数学建模预测模型与案例

合集下载

数学建模讲座--预测模型

数学建模讲座--预测模型

年份
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
时序 ( t) 12 13 14 15 16 17 18 19 20 21 22
总额 ( yt ) 604.5 638.2 670.3 732.8 770.5 737.3 801.5 858.0 929.2 1023.3 1106.7
k
(一) 直线趋势外推法
适用条件:时间序列数据(观察值)呈直线 上升或下降的情形。 该预测变量的长期趋势可以用关于时间 的直线描述,通过该直线趋势的向外延伸 (外推),估计其预测值。 两种处理方式:拟合直线方程与加权拟合直线 方程
例 3.1 某家用电器厂 1993~2003 年利润额数据资料如表 3.1 所示。试预测 2004、2005年该企业的利润。
二 、趋势外推法经常选用的数学模型
根据预测变量变动趋势是否为线性,又分为线性趋势外推法 和曲线趋势外推法。
ˆt b0 b (一)线性模型y 1t (二)曲线模型 1.多项式曲线模型 2.简单指数曲线模型 3.修正指数曲线模型 4.生长曲线模型 (龚珀资曲线模型)
2
ˆt b0 b1t b2t bk t y 多项式模型一般形式:
预测模型简介
数学模型按功能大致分三种: 评价、优化、预测 最近几年,在大学生数学建模竞赛常常出 现预测模型或是与预测有关的题目:
1.疾病的传播; 2.雨量的预报; 3.人口的预测。
统计预测的概念和作用
(一)统计预测的概念
概念: 预测就是根据过去和现在估计未来,预测未来。 统计预测属于预测方法研究范畴,即如何利用科学的统计 方法对事物的未来发展进行定量推测.

数学建模模型案例

数学建模模型案例

数学建模模型案例一、旅行商问题(TSP)旅行商问题是一个典型的数学优化问题,在旅行商问题中,旅行商需要在给定的一系列城市之间找到一条最短路径,使得他能够只经过每个城市一次并最终回到起点城市。

这个问题可以用图论和线性规划等方法来进行建模和求解,可以应用于物流配送、路径规划等领域。

二、股票价格预测模型股票价格预测是金融领域中的一个重要问题。

可以使用时间序列分析、机器学习等方法来建立股票价格预测模型。

模型需要考虑多个因素,如历史股价、经济指标、市场情绪等,以预测未来股票价格的趋势和波动。

三、疫情传播模型疫情传播模型是在流行病学领域中使用的一种数学模型,用于研究疾病在人群中的传播规律。

常见的疫情传播模型有SIR模型、SEIR 模型等,这些模型可以用来预测疫情的传播速度、感染人数以及制定相应的防控策略。

四、能源优化调度模型能源优化调度模型用于优化电力系统、能源系统等中的能源调度问题。

这种模型需要考虑电力需求、能源供应、能源转换效率等因素,以最小化成本或最大化效益,并且满足各种约束条件。

五、机器学习分类模型机器学习分类模型用于将数据集中的样本分为不同的类别。

这种模型可以使用各种机器学习算法,如逻辑回归、决策树、支持向量机等,以根据样本的特征来预测其所属的类别。

六、交通拥堵预测模型交通拥堵预测模型用于预测城市交通网络中的拥堵情况。

这种模型可以使用历史交通数据、天气数据、道路网络数据等进行建模,以预测未来某个时刻某个路段的交通状况,并提供相应的交通管理建议。

七、供应链优化模型供应链优化模型用于优化供应链中的物流和库存管理等问题。

这种模型需要考虑供应商、生产商、分销商之间的关系,以最小化库存成本、运输成本等,并满足客户需求。

八、排课调度模型排课调度模型用于学校或大学的课程安排问题。

这种模型需要考虑教室、教师、学生、课程等因素,以最大化教学效果、减少冲突,并满足各种约束条件。

九、旅行路线规划模型旅行路线规划模型用于帮助旅行者规划旅行路线。

数学建模的实例与分析

数学建模的实例与分析

数学建模的实例与分析在现代社会中,数学建模作为一种重要的科学方法,被广泛应用于各个领域。

通过数学模型的构建和分析,我们能够深入了解问题的本质,预测未来的趋势,并为决策提供科学依据。

本文将为大家介绍两个关于数学建模的实例,并对其进行详细分析。

实例一:股票价格预测股票市场一直以来都备受人们的关注,因为其价格的波动会对投资者的财富造成重大影响。

为了帮助投资者更好地预测股票价格,数学建模成为了一种重要的工具。

在股票价格预测的建模过程中,一般使用时间序列分析方法。

首先,我们需要获取一段时间内的历史股票数据,包括每日的股票价格和交易量。

然后,通过统计学方法对这些数据进行分析,例如平均值、标准差等。

接下来,我们可以利用时间序列模型,如ARIMA模型,来对未来的股票价格进行预测。

除了时间序列分析,机器学习算法也可以应用于股票价格的预测。

例如,可以使用支持向量机(SVM)或人工神经网络(ANN)等算法,通过训练模型来捕捉股票价格的变化规律,并进行预测。

这些算法能够根据历史数据中的模式和趋势,预测未来股票价格的走势。

通过数学建模,我们能够更好地理解股票市场的运行规律,并及时预测股票价格的变化,为投资者提供决策参考。

实例二:交通拥堵模拟随着城市化的发展,交通拥堵成为了一个普遍存在的问题。

为了有效地缓解交通拥堵,数学建模可以帮助我们研究交通流的特性,并设计出更好的交通管理策略。

在交通拥堵模拟中,常常使用微观模型和宏观模型相结合的方法。

微观模型关注个体车辆的行为,例如车辆的加速度、减速度以及车头间距等。

而宏观模型则关注整体交通流的特性,例如道路容量、流量以及速度等。

通过对交通流的建模和仿真,我们可以模拟城市道路网络中交通流的变化,以及拥堵的产生和扩散过程。

借助于数学建模,我们可以预测在不同交通管理策略下,拥堵情况的变化以及交通状况的优化效果。

此外,数学建模还可以结合其他领域的知识,如人工智能和大数据分析,来进一步提高交通拥堵模拟的准确性和可靠性。

数学建模与应用案例

数学建模与应用案例

数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。

它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。

数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。

案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。

通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。

数学建模可以通过分析历史交通数据,建立交通流量预测模型。

以某城市的交通流量预测为例,可以采用时间序列分析方法,通过对历史交通数据的分析,建立交通流量与时间的关系模型。

然后利用该模型对未来的交通流量进行预测,从而为交通规划和管理提供科学依据。

案例二:股票价格预测股票价格预测是金融领域的重要问题。

通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。

数学建模可以通过分析历史股票数据,建立股票价格预测模型。

以某股票的价格预测为例,可以采用时间序列分析方法,通过对历史股票数据的分析,建立股票价格与时间的关系模型。

然后利用该模型对未来的股票价格进行预测,从而为投资者提供参考。

案例三:疾病传播模型疾病传播是公共卫生领域的重要问题。

通过建立疾病传播模型,可以预测疾病的传播趋势,制定有效的防控策略。

数学建模可以通过分析疾病传播的规律,建立疾病传播模型。

以某传染病的传播为例,可以采用传染病动力学模型,通过对疾病传播的机理进行建模,预测疾病的传播速度和范围。

然后利用该模型对疾病传播进行预测,从而为公共卫生部门提供决策支持。

案例四:物流配送优化物流配送是供应链管理中的重要问题。

通过优化物流配送方案,可以降低物流成本,提高物流效率。

数学建模可以通过分析物流配送的需求和约束条件,建立物流配送优化模型。

以某物流公司的配送问题为例,可以采用线性规划方法,通过对物流配送的需求和约束进行建模,优化配送方案。

然后利用该模型对物流配送进行优化,从而为物流公司提供最佳配送方案。

数学建模 -的范例

数学建模 -的范例

针对问题三,本文首先对主要风险因子进行了灰色预测,计算出未来几年水资源总量、降水量、平均气温、生活用水量、工业用水量。

然后采用问题二中的BP神经网络预测每年的缺水量。

最后通过整合往年的数据,运用问题二中的熵值取权的模糊评价模型预测出未来几年内水资源短缺的风险等级。

由于考虑到降水量和地下储水相关系数高,我们依据历年的降水量估测出平水年,偏枯年,枯水年三种不同年份的水资源总量,并应用问题二的风险评价模型进行评估,得到三种不同年份水资源短缺风险等级依次为高,较高,较低。

最后我们分析了南水北调工程对北京市未来两年水资源短缺的风险等级影响,风险等级依次变为低,偏低,无。

针对问题四,我们从北京市水资源现状及分析、北京市严重缺水的原因探究、北京市水资源开发利用对策三个层面向相关行政主管部门提交建议报告,以求帮助其合理规避水资源短缺风险。

关键字:水资源短缺风险、灰色关联度分析、主成分分析,模糊综合评价、BP 神经网络、熵值取权一、问题重述1.1 问题背景水是生命之源,万物之本,是人类生存和发展不可或缺的物质,是地球上最普遍、最常见同时也是最珍贵的自然资源。

水是人类一切生产活动的基础,有水的地方欣欣向荣,水资源枯竭的地方则文明消失。

长期以来,我们注重经济社会发展,却忽略了水资源的承载能力,注重水资源开发利用,却没有同等重视节约和保护。

随着经济社会发展,1.2 问题重述水资源短缺危险泛指在特定的时空环境下,由于来水和用水的不确定性,室区域水资源系统发生供水短缺的可能性以及有此产生的损失。

近年来我国水资源短缺问题日趋严重,以北京市为例,北京是世界上水资源严重缺乏的大都市之一,属严重缺水地区。

虽然政府采取了一些列措施,如南水北调工程建设, 建立污水处理厂,产业结构调整等。

但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。

如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。

数学建模解决实际问题的实践案例

数学建模解决实际问题的实践案例

数学建模解决实际问题的实践案例数学建模是一种将实际问题进行抽象、建模、求解、验证的一种方法,可以解决各种各样的实际问题。

实践中,数学建模已经发展成为一门独立的学科,吸引着越来越多的学生和专业人士关注和参与。

本文将介绍数学建模解决实际问题的一些实践案例,以期为学习和实践的人提供一些启示和借鉴。

1. 预测疫情发展趋势随着全球新冠疫情的爆发,各国政府和公众非常关注疫情的发展趋势。

数学建模可以帮助预测疫情的传播和爆发趋势,为政府制定应对措施提供参考和依据。

一个成功的例子是2020年初,中国各大高校和研究机构联合开展的“新冠疫情数学建模竞赛”,其中多个团队使用了数学模型预测了疫情的发展趋势,并对实际情况进行调整和优化,取得了很好的成果。

2. 优化交通运输系统交通拥堵是城市发展的一大难题,为了解决这个问题,可以使用数学模型优化交通运输系统。

例如,瑞典斯德哥尔摩的交通问题比较突出,瑞典皇家理工学院的研究人员使用数学模型建立了一个交通仿真系统,可以模拟不同的交通场景,优化交通路线和信号灯的配时,从而减少拥堵和排放污染物。

3. 改善医疗服务质量医疗服务是人民生活的重要组成部分,如何优化医疗服务质量是医疗行业面临的重要问题。

数学模型可以帮助医疗机构优化医疗流程和资源配置,提高医疗服务效率和质量。

例如,美国佛罗里达州的一家医疗中心就使用了数学模型对医生的看诊时间进行优化,从而减少了等待时间和排队人数,提高了医疗服务质量和满意度。

4. 提高金融风险管理能力金融风险管理是金融机构必须面对的问题之一,如何预测和管理风险是保证金融行业稳定发展的关键。

数学模型可以帮助金融机构进行风险评估和预测,制定风险管理策略。

例如,中国银监会就使用了数学模型对风险指标进行监测和预测,从而提高了银行业的风险管理能力和金融稳定性。

总的来说,数学建模可以解决各种各样的实际问题,这些案例只是冰山一角。

数学建模不仅有理论上的重要性,更有实践上的应用价值。

数学教学中的数学建模案例

数学教学中的数学建模案例

数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。

在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。

本文将介绍几个数学建模在数学教学中的典型案例。

案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。

为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。

首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。

然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。

通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。

在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。

学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。

这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。

案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。

如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。

我们可以以某个路口的交通流问题为例。

假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。

首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。

然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。

在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。

学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。

通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。

案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。

银行数学建模竞赛案例

银行数学建模竞赛案例

银行数学建模竞赛案例以下是一个可能的银行数学建模竞赛案例:题目:银行客户流失预测模型背景:某银行希望通过数学建模来预测客户的流失情况,以便采取措施提高客户的留存率。

该银行提供各种金融服务,包括储蓄账户、贷款、信用卡等。

要求:针对该银行的客户数据库,建立一个客户流失预测模型,并使用该模型预测未来一年内的客户流失率。

数据集:- 客户特征数据:包括客户的年龄、性别、职业、收入、信用评级等。

- 服务使用情况数据:包括客户是否使用过各种金融产品,如储蓄账户、贷款、信用卡等。

- 客户流失数据:包括客户是否在过去一年内流失。

任务:1. 数据探索:对提供的数据进行统计分析和可视化,了解数据的分布、关联性等。

2. 特征工程:根据数据探索的结果,选择合适的特征用于模型建立,并进行数据预处理(如缺失值处理、标准化等)。

3. 模型建立:选择合适的机器学习模型或统计模型来建立客户流失预测模型。

可选择的模型包括逻辑回归、决策树、随机森林、支持向量机等。

4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标(如准确率、召回率、F1分数等)。

5. 模型优化:根据评估结果,对模型进行优化,可以尝试不同的特征选择、模型调参等方法。

6. 未来预测:使用优化后的模型预测未来一年内客户的流失率,并给出相关报告和建议。

参考解决思路:1. 数据探索:使用统计方法和可视化工具对数据进行探索,分析客户特征和服务使用情况之间的关系,并观察流失客户与非流失客户的差异。

2. 特征工程:根据数据探索的结果选择重要的特征,并对数据进行预处理,如处理缺失值、进行标准化或归一化等。

3. 模型建立:根据任务的要求选择合适的模型进行建立,可以尝试多种模型并进行比较。

4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标进行评估。

5. 模型优化:根据评估结果对模型进行优化,可以尝试不同的特征选择、模型调参等方法来提高模型的性能。

6. 未来预测:使用优化后的模型对未来一年内客户的流失率进行预测,并给出相关报告和建议,如哪些客户群体容易流失,可以采取什么措施来提高他们的留存率等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Ⅱ)数据的分析和处理
建模不仅需要大量的数据,同时数据必须可靠,并适合建模的要 求。这些数据虽然是历史的客观写照,但有可能是失真的数据。对于 失真的数据, 以及不符合建模的数据, 必须通过分析, 加以适当处理。
1.处理的原则
(1) 准确, 处理后的数据能正确反映事物发展的未来趋势和状况;
(2)及时,数据的处理要及时; (3)适用,处理的数据能满足建模的需要; (4)经济,要尽量减少数据处理的费用,以降低预测成本; (5) 一致, 处理的数据在整个比较性。 使用期间内必须是一致的, 具有可比较性
3
采用第二手数据。 第二手数据多为已经公布和发表的资料,易于获取,代价低,数 据精度也有一定的保证。其缺点是数据可能不能直接适用于预测情 况。因此,常常需要对已公布的数据进行修正和处理,使其适应于预 测需要。 无论是第一手数据还是第二手数据,都可能是混乱的、无序的、 彼此间孤立的。预测人员都应将原始数据按“单元”或“类别”整理 和集中,以便使其成为内容上完整、有序、系统,形式上简明统一的 数据。
9
(6)代用品或近似代用品的产量和进口量; (7)与有关新投入的产品前后关联度高的产品的产量; (8)国家计划规定的产品或代用品的生产指标; (9)产品出口量; (10)个人或集体消费者们的实贯或嗜好; (11)法律方面的资料。
二 专家的选择和专家组的组成
在现实生活中,有时不得不在不确定的条件下作出决策,这是因 为或者决策的制约因素过多,或者其中某些因素无法度量。我们常称 之为定性因素。为这类决策提供预测,因为没有严格的理论依据,定 量方法无法采用。在这种情况下,借助专家的经验判断则有可能作出 定量方法难以得到的科学预测。专家的素质取决于他的知识、经验、 智慧和对未来的预测能力,以及其他一些因素。实践表明,在当今如 此复杂多变的情况下,任何个人或一个专家都难于作出较精确的预 测。必须集中多方专家的意见才能作出科学的预测。因此选择专家组 成员是预测能否成功的重要环节,是预测要做的首要工作。应邀的专 家要具有广泛的知识,对预测所涉及主题的各领域应有较深的造诣。 选择专家不能简单从事, 不能事先未经征得同意就将调查表发给拟邀 请的专家。因为有的专家可能不愿意参加这项预测。那么选择专家应 如何进行呢?




最近几年,在全国大学生数学建模竞赛常常出现预测模型或是 与预测有关的题目,例如疾病的传播,雨量的预报等。什么是预测模 型?如何预测?有那些方法?对此下面作些介绍。 预测作为一种探索未来的活动早在古代已经出现,但作为一门 科学的预测学,是在科学技术高度发达的当今才产生的。 “预测”是 来自古希腊的术语。我国也有两句古语: “凡事预则立,不预则废” , “人无远虑,必有近忧” 。卜卦、算命都是一种预测。中国古代著名 著作 “易经” 就是一种专门研究预测的书, 现在研究易经的人也不少。 古代的预测主要靠预言家,即先知们的直观判断,或是借助于某些先 兆,缺乏科学根据。预测技术的发展源于社会的需求和实践。20 世 纪初期风行一时的巴布生图表就是早期的市场预测资料, 哈佛大学的 每月指数图表为商品市场、证券市场和货币市场预测提供了依据。然 而这些预测都未能揭示 1929-1930 年经济危期的突然暴发,使工商界 深感失望。尔后,经济学家们从挫折中吸取了教训,采用趋势和循环 技术对商业进行分析和预测,科学预测也因此开始萌生。20 世纪 30 年代凯思斯提出政府干预和市场机制相结合的经济模型,1937 年诺 依曼又提出了扩展经济模型,对近代经济模型产生重要的影响,科学 的经济和商业预测也就步入发展阶段。 技术预测开始于二次世界大战后的 20 世纪 40 年代,直到 20 世 纪 50 年代未才广泛应用于工农业和军事部门。由于社会、科学技术 和经济的大量需求,预测技求才成为一门真正的科学,预测未来是当
(Ⅲ)数据的内涵及数量
在预测过程中,由于预测对象不同,预测内容不同,以及预测期 限不同,所需的数据内涵及数量也不同。经济预测的数据主要包括: (1)国民经济总产值及各部类的分配情况; (2)各行业的生产规模和生产能力以及技术水平; (3)政府的经济政策及产业政策; (4)生产力布局; (5)人口发展趋势及就业情况; (6)国民经济投资及分配; (7)国际环境及变化趋势。 市场需求预测需要的数据主要有: (1)人口及人均收入; (2)国民收入的增长及分配情况; ; (3)与产品消费直接有关的政府政策和法规,如进口限制、进口 税、销售稅和其它税费、信贷管理及外费管理等。 (4)一段时期内产量和产值的生产能力; (5)一段时期内的产品的进口量;
1
代科学的重要任务。 20 世纪以来,预测技术所以得以长足进步,一方面,与社会需 求有很大关系,另一方面通过社会实践和长期历史验证,表明事物的 发展是可以预测的。而且借助可靠的数据和科学的方法,以及预测技 术人员的努力,预测结果的可靠性和准确性可以达到很高的程度,这 也是预测技术迅速发展的另一个重要原因。 科学技术、经济和社会预测的应验率也是很高的。维聂尔曾预言 20 世纪是电子时代,法国思想家迈希尔 18 世纪末到 19 世纪初对巴 黎未来几百年的发展进行了预测。从 1950 年的实际情况分析,他的 预测中有 36%得到证实,28%接近实现,只有 36%是错误的。法国 哲学家和数学家冠道塞在法国大革命时期曾采用外推法进行了一系 列社会预测,其中 75%得到证实。沙杰尔莱特 1901 年在《二十世纪 的发明》 一书中的一些预测, 其中 64%得到证实。 凯木弗尔特在 1910 年和 1915 年公布的 25 项预测中,到 1941 年只有 3 项未被证实,3 项是错误的。我国明朝开国功臣刘基就预测将来是天上铁鸟飞,地上 铁马跑,那时还没有火车、飞机。 预测的目的在于认识自然和社会发展规律, 以及在不同历史条件 下各种规律的相互作用,揭示事物发展的方向和趋势,分析事物发展 的途径和条件,使人们尽早地预知未来的状况和将要发生的事情,并 能动地控制其发展,使其为人类和社会进步服务。因而预测是决策的 重要的前期工作。决策是指导未来的,未来既是决策的依据,又是决 策的对象,研究未来和预测未来是实现决策科学化的重要前提。预测
6
例如,某一生产生产资料的大型企业,80 年代中期前销售额一直 呈递增趋势,而 80 年代中期后,受压缩基建规模的影响,销售量突 然下降。又如轿车在 80 年代中期以前一直是紧俏商品,后因国家实 行控购政策,销售量一度急剧下降。这时,对上述某一生产资料销售 量或对轿车销售量进行预测,都要考虑政策因素的影响,对于前期数 据采用比例法进行适当修正(当时是计划经济,私人买不起轿车。买 轿车的都国家机关、企事业单位。 ) 当然比例法不仅仅限于对数值向下调,也适合向上调。比例法数 据处理公式为
yl , ym 分别是与 xl , xm 相对应的因变量统计值
(4)拉平法 由于条件发生变化,常常使一些厉史数据不能反映现时的情况, 例如,大型钢铁厂、化肥厂、或油气田的建成投产或开发,可以使产 量猛增,这时历史数据将发生突变,出现一个转折,如用这类数据建 模,则需要处理。这时拉平法是一种较好的方法。它的原理是对转折 点前的数据加一个适当的量值,使其与折点后的数据走向一致。 (5)比例法 销售条件与环境的变化常常会引起一个企业产品市场销售比例的 改变。当比例变化较大时,说明销售条件与环境对销售的影响己超过 其他因素对销售的影响, 也说明以前的销售统计数据所体现出的销售 发展规律不再适用之于目前的情况了。 如果仍然利用这些数据建立预 测模型,将无法体现销售条件和环境变化后的销售量变化的规律,用 这样的模型进行预测,将会造成较大的误差。因此,如果还想利用这 些数据建立模型,进行预测,就应该把它们处理成能体现条件与环境 发生变化之后的情况的数据。对于这类数据,比例法就是一种比较有 效的处理方法。
(Ⅰ)数据的收集和整理
按时态分,数据可分为历史数据和现实数据;按预测对象分,可 分为内部数据和外部数据;就收集的手段分,可分为第一手数据和第 二手数据。 第一手数据,包括以各种形式初次收集的数据。收集第一手数据 的途径包括:抽样调查,连续调查,或全面调查。在预测的定性方法 中常常需要第一手数据, 例如特尔斐法的第一个阶段就是收集第一手 数据。由于获取第一手数据的费用较高,时间较长,所以定量方法常
2.处理方法
(1)判别法
4
通过对历史数据的判断,选择其中可代表整个预测过程中很可能 发生的模式的数据作为建模数据; (2)剔除法 如果数据量比较大,且非必须具备连续的数据量,这时可剔除数 据中受随机干扰的异常值; (3)平均值法 在数据比较少或需要连续数据时,则可采取平均值法对数据进行 处理。 对于时间序列数据,可用异常值前后两期数据的算术平均值或几 何平均值对异常值进行修正,即
yt −i = yt −i
ut 其中: ut −i
yt −i t − i年修正后的数 yt −i t − i年实际数据 ut t年的市场占有率 ut −i t − i年的市场占有率
(6)移动平均和指数平滑法 如果原始数据总体走向具有一定规律性,但因受随机因素干扰, 数据离散度很大, 采用平均值法也难以处理。 这时可采用一次、 二次、 甚至三次移动平均和指数平滑对数据进行平滑,用平滑的数据建模。 在分解预测时,为处理季节数据,则必须采用高次幂的移动平均 法,对数据平滑。 (7)差分法
7
有些模型,例如鲍克斯-詹金斯模型只能处理平稳数据,如果原始 数据为非平稳数据,则需釆取差分处理。差分有三种主要类型:前向 差分、后向差分、中心差分。 前向差分:在处理时间数列时,一阶前向差分定义为
= x xt +1 − xt
' t
一阶前向差分是当时间由 t 变到 t+1 时, 二阶前向差分定义为
同理可以定义高阶后向差分 中心差分:在处理时间数列时,一阶中心差分定义为
= xt' xt + 1 − xt − 1
2
2
二阶中心差分定义为
xt'' = xt' + 1 − xt' − 1 = xt +1 − 2 xt + xt −1
相关文档
最新文档