实验六 吸收实验
实验六 吸收实验.

实验六吸收实验1.实验目的(1)了解填料塔吸收塔的结构与流程;(2)测定液相总传质单元数和总体积吸收系数;(3)了解气体空塔速度和液体喷淋密度对总体积吸收系数的影响。
2.基本原理由于CO2气体无味、无毒、廉价,所以本实验选择CO2作为溶质,用水吸收空气中的CO2。
一般将配置的原料气中的CO2浓度控制在10%(质量)以内,所以吸收的计算方法可按低浓度来处理。
⎡⎤Y1-mX21NOL=ln⎢(1-A)+A⎥1-AY-mX11⎣⎦计算公式:LXdYLKXa==NOL⎰XX*-XZΩZΩ 12式中 KXa :以∆X为推动力的液相总体积吸收系数,kmol / (m3·s);NOL:以∆X为推动力的液相总传质单元数;A:吸收因数L:水的摩尔流量,kmol /s;V:空气的摩尔流量,kmol /s;Z:填料层高度,m;Ω:塔的横截面积,m2 ;本实验的平衡关系可写成:Y= mX;式中 m:相平衡常数,m=E/P;E:亨利系数,E=f(t),Pa,可根据液相温度t查得;P:总压,Pa(取大气压)。
测定方法:(1)本实验采用转子流量计测得空气和水的体积流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(2)测定塔底和塔顶气相组成Y1和Y2(利用气相色谱分析得到质量分率,再换算成摩尔比)。
(3)塔底和塔顶液相组成X1、X2的确定:对清水而言,X2=0,由全塔物料衡算可求出X1 。
A=L/Vm; V(Y1-Y2)=L(X1-X2)3.实验装置与流程实验装置流程如图2-10所示。
自来水送入填料塔塔顶经喷淋头喷淋在填料顶层。
由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合贮罐,然后从塔底进入塔内,与水在塔内进行逆流接触,发生质量传递,由塔顶出来的尾气放空。
由于本实验为低浓度气体的吸收,整个实验过程可看成是等温操作。
填料吸收塔内径为100mm,塔内分别装有金属丝网波纹规整填料和θ环散装填料两种,填料层总高度Z=2 m.。
实验6吸收(氨-水)

实验六:吸收实验一、实验目的1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa二、实验原理1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中用压降对气速作图得到一条斜率为1.8-2的直线(图中aa线)。
而有喷淋量时,在低气速时(C点以前)压降也比例于气速的1.8-2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速增加,出现载点(图中c点),持液量开始增大,压降-气速线向上弯曲,斜率变大,(图中cd段)。
到液泛点(图中d点)后在几乎不变的气速下,压降急剧上升。
测定填料塔的压降和液泛速度,是为了计算填料塔所需动力消耗和确定填料塔的适宜制作范围,选择合适的气液负荷。
2、传质实验:填料塔与板式塔内气液两相的接触情况有着很大的不同。
在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。
但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料高度。
填料层高度计算方法有传质系数法、传质单元法以及等板高度法。
总体积传质系数K Ya是单位填料体积、单位时间吸收的溶质量。
它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气-氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高。
气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y坐标系为直线)。
故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:所以:式中:G A—单位时间内氨的吸收量[kmol/h]。
K Ya—总体积传质系数[kmol/m3·h]。
V p—填料层体积[m3]。
△Y m—气相对数平均浓度差。
Y1—气体进塔时的摩尔比。
Y e1—与出塔液体相平衡的气相摩尔比。
Y2—气体出塔时的摩尔比。
Y e2—与进塔液体相平衡的气相摩尔比。
a、标准状态下的空气流量V0:(m3/h)式中:V1——空气转子流量计示值(m3/h)T0、P0——标准状态下的空气的温度和压强T1、P1——标定状态下的空气的温度和压强T2、P2——使用状态下的空气的温度和压强b、标准状态下的氨气流量V0’(m3/h)式中:V1’——氨气转子流量计示值(m3/h)ρ01——标准状态下氨气的密度1.293(kg/m3)ρ02——标定状态下氨气的密度0.7810(kg/m3)如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’为:V 0’’=0.98*V 0’c 、惰性气体的摩尔流量G :G=V 0/22.4d 、单位时间氨的吸收量G A :G A =G*(Y 1-Y 2)e 、进气浓度Y 1:f 、尾气浓度Y 2:式中:N s ——加入分析盒中的硫酸当量浓度(N )V s ——加入分析盒中的硫酸体积(ml )V ——湿式气体流量计所得的空气体积(ml ) T 0——标准状态下的空气温度T ——空气流经湿式气体流量计时的温度g 、对数平均浓度差(ΔY )mY e2=0 Y e1=m x1* P=大气压+塔顶表压+(填料层压差)/2m=E / P x 1=G A/ LsE——亨利常数Ls——单位时间喷淋水量(kmol / h)P——系统总压强三、实验设备四、实验步骤1.开关的绿色按钮接通电源,就可以启动风机,并开始工作2.测量干塔压降(1)打开空气流量调节阀,调节空气流量。
实验六 小肠吸收和渗透压的关系.

实验六小肠吸收和渗透压的关系
[目的]
了解小肠吸收与肠内容物渗透压的关系
[原理]
肠内容物的渗透压是制约肠吸收的重要因素。
同种溶液在一定浓度范围,浓度愈高吸收愈慢。
过浓时可致反渗透现象,要在浓度降低至一定程度后,溶质才被吸收。
而水的吸收是被动的渗透过程,即需待溶质被吸收后,溶液成低渗时,水再向肠壁、血液中转移。
由于饱和硫酸镁溶液对肠壁具有反渗透作用,因此可用作泻盐。
[实验动物]
家兔
[实验材料]
家兔、解剖台、手术器械、注射器、棉线、酒精生理盐水合剂或戊巴比妥钠,饱和硫酸镁溶液、0.7氯化钠溶液
[实验步骤]
将家兔麻醉后,仰卧保定没,剖腹取出一段长约16厘米的空肠,用线将其扎成各为8厘米长的肠段A和B。
在A段中注入5毫升饱和硫酸镁溶液,在B段中注入30毫升0.7%NaCl溶液。
将A、B肠段还纳腹腔闭腹,30分钟后检查两肠的变化。
[注意事项]
1 结扎肠段时,应防止把血管结扎
2 注意试验动物的保温
[思考题]
为什么可将饱和硫酸镁用作泻药?
附:家兔小肠结构图
小肠位于腹中,上端接幽门与胃相通,下端通过阑门与大肠相连。
小肠与心互为表里。
是食物消化吸收的主要场所,盘曲于腹腔内,上连胃幽门,下接盲肠,全长约3-5米,张开有半个篮球大,分为十二指肠、空肠和回肠三部分。
空肠连接十二指肠,占小肠全长的2/5,位于腹腔的左上部。
回肠位于右下腹,占小肠全长的3/5。
空肠和回肠之间没有明显的分界线。
实验六 流动注射冷原子吸收法测定人发中的汞

实验六流动注射冷原子吸收法测定人发中的汞一、实验目的1、掌握流动注射氢化物发生冷原子吸收法测汞的原理;2、掌握人发中取样、洗涤和微量汞准确的测定方法。
二、方法原理汞是常温下唯一的液态金属,且有较大的蒸气压。
测汞仪利用汞蒸气对光源发射的253.7nm谱线具有特征吸收来测定汞的含量。
本实验中的流动注射冷原子吸收法是把WHG-102A2型流动注射氢化物发生装置与Z-5000型原子吸收分光光度计相连接,实现了测量与实验数据处理的自动化。
三、仪器设备1.WHG-102A2型流动注射氢化物发生器,电热石英管,高压汞灯。
2.Z-5000型原子吸收分度计,高纯氮气(钢瓶)。
3.25mL容量瓶、50mL烧杯(配表面皿)和lmL、2mL、5mL刻度吸量管。
四、试剂1.浓硫酸(优级纯),4%(V/V)的硫酸(空白)。
2.5%KMnO4(分析纯),1%(V/V)的盐酸载液。
3.10%盐酸羟胺:称10g盐酸羟胺(NH2OH·HCI)溶于蒸馏水中稀至100mL,以2.5L/min的流量通氮气或干净空气30min,以驱除微量汞。
4.1.0%KBH4溶液(含0.1 %NaOH)5.汞标准贮备液:称取0.1354g氯化汞,溶于含有0.05%重铬酸钾的(5十95)硝酸溶液中,转移到1000mL容量瓶中并稀释至标线,此液每毫升含100.0μg汞。
6.汞标准液;临用时将贮备液用含有0.05%重铬酸钾的(5十95)硝酸稀至每毫升含100ng汞的标准液。
五、测定步骤1.发样预处理:将发样用500C中性洗涤剂水溶液洗15min,再用蒸馏水洗。
将洗净的发样用滤纸包起来,再用电吹风小心吹干,保存备用。
2.发样消化:准确称取30——50mg洗净的干燥发样于50mL烧杯中,加入5%KMnO48mL,小心加浓硫酸5mL,盖上表面皿。
小心加热至发样完全消化,如消化过程中紫红色消失应立即滴加KMnO4。
冷却后,滴加盐酸羟胺至紫红色刚消失,以除去过量的KMnO4,所得溶液不应有黑色残留物或发样。
实验6紫外测定蛋白质的浓度吸收法

实验6 紫外测定蛋白质的浓度吸收法一、目的1、了解紫外线吸收法测定蛋白质含量的原理。
2、了解紫外分光光度计的构造原理,掌握它的使用方法。
二、原理由于蛋白质分子中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外线的性质,吸收高峰在280nm波长处。
在此波长范围内,蛋白质溶液的光吸收值(A280)与其含量呈正比关系,可用作定量测定。
利用紫外线吸收法测定蛋白质含量的优点是迅速、简便、不消耗样品,低浓度盐类不干扰测定。
因此,在蛋白质和酶的生化制备中(特别是在柱层析分离中)广泛应用。
此法的缺点是:(1)对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定的误差;(2)若样品中含有嘌呤、嘧啶等吸收紫外线的物质,会出现较大的干扰。
不同的蛋白质和核酸的紫外线吸收是不相同的,即使经过校正,测定结果也还存在一定的误差。
但可作为初步定量的依据。
三、材料、试剂与器具(一)试剂1、标准蛋白溶液准确称取经微量凯氏定氮法校正的标准蛋白质,配制成浓度为1mg/mL的溶液。
2、待测蛋白溶液配制成浓度约为1mg/mL的溶液。
(二)器具1、紫外分光光度计。
2、试管和试管架。
3、吸量管。
四、操作步骤(一)标准曲线法1、标准曲线的绘制按下表分别向每支试管加入各种试剂,摇匀。
选用光程为1cm的石英比色杯,在280nm 波长处分别测定各管溶液的A280值。
以A280值为纵坐标,蛋白质浓度为横坐标,绘制标准曲线。
2、样品测定取待测蛋白质溶液1mL ,加入蒸馏水3mL ,摇匀,按上述方法在280nm 波长处测定光吸收值,并从标准曲线上查出待测蛋白质的浓度。
(二)其他方法(1)将待测蛋白质溶液适当稀释,在波长260nm 和280nm 处分别测出A 值,然后利用280nm 及260nm 下的吸收差求出蛋白质的浓度。
计算蛋白质浓度(mg/mL )=1.45A 280-0.74A 260式中A 280和A 260 分别是蛋白质溶液在280nm 和260nm 波长下测得的光吸收值。
实验六吸收实验

1、室温大于15℃时,空气不需加热,即可达到配料要求。若室温偏低,可预热空气使y1达到要求。
2、各仪表读数恒定5min以后,即可记录或取样分析有关数据,再按预先设计的实验方案调节有关参数。
b、 填料的作用
(1)增加气液接触面积
应满足:i) 80%以上的填料润湿。
ii)液体为分散相,气体为连续相(反之为鼓泡塔,失去填料的作用)。
(2)增加气液接触面的湍动
应满足:i)保证气液逆流。
图2.操作线与平衡线的关系
ii)要有适宜的液气比,若气速过大,液体下降速度为零,即发生液泛。填料塔的操作满足了上述要求,填料才会起作用。
传质速率式:NA=Kya·V填·△Ym(1)
物料衡算式:G空(Y1-Y2)=L(X1-X2)(2)
相平衡式:Y=mX(3)
(1)和(2)式联立得:Kya= (4)
由于实验物系是清水吸收丙酮,惰性气体为空气,气体进口中丙酮浓度y1>10%,属于高浓度气体吸收,所以:
Y1= ;Y2= ;
G空—空气的流量(由装有测空气的流量计测定),Kmol/m2·h;
(3)当吸收系强放热过程时,意味着自塔顶而下,吸收液温度增加很大,甚至达到了解吸温度。此时的平衡线斜率变陡,传质推动力△ym下降,见图4所示。如,用水来吸收SO3制H2SO4,第一步只能先制得93%的硫酸,再用93%硫酸冷却后吸收SO3,经脱去少量水,才制得98%浓硫酸。因此,针对这种情况,控制操作要素是吸收剂温度t,即吸收液需经中间冷却后再吸收。
V填—与塔结构和填料层高度有关;
其中: (5)
; ;
L—吸收剂的流量(由装有测吸收剂的流量计测定), Kmol/m2·h;
m---相平衡常数(由吸收剂进塔与出塔处装的温度计所测温度确定),吸收温度:
实验六 吸收实验.

实验六吸收实验1.实验目的(1)了解填料塔吸收塔的结构与流程;(2)测定液相总传质单元数和总体积吸收系数;(3)了解气体空塔速度和液体喷淋密度对总体积吸收系数的影响。
2.基本原理由于CO2气体无味、无毒、廉价,所以本实验选择CO2作为溶质,用水吸收空气中的CO2。
一般将配置的原料气中的CO2浓度控制在10%(质量)以内,所以吸收的计算方法可按低浓度来处理。
⎡⎤Y1-mX21NOL=ln⎢(1-A)+A⎥1-AY-mX11⎣⎦计算公式:LXdYLKXa==NOL⎰XX*-XZΩZΩ 12式中 KXa :以∆X为推动力的液相总体积吸收系数,kmol / (m3·s);NOL:以∆X为推动力的液相总传质单元数;A:吸收因数L:水的摩尔流量,kmol /s;V:空气的摩尔流量,kmol /s;Z:填料层高度,m;Ω:塔的横截面积,m2 ;本实验的平衡关系可写成:Y= mX;式中 m:相平衡常数,m=E/P;E:亨利系数,E=f(t),Pa,可根据液相温度t查得;P:总压,Pa(取大气压)。
测定方法:(1)本实验采用转子流量计测得空气和水的体积流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(2)测定塔底和塔顶气相组成Y1和Y2(利用气相色谱分析得到质量分率,再换算成摩尔比)。
(3)塔底和塔顶液相组成X1、X2的确定:对清水而言,X2=0,由全塔物料衡算可求出X1 。
A=L/Vm; V(Y1-Y2)=L(X1-X2)3.实验装置与流程实验装置流程如图2-10所示。
自来水送入填料塔塔顶经喷淋头喷淋在填料顶层。
由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合贮罐,然后从塔底进入塔内,与水在塔内进行逆流接触,发生质量传递,由塔顶出来的尾气放空。
由于本实验为低浓度气体的吸收,整个实验过程可看成是等温操作。
填料吸收塔内径为100mm,塔内分别装有金属丝网波纹规整填料和θ环散装填料两种,填料层总高度Z=2 m.。
6吸收(解吸)实验

φ100×100mm,比表面积700m2/m3。 θ环散装填料:
(3)转子流量计;
条 介质
最大流量
空气
4m3/h
最小刻度 0.1 m3/h
标定介质 空气
ቤተ መጻሕፍቲ ባይዱ
件 标定条件 20℃ 1.0133×105Pa
CO2
60 L/h
10 L/h
空气
20℃ 1.0133×105Pa
水
1000L/h
20 L/h
水
20℃ 1.0133×105Pa
(3)测定塔顶和塔底气相组成y1和y2; (4)平衡关系。
本实验的平衡关系可写成 y = mx
(1-36 )
式中: m---相平衡常数,m=E/P;
E---亨利系数,E=f(t),Pa,根据液相温度由附录查得;
P---总压,Pa,取1atm。
对清水而言,x2=0,由全塔物料衡算可得x1 。
6.1.4实验装置与流程
A.计算公式 填料层高度Z为
z
Z
dZ
L
0
K xa
x1 dx x2 x x
H OL
NOL
(1-33)
式中:L为液体通过塔截面的摩尔流量,kmol / (m2·s);
Kxa是以△X为推动力的液相总体积的传质系数, kmol/(m3·s);
HOL为液相总传质单元高度,m;
NOL为液相总传质单元数,无因次。
令:吸收因数A=L/mG
(1-34)
N OL
1 ln[(1 1 A
A)
y1 mx 2 y1 mx1
A]
(1-35)
B.测定方法
(1)空气流量和水流量的测定
本实验采用转子流量计测得空气和水的流量,并根据实 验条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 吸收实验
一、实验目的
1. 了解填料吸收塔的基本构造、吸收过程的基本流程及其操作。
2. 掌握吸收总传质系数ya K 的测定方法。
二、实验原理
对低浓度气体吸收且平衡线为直线的情况,吸收传质速率由吸收方程决定:
m ya y ∆=填V K N A
则只要测出A N ,测出气相的出、入塔浓度,就可计算ya K ,而
)(21y y V N A -=
式中:V 为混合气体的流量,mol/s ,由转子流量计测定;
1y ,2y 分别为进塔和出塔气相的组成(摩尔分率),用气相色谱分析得到。
液相出塔浓度由全塔物料衡算得到。
计算Δym 时需用平衡数据,本实验的平衡数据如下所示:
丙酮、空气混合气体中丙酮的极限浓度*s y 与空气温度 t 的关系(压强为a 101.25
P ⨯)
丙酮的平衡溶解度:
三、实验流程及设备
实验装置包括空气 输送,空气和丙酮鼓泡
接触以及吸收剂供给和 气液两相在填料塔中逆 流接触等部分,其流程 示意如图所示。
空气的
压力定为a 100.24
P ⨯。
1.熟悉实验流程,学习填料塔的操作。
在空气流量恒定条件下,改变清水流量,测定气体进出口浓度1y 和2y ,计算组分回收率η、传质推动力m y ∆和传质系数ya K 。
2.在清水流量恒定条件下,改变空气流量,测定气体进出口浓度1y 和2y , 计算组分回收率η、传质推动力m y ∆和传质系数ya K 。
3.改变吸收液体的温度,重复实验。
4.在控制定值器的压强时应该注意干将空压机的出口阀门微开。
5.加热水时,要缓慢调节变压器的旋钮。
6.调节参数后要有一段稳定时间,直至出口水温基本恒定,取样时先取2y 再取1y 。
7. 转子流量计的读数要注意换算。
8.气体流量不能超过/h 600L 。
液体流量不能超过/h 7L ,防止液泛。
五、实验数据记录及处理 1. 设备参数和有关常数 实验装置的基本尺寸:
塔内径:34mm ;填料层高度:24cm ; 自查丙酮—空气物系的平衡数据;
大气压:101.33 KPa ;室温:13.5 ℃。
2. 实验数据
以第一组为例:
s /mol 1024.42
6.135.15273314.810101330n 78
--⨯=++⨯⨯==)
(平均RT PV ;
入塔气体浓度:s /mol 035.010
24.4105.4334n y 711
11=⨯⨯⨯==--F A ; 出塔气体浓度:s /mol 0170.0n
y 22==
F
A ; 13.5℃时,密度3m /g 3.999K =ρ;
3'm 427.0=⋅⋅=总
总T P T
P G
V ; 混合气体流量:s /mol 00605.0N '
==室温
总RT V P ;
混合液体流量:s /mol 0308.03600
18103.9991023
3=⨯⨯⨯⨯=
-L ; 根据物料守恒:1221x y x y L V L V +=+ 则:00363.0)
(x 211=-=
L
y y N ;
当t=14.2℃时,由平衡数据计算得:
a 143.1906.010425.3906.0599.1KP P =+÷⨯-=)(平衡分压;
a 34.11401.0143.1x KP P E ===平衡分压;
942.033
.12134.114m ===
P E ; 00342.0mx y 1*1==;
0237.0)
()(ln )()(y *
22*
11*
22*11m =-----=∆y y y y y y y y ; 000112.0y y 21=-=)(N N A ;
623.21y ya m
=∆=
填V N K A
六、实验结论及讨论
1.从传质推动力和传质阻力两方面分析吸收剂流量对吸收过程的影响?
答:1.当液相推动力阻力较小时,增加液体流量,总传质系数基本不变。
溶质吸收量的增 加,主要是由于传质平均推动力增大引起的。
2.当液相阻力较大时,增大液体流量,总传质系数会增加,而平均推动力可能减小, 但总的结果是传质速率增大,而溶质吸收率增大。
2.从实验数据分析水吸收丙酮是气膜控制还是液膜控制,还是两者兼有之?
答:丙酮为易溶气体,对比三四组实验数据,提高吸收剂的温度,ya /1K 增大,符合气膜 控制。
3.填料吸收塔底为什么必须有液封装置,液封装置是如何设计的? 答:防止实验过程中吸收剂从吸收塔底流出,影响实验结果。
液封装置设计:在塔底添加液封装置
4.在该实验装置上如何验证吸收剂温度对吸收过程影响?
答:设置不同操作温度下的吸收实验,对吸收剂水加热,如,第四组实验吸收剂水的温 度变高。
5.查出丙酮的平衡数据,拟合出计算式。
答:在较低浓度下有942.0y *=∆
6.如何正确使用转子流量计?
答:使转子流量计保持垂直,等转子稳定时再读数,在测定实际流量时,要校正读数。
7.若没有达到稳定状态就测数据,对结果有何影响?
答:若没有达到稳定状态,则丙酮的气液相则没有达到平衡,导致吸收量偏小,2y 偏大,
A N 偏小,1x 偏小,ya K 可能偏大,可能偏小。
8.读数是否要同时进行?
答:读数不同时进行,应先取出口气体,再取入口气体。