห้องสมุดไป่ตู้本概念之一,具有广泛 的应用。
数列的符号表示
数列可以用一对花括号{}表示,括号内是数列的各项。例如:{1, 2, 3, 4, 5}表 示一个数列,其中的每一项依次是1, 2, 3, 4, 5。
斐波那契数列的定义和性质
斐波那契数列是一种特殊的数列,其中每一项都是前两项的和。它具有一些有趣的性质和应用,例如黄金分割 比例、自然界中的现象等。
数列的求和公式
当我们需要求解数列的前n项和时,可以利用数列的求和公式来简化计算。不同类型的数列有不同的求和公式, 大大提高计算效率。
数列的通项公式
通项公式是描述数列中任意一项与项数n之间的关系的公式。掌握数列的通项 公式能够快速计算任意项的数值,便于问题的分析和解决。

数列ppt课件

数列ppt课件

等差数列的求和公式
总结词
等差数列的求和公式是用来计算数列 中所有项的和的数学公式。
详细描述
等差数列的求和公式是 S_n = n/2 * (2a_1 + (n - 1)d),其中 S_n 表示前 n 项的和,a_1 表示首项,d 表示公差, n 表示项数。这个公式可以帮助我们快 速计算出等差数列中所有项的和。
03 等比数列
等比数列的定义
总结词
等比数列是一种特殊的数列,其中任意项与它的前一项的比值都相等。
详细描述
等比数列是一种有序的数字排列,其中任意一项与它的前一项的比值都等于同一个常数。这个常数被称为公比, 通常用字母q表示。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
04 数列的极限与收敛
数列的极限定义
极限的定义
对于数列${ a_{n}}$,如果当$n$ 趋于无穷大时,$a_{n}$趋于某个
常数$a$,则称$a$为数列${ a_{n}}$的极限。
极限的性质
极限具有唯一性、有界性、保序性 等性质。
极限的运算性质
极限具有可加性、可乘性、可分离 性等运算性质。
收敛数列的性质
在经济学中的应用
在经济学中,很多问题也可以转化为求和问题,例如计算总收益、总成本等。而求和问题 同样可以转化为数列的极限问题。因此,数列的极限和收敛的概念在经济学中也有着广泛 的应用。
05 数列的级数
级数的定义与分类
要点一
定义
级数是无穷数列的和,可分为数项级数和函数项级数。
要点二
分类
根据项的正负和收敛性,级数可分为正项级数、负项级数 、交错级数等。
正项级数的审敛法

数学:21《数列》课件(苏教版必修

数学:21《数列》课件(苏教版必修

总结词
详细描述
总结词
详细描述
等比数列是一种常见的数列 ,其相邻两项的比是一个常 数。
等比数列的定义是每一项与 它的前一项的比等于同一个 常数的一种数列。这个常数 被称为公比,通常用字母q 表示。例如,数列1, 2, 4, 8, 16就是一个等比数列,公比 q=2。
等比数列的性质包括无限性 、变号性和无界性。
数列在实际生活中的应用
金融领域
数列在金融领域的应用非常广泛,如计算复利、 评估投资风险、计算保险费等。
自然现象
数列在自然界中也有很多应用,如蜂房的结构、 植物生长的规律等都与数列有密和解密信息 、设计算法等。
数列的数学建模与解决实际问题
建立数学模型
通过观察和分析实际问题的规律和特征,可以建立数列的数学模 型,从而将实际问题转化为数学问题。
等差数列的定义与性质
总结词
等差数列的性质包括对称性、递增性和递减性。
详细描述
等差数列的对称性是指如果一个数列是等差的,那么它的任意一项和它对称位置 的项的和是一个常数,这个常数等于首项和末项的和。递增性是指如果公差d>0 ,那么数列是递增的;递减性是指如果公差d<0,那么数列是递减的。
等比数列的定义与性质
和应用这些公式。
数列求和与其他知识点的结合
02
如数列求和与不等式、方程等的结合,需要综合运用各种知识
点来解决问题。
数列求和在实际问题中的应用拓展
03
除了传统的等差数列和等比数列问题,还可以拓展到解决一些
新颖的实际问题,如预测股票价格等金融问题。
05
数列的综合应用
数列与其他数学知识的结合
数列与函数
在日常生活方面,等差数列和等比数列的应用包括计算存款利息、评估投资风险、编制预算等等。在科学研究方 面,等差数列和等比数列的应用包括研究物理现象(如振动、波动)、生物繁殖、化学反应等等。此外,在计算 机科学、统计学、信息论等领域中也有广泛应用。

数列复习专题精选完整版ppt课件

数列复习专题精选完整版ppt课件

数列与函数问题:化归思想,函数与方程思想
恒成立问题: 论证推理
探索性问题--恒成立问题
恒成立问题: 论证推理
探索性问题--存在性问题
注:(1)不等式恒成立与最值问题相关联:确定变量最大或最小(2)数列最值问题关联:单调数列特征,或数列取值正负变化特征,或数列二次函数特征(3)恒成立问题:推理论证(4)存在性问题:寻找,特值法、代入验证法等
二、数列基本方法
1、方程(组)思想、函数思想2、代入法,因式分解降次法3、待定系数法4、分类讨论思想5、化归转换思想★6、不等式放缩应用
数列问题探究-典型例举
数列问题探究-典型例举
数列问题:
2、一般数列通项递推的应用(关于Sn--an)
递推式运用原则:减元原则、降次原则、目标趋近原则
知识拓展与方法应用:
数 列
1.知识
2. 问题
3. 方法
一、数列基础知识
一般数列:
特殊数列:等差数列
特殊数列:等差数列性质 足码和特征、和项特征、奇偶项和特征
特殊数列:等比数列
特殊数列:等比数列性质 足码和特征、和项特征、奇偶项和特征
二、数列基本问题
公式变式\性质应用
题例
基本关系式应用:正用代入--逆用作差
一般数列通项递推的应用
数列求和:数列递推问题:数列与不等式问题:数列与函数:探索性问题:成立与存在性问题预测方向
数列递推问题
数列递推问题
数列递推问题---化归转换为运用待定系数法、累加或累乘型
数列递推问题---化归转换为运用待定系数法、累加或累乘型
小结:(1)高考卷选择填空题型:等差等比比重大,一般数列通项或和,新定义与创新型问题(2)高考数列解答题:通项、前n项和,★递推问题,不等式证明(3)含参数问题:取值或范围,最值问题(4)重点问题:特殊数列、递推问题等

《数列的基本知识》课件

《数列的基本知识》课件

数列的性质
1 有界性
数列可能是有界的,即存 在上界和下界。
2 递增性/递减性
数列可以按顺序递增或递 减。
3 周期性
某些数列可以具有周期性, 其中一组数重复出现。
等差数列
等差数列是一种数列,其中每个后续项与前一项之差都相等。 • 常用于等距离时间间隔或等额递增的问题。 • 通项公式:an = a1 + (n - 1)d • 求和公式:Sn = (n/2)(a1 + an)
数列在实际问题中的应用
数列广泛应用于金融、人口统计、科学研究和工程领域,帮助解决实际问题。 了解数列的性质和应用,可以提升问题解决和分析能力。
《数列的基本知识》PPT 课件
欢迎来到《数列的基本知识》课件。在本课程中,我们将探讨数列的定义、 性质以及常见类型,以及它们在实际问题中的应用。
什么是数列
数列是按一定顺序排列的一组数。它们可以是等差数列、等比数列、幂次数 列、倍数数列或递推数列。
数列的定义
数列是按照一定规律排列的数字序列。它可以是有限的或无限的,每个数字 被称为数列的项。
数列的收敛与发散
数列可能会趋于某个有限值(收敛),或者无限增加或减少(发散)。 例如,格里高利级数和调和级数就是两个发散的数列。
数列的重要定理与应用
数列的重要定理包括数列极限定理、子数列收敛定理等,这些定理在数学分析和实际应用中具有重要意义。
数列的图形表示
数列可以使用直线图、折线图或散点图来显示其项和规律。 图形表示可以更直观地展示数列的性质和变化。
金融与投资
数列可以用于计算复利、投资回报率等金融问题。
人口和经济学
数列可以帮助预测人口增长、GDP增长等。
科学研究

数列_课件PPT

数列_课件PPT
④各项符号特征和绝对值特征等,并对此进行 归纳,猜想.
(2)一个数列不一定能有通项公式,如果有,通项公式也 不一定是唯一的,可能有不同的表达形式.
如 an=(-1)n 可以写成 an=(-1)n+2,还可以写成 an=- 1 1n为偶n数为奇 数 ,这些通项公式虽然形式上不 同,但都表示同一数列.
之间的函数
关系可以用一个式子表示成 an=f(n)

那么这个式子就叫做这个数列的通项公式.
1.下列说法中,正确的是( ) A.数列 1,3,5,7 可表示为{1,3,5,7} B.数列 1,0,-1,-2 与数列-2,-1,0,1 是相同的数 列 C.数列n+n 1的第 k 项为 1+1k D.数列 0,2,4,6,8,…可记为{2n}(n∈N+)
解析: (1)当 n=1 时,a1=1; 当 n=2 时,a2=22=1; 当 n=3 时,a3=3; 当 n=4 时,a4=42=2. ∴数列{an}的前四项为 1,1,3,2. (2)∵a1=2,an+1=12an+3, ∴a2=1+3=4,a3=5,a4=121,a5=243. ∴数列{an}的前 5 项为 2,4,5,121,243.
(2)19081不是该数列中的项,5681是该数列中的项, 若19081是该数列中的项, 则19081=33nn- +21,解得 n=3090=1030∉N+,
∴19081不是数列{an}中的项; 若5681是该数列中的项, 则5681=33nn- +21,解得 n=1890=20∈N+, ∴5681是数列{an}中的项,且为第 20 项.
(2)数列与数集的区别与联系
数列与数集都是具有某种共同属性的数的全 体.数列中的数是有序的,数集中的元素是无 序的,同一个数在数列中可重复出现,而数集 中的元素是互异的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a1+a6=12,a4=7求a9 a9=17
例2. 在等差数列{an}中 (1) 若a3+a8=m, 求a5+a6. (2)若a3+a4+ a5+a6+a7=450,
求a2+a8
练习
a a a a 在等差数列﹛an﹜中,若 2+ 3+ 10+ 11=36 求a5+a8和a6+a7
1+2+3+…+98+99+100=?
// // // //
// \\ \\
2S100=101+101+101+…+101+101+101
多1少00个个110011 ?
Байду номын сангаас
所以S100= 12(1+100)×100 =5 050
?总和 1 ( 首?项 + ?尾项 ) ?项数
2
这就是等差 数列前n项和
Sn
n(a1 2
an )
的公式!
1.等差数列前n项和Sn公式的推导; 2.等差数列前n项和Sn公式的记忆与应用.
3. 有几种方法可以计算公差d:
d an an1
复习引入
3. 有几种方法可以计算公差d:
d an an1 d an a1
n1
3. 有几种方法可以计算公差d:
d an an1 d an a1
n1
d an am nm
等差中项:
数列:1,3,5,7,9,11,13… 5是3和7的等差中项,1和9的等差中项; 9是7和11的等差中项,5和13的等差中项.






an bn

2an 2bn

a1+a2n-1 b1+b2n-1

S2n-1 T2n-1

22n-1 32n-1+1

2n-1 3n-1.
法二:令 n=1,只有 B 项符合.
答案:B
例2 已知一个等差数列an 前10项的和是310,前20项
的和是1 220.由这些条件能确定这个等差数列的前n项 和的公式吗?
高斯10岁时曾很快算出这一结
果,如何算的呢?
高斯
我们先看下面的问题.
(1777—1855)
德国著名数学家
探究点1:等差数列的前n项和公式
下面再来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法
分析:将已知条件代入等差数列前n项和的公式后,可
得到两个关于 与d的二元一次方程,由此可以求得
与d,从而得到所求前n项和的公式.
解:由题意知S10 = 310,S20 = 1 220,
将它们代入公式Sn
=
na1
+
n(n - 1)d, 2
得到1200aa11
+ +
45d = 310, 190d = 1 220.
如果在a与b的中间插入一个数A,使 a, A, b成等差数列,那么A应该满足什 么条件?
A a b a, A, b 2
即a, A, b成等差数列.
即A a b A,
练习
1. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
解这个关于a1与d的方程组,得到
a1 = 4,d = 6,
所以Sn
=
4n
+
n(n - 1)×6 2
=
3n2
+
n.
技巧方法: 此例题的目的是建立等差数列前n 项和与方程组之间的联系.已知几 个量,通过解方程组,得出其余的 未知量.
让我们归 纳一下!
例3 已知数列an 的前n项和为Sn
n2
1 2
n,求这个数
说明:两个求和公式的使用——知三求一.
以下证明{an}是等差数列,Sn是其前n项和,则
Sn
n(a1 2
an ) .
证:Sn= a1+ a2 + a3 + … +an-2+an-1+an,
即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
两式相加得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
等差数列
概念,通项公式,前n项和
概念引入
按一定的次序排成的一列数叫做数列,等 差数列相邻两项之差为。定值.
2.写出下列数列的通项公式:
1. 2 2. 8 3. 0
5 8 11 14 4 0 -4 -8 1 3 7 15
3n-1 第n个数 。。。。 规律
2
观察与思考 :下面的几个数列相邻两项有什么共同点:
练习
1. {an}是首项a1=1,公差d=3的等差
c 数列,若an=2005,则n=( )
A. 667 B. 668 C. 669 D. 670
1. 性质
在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq. 特别地, 若m+n=2p,则am+an=2ap.
练习
例1. 在等差数列{an}中,已知
(1) 5,5,5,5,5,5,… (2) 4,5,6,7,8,9,10. (3) 2,0,-2,-4,-6,…
公差 d=0 公差 d=1 公差 d= -2
a a a a a a a a a a ... =d
21 32 43
n n1 n1 n
定义:如果一个数列从第2项起,每一项与它的前一项的差 等于同一个常数,这个数列就叫做等差数列。
列的通项公式.这个数列是等差数列吗?如果是,它的首
项与公差分别是什么?
解:根据Sn = a1 + a2 + …+ an-1 + an与 Sn-1 = a1 + a2 + …+ an-(1 n > 1),
可知,当n > 1时,
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
这个常数叫做等差数列的公差,通常用字母d表示。
1. 等差数列定义: 即an-an-1 =d (n≥2).
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d .
探例究题点1:2:等等差数差列数{a列n},的{前bn}n的项前和n 公项和式分的别其为他Sn形,T式n,若STnn
=3n2+nS1n,则( nabnn=a1(2 an) )
A. 23 ana1(n1)dB.23nnS--n 11
C.23nn++11
D.23nn-+14
na1
( n n 2
1)
d
相关文档
最新文档