初二数学八上第十三章轴对称知识点总结复习和常考题型练习

合集下载

8年级上册数学第三单元《第十三章 轴对称》知识点总结

8年级上册数学第三单元《第十三章 轴对称》知识点总结

第十三章轴对称一、概念1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、让学生知道轴对称图形(一个图形,有一条或多条对称轴)和轴对称(两个图形,只有一条对称轴)的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x,- y).点(x, y)关于y轴对称的点的坐标为(-x, y).注意:像类似点(x,y)关于X=1对称的题目要学会做法2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等注意:知道角平分线交点(到边相等)和垂直平分线交点(到点相等)的区别四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)注意:三线合一不能直接来判定等腰三角形,需要证明全等。

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

人教版八年级数学上册第13章 轴对称 小结与复习

人教版八年级数学上册第13章   轴对称 小结与复习

则 1=2= 1 BAC. 2
∵ AB = AC,∴ AE⊥BC.
∴∠2 +∠C = 90°.
A
∵ BD⊥AC,∴∠DBC +∠C = 90°. ∴∠2 =∠DBC.
12 D
∴∠BAC = 2∠DBC.
B
E
C
方法总结
在涉及等腰三角形的有关计算和证明中,常见 的辅助线的作法是作顶角的平分线(或底边上的高、 中线),然后利用等腰三角形“三线合一”的性质,实 现线段或角之间的相互转化.
A D
6. 如图,已知等边△ABC 中,点 D、E B
分别在边 AB、BC 上,把△BDE 沿直线
DE 翻折,使点 B 落在 B1 处,DB1,EB1 D
分别交边 AC 于 M、H 点. 若∠ADM =
50°,则∠HEC 的度数为 70° .
B
AC M B1 H
EC
7. 如图,在△ABC 中,AD 是角平分线,AC = AB + BD.
一、轴对称的相关定义和性质 1.定义 (1) 如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做_轴__对__称__图__形___, 这条直线就是它的__对__称__轴___.
(2) 将一个平面图形沿一条直线折叠,如果它能够与另 一个图形重合,那么就说这两个图形关于这条直线对
2. 如图,∠3 = 30°,为了使白球反弹后能将黑球直接
撞入袋中,那么击打白球时,必须保证∠1 的度数为
__6_0_°__.
考点二 关于坐标轴对称的点的坐标
例2 按要求完成作图:
y
(1) 作△ABC 关于 y 轴对称的
△A1B1C1; (2) 在 x 轴上找出点 P,使 PA

八年级第十三章《轴对称》知识点及典型例题

八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

《常考题》初中八年级数学上册第十三章《轴对称》习题(含答案解析)

《常考题》初中八年级数学上册第十三章《轴对称》习题(含答案解析)

一、选择题1.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒ C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 2.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .43.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .1184.如图所示的是A 、B 、C 三点,按如下步骤作图:①先分别以A 、B 两点为圆心,以大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ;②再分别以B 、C 两点为圆心,以大于12BC 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,GH 与MN 交于点P ,若66BAC ∠=︒,则BPC ∠等于( )A .100°B .120°C .132°D .140° 5.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .406.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒7.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°8.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .129.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个10.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm11.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .9 12.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒13.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒14.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( ) A .2个 B .3个 C .4个 D .5个 15.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80°二、填空题16.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.19.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.20.如图,在等腰三角形ABC 中,AB =AC ,∠B =50°,D 为BC 的中点,点E 在AB 上,∠AED =70°,若点P 是等腰三角形ABC 的腰上的一点,则当DEP 是以∠EDP 为顶角的等腰三角形时,∠EDP 的度数是_____.21.如图,DF 垂直平分AB ,EG 垂直平分AC ,若110BAC ∠=︒,则DAE =∠__________°.22.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .23.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .24.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.25.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.26.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________.三、解答题27.如图,在ABC ∆中,已知D 是BC 的中点,过点D 作BC 的垂线交∠BAC 的平分线于点E ,EF ⊥AB 于点F ,EG ⊥AC 于点G . (1)求证:BF=CG ;(2)若AB=12,AC=8,求线段CG 的长.28.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长; (2)求证:AB BC =.29.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q运动的速度是每秒2cm,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=_______________,BP=______________,BQ=______________.(用含t的式子表示)(2)当点Q到达点C时,PQ与AB的位置关系如何.请说明理由.(3)在点P与点Q的运动过程中,BPQ是否能成为等边三角形.若能,请求出t的值.若不能,请说明理由.30.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB.将线段AB沿直线MN对折,我们发现PA与PB完全重合.由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得PA=PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.。

(必考题)初中八年级数学上册第十三章《轴对称》知识点(答案解析)

(必考题)初中八年级数学上册第十三章《轴对称》知识点(答案解析)

一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A 13B 32C 40D 20解析:A【分析】 根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=12(180°-36°)=72°, ∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC ,∴BC=CE ,∵AE=CE ,ED ⊥AC ,∴CD=12AC =3, 在Rt △CED 中, 22222313DE CD ++∴13故选A .【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.2.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm D解析:D【分析】 根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB 即可.【详解】解:∵AB=AC ,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD ⊥AC ,∴∠BDA=90°,∴AB=2BD ,点B 到边AC 的距离是3cm ,即BD=3cm ,∴AB=2BD=6cm ,故选:D .【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.3.如图所示,等腰直角三角形ADM 中,AM DM =,90AMD ∠=︒,E 是AD 上一点,连接ME ,过点D 作DC ME ⊥交ME 于点C ,过点A 作AB ME ⊥交ME 于点B ,4AB =,10CD =,则BC 的长度为( )A .3B .6C .8D .10B解析:B【分析】 通过先证明AMB MDC △≌△,得到=4AB MC =,=10MB CD =,即可求得=BC MB MC -,即可得到答案.【详解】解:∵DC ME ⊥,AB ME ⊥,90AMD ∠=︒∴DCM B ∠=∠,+90AMB DMC ∠∠=︒,+90MDC DMC ∠∠=︒∴AMB ∠=MDC ∠∵AM DM =∴AMB MDC △≌△∴AB MC =,MB CD =∵4AB =,10CD = ∴4MC =,10MB =∴=1046BC MB MC -=-=故选B .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的定义,熟练掌握全等三角形判定和性质,并能进行推理计算是解决问题的关键.4.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .3D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD ≌△ACE ;命题1:若AB=AC ,AD=AE ,则BD=CE ,此命题为真命题;命题2:若AB=AC ,BD=CE ,则AD=AE ,此命题为真命题;命题3:若AD=AE ,BD=CE ,则AB=AC ,此命题为真命题.故选:D .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.5.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.6.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .3B解析:B【分析】由已知可以写出∠B 和∠C ,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k ∠A=(36k )°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B .【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .7.下列推理中,不能判断ABC 是等边三角形的是( )A .ABC ∠=∠=∠B .,60AB AC B =∠=︒ C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ D 解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A 、由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;B 、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;C 、由“∠A =60°,∠B =60°”可以得到“∠A =∠B =∠C =60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;D 、由“AB =AC ,且∠B =∠C”只能判定△ABC 是等腰三角形,故本选项符合题意. 故选:D .【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.8.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系B解析:B【分析】 分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等;【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A′B′E ,同理△ACD ≅△A′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,∴12S S故选:B .【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.9.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线D 解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A 、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半; B 、错误,例如a =1,b=2,满足a + b = 3 , ab = 2,但不满足a - b = 1;C 、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D 、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D .【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.10.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB 与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②BP垂直平分CE;③PG=AG;④CP平分∠DCB;其中,其中说法正确的有()A.1个B.2个C.3个D.4个D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P 作PM ⊥AE 于点M ,PN ⊥AD 于点N ,PO ⊥BC 于点O ,∵AP 平分∠BAC ,PB 平分∠CBE ,∴PM=PN ,PM=PO ,∴PN =PO ,∴CP 平分∠DCB .故④正确.故选:D .【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.二、填空题11.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.18【分析】因为BC 的垂直平分线为DE 所以点C 和点B关于直线DE 对称所以当点动点P 和E 重合时则△ACP 的周长最小值再结合题目的已知条件求出AB 的长即可【详解】解:如图∵P 为BC 边的垂直平分线DE 上一解析:18【分析】因为BC 的垂直平分线为DE ,所以点C 和点B 关于直线DE 对称,所以当点动点P 和E 重合时则△ACP 的周长最小值,再结合题目的已知条件求出AB 的长即可.【详解】解:如图,∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴当点动点P 和E 重合时则△ACP 的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP 的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P 点的位置是解题的关键,确定点P 的位置这类题在课本中有原题,因此加强课本题目的训练至关重要. 12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA 3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.15.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部, 如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.18.含30角的直角三角板与直线1l ,2l 的位置关系如图所示,已知12//l l ,30A ∠=︒,160∠=︒,若6AB =,CD 的长为__________.3【分析】再根据含角的直角三角形的边角关系证得BC=AB=3根据平行线的性质可求得∠BDC=∠1=60°根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形即可证得CD=BC=3【详解】解析:3【分析】再根据含30角的直角三角形的边角关系证得BC=12AB=3,根据平行线的性质可求得∠BDC=∠1=60°,根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形,即可证得CD=BC=3.【详解】解:∵∠ACB=90°,∠A=30°,∴BC=12AB=3,∠CBD=60°,∵12//l l ,∴∠BDC=∠1=60°,又∠CBD=60°,∴∠BCD=60°,∴△BCD 为等边三角形,∴CD=BC=3,故答案为:3.【点睛】本题考查了含30角的直角三角形的边角关系、平行线的性质、三角形的内角和定理、等边三角形的判定与性质,熟练掌握含30角的直角三角形的边角关系,证得△BCD 为等边三角形是解答的关键.19.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关 解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.20.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.【分析】如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 连接DF 首先证明△DFB ≌△DFC 推出CF=BF 可得再利用勾股定理求解即可得到答案【详解】解:如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 2【分析】如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .首先证明△DFB ≌△DFC ,推出CF=BF ,可得()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=,再利用勾股定理求解B C '即可得到答案.【详解】解:如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .∵,90CA CB ACB ''=∠=︒,AD B D '=,∴CD DB AD DB '===,45DCB DCA '∠=∠=︒,45B B '∠=∠=︒.∴DH DM =,,B DE BDE '≌,DH DN ∴=,DH DM DN ∴==∴DFM DFN ∠=∠,∵∠BFM=∠EFC ,∴∠DFB=∠DFC ,在△DFB 和△DFC 中,B DCF DFB DFC DF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFB ≌△DFC ,∴CF=BF ,∵()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=, ∵2AB '=,∴224B C AC '+=,,B C AC '=2.B C '∴= (负根舍去)2.CEF C ∴= 2.【点睛】本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质,角平分线的判定,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度所得到的△A1B1C1,并写出点A1,B1的坐标;(2)画出△DEF关于x轴对称后所得到的△D1E1F1,并写出点E1,F1的坐标;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,请画出它的对称轴.解析:(1)图见解析,A1(3,2),B1(4,1);(2)图见解析,E1(﹣2,﹣3),F1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A1,B1,C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点D1,E1,F1的坐标,然后描点即可;(3)直线C1F1和C1F1的垂直平分线都是△A1B1C1和△D1E1F1组成的图形的对称轴.【详解】解:(1)如图,△A1B1C1为所作,A1(3,2),B1(4,1);(2)如图,△D1E1F1为所作,E1(﹣2,﹣3),F1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.如图,△ABC是等边三角形,E、F分别是边AB、AC上的点,且AE=CF,且CE、BF 交于点P,且EG⊥BF,垂足为G.(1)求证:∠ACE=∠CBF;(2)若PG =1,求EP 的长度.解析:(1)见解析;(2)PE =2【分析】(1)证明△ACE ≌△CBF (SAS ),即可得到∠ACE =∠CBF ;(2)利用由(1)知∠ACE =∠CBF ,求出∠BPE =60°,又EG ⊥BF ,即∠PGE =90°,得到∠GEP =30°,根据在直角三角形中,30°所对的直角边等于斜边的一半,可求出EP 的长.【详解】(1)证明:∵△ABC 是等边三角形,∴AC =BC ,∠A =∠BCF =60°,AB =AC ,在△ACE 与△BCF 中,AC =BC ,∠A =∠BCF ,AE =CF ,∴△ACE ≌△CBF (SAS ),∴∠ACE =∠CBF ;(2)解:∵由(1)知,∠ACE =∠CBF ,又∠ACE +∠PCB =∠ACB =60°,∴∠PBC +∠PCB =60°,∴∠BPE =60°,∵EG ⊥BF ,即∠PGE =90°,∴∠GEP =30°,∴在Rt △PGE 中,PE =2PG ,∵PG =1,∴PE =2.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,含30度的直角三角形的性质,解决本题的关键是证明△ACE ≌△CBF .23.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.解析:(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.24.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决.按照上面的思路,请回答:(1)小红证明BED CAD △≌△的判定定理是:______;(2)AD 的取值范围是______;方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.解析:(1)角角边或者角边角(AAS 或ASA );(2)210AD <<;(3)见解析【分析】(1)由“ASA”或“AAS”可证△BED ≌△CAD ;(2)由全等三角形的性质可得AC=BE=8,由三角形的三边关系可求解;(3)延长AD 至H ,使AD=DH ,连接BH ,由“SAS”可证△BHD ≌△CAD ,可得AC=BH ,∠CAD=∠H ,由等腰三角形的性质可得∠H=∠BFH ,可得BF=BH=AC ;【详解】解:(1)∵AD 是中线,∴BD=CD ,又∵∠ADC=∠BDE ,∵//BE AC ,∴EBD C ∠=∠,E CAD ∠=∠,∴△BED ≌△CAD (ASA ),或△BED ≌△CAD (AAS ),故答案为:SAS 或AAS ;(2)∵△BED ≌△CAD ,∴AC=BE=8,在△ABE 中,AB-BE <AE <AB+BE ,∴4<2AD <20,∴2<AD <10,故答案为:2<AD <10;(3)过点B 作//BG AC 交AD 的延长线于点G ,则CAD BGD ∠=∠∵AD 是中线,∴BD CD =在ADC 和GDB △中∵CAD BGD ∠=∠,ADC GDB ∠=∠,BD CD =,∴ADC GDB ≌△△∴BG CA =∵AE EF =∴EAF AFE ∠=∠又∵CAD BGD ∠=∠,AFE BFG ∠=∠∴BGD BFG ∠=∠∴BG BF =,又∵BG CA =,∴BF AC =;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的三边关系,添加恰当辅助线构造全等三角形是本题的关键.25.如图,在ABC ∆中,,36,AB AC BAC BD =∠=︒平分ABC ∠交AC 于点,D 过点A 作//,AE BC 交BD 的延长线于点E .()1求ADB ∠的度数﹔()2求证:ADE ∆是等腰三角形.解析:(1)108ADB ∠=︒;(2)证明见解析【分析】(1)根据角平分线的定义和三角形的外角性质求解;(2)根据平行线的性质和三角形的内角和定理求解 .【详解】()1解:,36AB AC BAC =∠=︒,()1180722ABC C BAC ∴∠=∠=︒-∠=. BD 平分,ABC ∠136,2DBC ABC ∴∠=∠=︒ 7236108ADB C DBC ∴∠=∠+∠=︒+︒=()2证明://,AE BC72,EAC C ∴∠=∠=︒72,36C DBC ∠=︒∠=︒,180723672,ADE CDB ∴∠=∠=︒-︒-︒=︒,EAD ADE ∴∠=∠,AE DE ∴=ADE ∴∆是等腰三角形.【点睛】本题考查等腰三角形的综合运用,熟练掌握等腰三角形的判定与性质、平行线的性质、三角形的内角和定理和外角性质是解题关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.解析:15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.28.如图,在ABC 中,90C ∠=︒.(1)用尺规作出BAC ∠的平分线,并标出它与边BC 的交点D (保留作图痕迹,不写作法);(2)若30B ∠=︒,1CD =,求BD 的长.解析:(1)见解析;(2)2【分析】(1)根据尺规作图的基本步骤进行画图,即可得到答案;(2)过点D 作DE AB ⊥,垂足为E ,由角平分线的性质定理,得到1DE CD ==,再由含30度直角三角形的性质,即可求出答案.【详解】(1)解:如图所示:(2)过点D 作DE AB ⊥,垂足为E . AD 为BAC ∠的平分线,90C AED ∠=∠=︒.1DE CD ∴==.在Rt BED △中,30B ∠=︒,22BD DE ∴==.【点睛】本题考查了尺规作图——作角平分线,角平分线的性质,以及含30度的直角三角形的性质,解题的关键是掌握所学的知识,正确的作出图形.。

人教版八年级上册数学第13章《轴对称》小结与复习.doc

人教版八年级上册数学第13章《轴对称》小结与复习.doc

轴对称小结与复习。

•知识梳理1.如果一个平面图形沿一条直线折卺,直线两旁的部分能够 ____________ ,这个图形就叫做轴对称图形,这条直线就足它的对称轴.2.把一•个阁形沿着某一条直线折佥,如果它能够与另一个阁形 __________ ,那么就说这两个阁形欠于这条直线(成轴)对称,这条直线叫做对称轴.温馨提示:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条对称轴对称.3.经过线段__________ 丼且 _________ 这条线段的直线,叫做这条线段的®直平分线.4. _____________ 上的点与这条线段两个端点的距离相等.与一条线段两个端点距离相等的点,在这条线段的___________ .温馨提示:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_________ ;⑵轴对称图形的对称轴,是任何一对对应点所连线段的_____________ .5. __________________________________________ 点P(x,y)关于x轴对称的点的华标为__________________________________________ ,点P(x: y)关于y轴对称的点的叱标为__________ .6.等腰三角形的性质:(1) __________________________________________等腰三角形的两个底角_(简写成:).(2) ___________________________________________________________________________________ 等腰三角形的顶角平分线、底边上的屮线、底边上的高____________________________ (简写成:_________ ).7.等腰三角形的判定:如果一个三角形有W个角相等,那么这两个角所对的边也__________ (简写成“等角对等边”).8.等边三角形的性质:等边三角形的三个内角___________ ,并且每一个角都等于__________ •9.等边三角形的判定:(1) _____________________ 三个角的三角形是等边三角形.(2) __________________________________ 有一个角是60°的是等边三角形.10. _____________________________________________________________________ 在直角三角形屮,如果一个锐角等于30°,那么它所对的直角边等于斜边的 ______________ .•考点呈现考点1判别轴对称图形例1 (2013年咸宁)下列学习用具中,不是轴对称图形的是()分析:根据轴对称图形的概念:把-个图形沿一条直线折叠,K 线两旁的部分能够互相 重合的图形是轴对称图形,对各选项逐一判断即可.解:选项A 、B 、D 是轴对称图形,选项C 不是轴对称图形.故选C. 考点2线段的垂直平分线的性质例2 (2013年泰州)如图1,在AABC 中,AB+AC=6 cm, BC 的垂直平 分线7与AC 相交于点D,则AABD 的周长为分析:根据线段乖直平分线的性质,可得DC=DB,进而可确定AABD 的周长. 解:因为7 :世:直平分BC ,所以DB=DC.所以AABD 的周长=AB+AD+BD=AB+AD+DC=AB+AC=6 cm.故填 6. 考点3画轴对称图形例3 (2013年哈尔滨)如图2所示,在每个小正方形的边长均为1个单位长度的方格 纸屮,有线段AB 和直线MN,点A, B, M, N 均在小正方形的顶点上,在方格纸屮画四边形 ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴 对称阁形,点A 的对称点为点D ,点B 的对称点为点C.分析:过点A M 直线MN 的■线,画足为0,在垂线上截収0D=0A ,D 就是A 关于直线. 的对称点;同现,岡出点B 关于直线MN 的对称点C;连接BC ,CD, DA ,即可得到四边形ABCD.cm.r•I 11暴• •f' ' I 1 1 費 1///• •參•• . ••17BA图2解:正确画阁如阁3所示.例4 (2013年重庆)作图题:(不要求写作法)如图4所示,AABC 在平刖直角坐标 系中,点 A,B ,C 的坐标分别为 A (―2,1) , B (―4,5),C (-5, 2).(1)作AABC 关于直线7: x=-l 对称的△A 1B 1C 1,其中,点A, B ,C 的对应点分别为 B,, C 1;⑵写山点A :, B,, G 的坐标.分析:⑴根椐网格结构找出点A, B, C 关于直线7的对称点A :, B:, G,然后顺次连接 即可;⑵直接根据平面直角坐标系写出点A:, B B (;的坐标.解:如图5所示.(2)A, (0, 1)、B, (2, 5)、C, (3, 2).考点4关于x 轴或y 轴对称的点的坐标例5 (2013年遂宁)将点A (3, 2)沿x 轴向左平移4个单位长度得到点A',点A' 关于y 轴对称的点的坐标是()A. (-3, 2)B. (-1,2)C. (1, 2)D. (-1,-2)分析:先利川平移中点的变化规律求出点A'的嫩标,再根据关于y 轴对称的点的坐标 特征即可求解.解:因为将点A (3, 2)沿x 轴叫左平移4个单位长度得到点A',所以点A'的坐标 为(一1,2).所以点A'关于y 轴对称的点的坐标是(1, 2).故选C.考点5等腰三角形的性质B\ A/L/ \/ \CA** 1 C r1A ;5o ‘fJB阁6例6 (2013年台湾)如阁6,在长方形ABCD中,M为CD中点,分别以B, M为圆心, BC, MC长为半径画弧,两弧相交于点P.若ZPBO70",则ZMPC的度数为()A. 20°B. 35°C. 40°D. 55°分析:根据等腰三角形两底角相等求出ZBCP,然后求出ZMCP,再根据“等边对等角” 求解即可.解:因为分别以B,M为圆心,BC, MC长为半径的两弧相交于点P,所以BP=BC, MP=MC.因为ZPBC=70°,所以ZBCP=A (180°— ZPBC)(180°—70°)=55° •2 2在长方形ABCD 中,ZBCD=90° ,所以Z.MCP=90° -ZBCP=90°一55° =35° .所以ZMPC=ZMCP=35°.故选 B.考点6等腰三角形的判定例7 (2013年河北)如图7所示,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小吋后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P 的距离为()A. 40海.里B. 60海里C. 70海里D. 80海里分析:根裾题意,可得ZM=70°,ZN=40°,在AMXP屮求得ZNPM的度数,证明ANINP 足等腰三角形,即可求解.解:依题意,知MN=2X40=80(海里),ZM=70°,ZN=40°,所以ZNPM=180° -ZM-ZN: 180° -70° -40° =70° .所以ZNPM=ZM.所以XP=MN=80海里.故选D.考点7等边三角形的性质例8 (2013年黔西南州)如|冬|8,己知AABC是等边三角形,点AB, C, D, E 在M—直线上,J1.CG=CD, DF=DE,则ZE 的度数/分析:根裾等边三角形的性质,可知ZACB=60°,根据等腰三角图8形底角相等即可得illZE的度数.解:因为AABC是等边三角形,所以ZACB=60° , ZACD=120° .因为CG=CD,所以ZCDG=30u , ZFDE=150° .因为DF=DE ,所以ZE=15° .故填15° .考点8含30°角的直角三角形的性质 例9 (2013年泰安)如图9,在RtAABC 中,ZACB=90°垂直平分线DE 交AC 于点E ,交BC 的延长线于点F ,若ZF=30° 则BE 的长是 ______________ .分析:根据题意推得ZDBE=30° ,则在RtADBE 中由“30° 半”即可求得线段BE 的长度.解:因为 FD 丄AB,所以ZACB=ZFDB=90° . 因为ZF=30° ,所以ZA=ZF=30° .又DE 垂直平分线AB,所以ZEBA=ZA=30° . 因为DE=1,所以HE=2DE=2.故填2.參误区点拨误区1轴对称含义理解不清致错例1如图1中的(1)、(2)两个阁形成轴对称, 请画ili 它们的对称轴.错解:如图1所示的直线..剖析:沿直线MX 对折,在直线MN 两旁的图形的确 可以互相重合,似这里要求的是画(1)、(2)的对称 轴,而MN 并不是这两个阁形的对称轴.画成轴对称的两 个阁形的对称轴时耍注意所指的是哪个两个阁形,特别注意当这两个图形木身也是轴对称阁形时,不要把各自图形的对称轴作为两个图形的对称 轴.正解:如图1所示的直线PQ. 误区2对轴对称的性质理解不深致误例2如图2,已知A, C 两点关于BD 对称,下列结论:®0A=0C ;②0B=0D;③AD=CD;④AB=CB.其中正确的有 _______________ (填序兮即可).错解:填①②③④.AB 的 DE=1,3角所对的直角边是斜边的一©(1) (2)图 1阁2剖析:错解“A ,C 两点关于I3D 对称”错误理解为“AC, BD 互相垂直平分”,实际上 OA=OC,AB=CB, AD=CD 成立,但 OB=OD 不一定成立.正解:填①③④.參跟踪训练1. (2013年铁岭)下列图形中,是轴对称图形的有( )2. (2013年山西)如图1所示,正方形地砖的图案是轴对称图形,该图形的对称轴有( )3. (2013年德州)如图2, AB//CD,点E 在BC 上,且CD=CE, ZD=74°,则ZB 的度数为( )A. 68°B. 32°C. 22°D. 16°4. (2013年广州)点P 在线段AB 的垂直平分线上,PA=7,则PB= _________________ .5. 如图3, AABC 与△/VBA 关于直线m 成轴对称,若ZA=35°, ZB=55°,则ZC :的度数为 ____________ .6. (2013年盐城改编)如图4-①是3X3正方形网格,将M:中两个方格涂黑,井且使得 涂黑后的整个图案足轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一 种阁案,例如阁4-②中的四幅阁就视为M —种阁案,试画岀W 种不|u 個案(不M 于阁4-②).1条 B图12条C. 4条②7.若在等腰三角形中作出一些线段(如角平分线、屮线、高等),你能发现其中一些相等的线段吗?你能证明你的的结论吗?(1) ______________________________________________________________________ M答:等腰三角形两条腰上的中线相等吗?答:____________________________________ (填“相等”或“不相等”);(2)证明⑴中你的结论.耍求:用图5中的符号表达己知、求证,并证明,证明对各步骤要注明依据.轴对称小结与复习知识梳理.•略.跟踪训练:1. D 2. C 3. B4. 75. 90°6.解:答案不唯一,给出两种如图所示.7.解:⑴相等(2)已知:在AABC中,AB=AC, BD, CE分别为中线,求证:BD=CE. 证明:••• BD, CE分别为中线(已知),... AD=-AC, AE=-AB (中线的定义).2 2••• AB=AC (已知),...AD二AE.在AABD 和AACE 屮,AD=AE, ZA=ZA (公共角相等),AB=AC, ••• AABD^AACE (SAS)./. BD=CE (全等三角形的对应边相等).。

初二数学上册第十三章轴对称小结与复习最新版

初二数学上册第十三章轴对称小结与复习最新版
等边三角形
体系构建
(2)等腰三角形与等边三角形之间有什么特殊的关 系?

活 中
轴对称



称 等腰三角形
作轴对称图形的对称轴 画轴对称图形 关于坐标轴对称的 点的坐标的关系
等边三角形
典型例题
例1 判断下列说法是否正确,如不正确,请说明 原因. (1)两个全等三角形一定关于某直线对称;× (2)等腰三角形一边上的高、中线及这边对角的平分
又 CE = CD,
∴ ∠CDE = ∠CED, B
D
FC
E
典型例题
例3 已知:如图,△ABC 是等边三角形,BD 是
AC 边上的高,延长BC 到E,使CE =CD,过点D 作DF
⊥BE于F.求证:(1)BD =DE;
证明:∴
∠CED =
1 2
∠ACB = 30°.
A
∴ ∠DBC = ∠CED,
∴ BD = DE.
知识梳理
(4)在平面直角坐标系中,如果两个图形关于x 轴或y 轴对称,那么对应点的坐标有什么关系?请举例 说明.
(5)利用等腰三角形的轴对称性,我们发现了它的哪 些性质?你能通过全等三角形加以证明吗?等边 三角形作为特殊的等腰三角形,有哪些特殊性质?
体系构建
整理一下本章所学的主要知识,你能发现它们之 间的联系吗?你能画出一个本章的知识结构图吗?
八年级 上册
第十三章 小结与复习
知识梳理
(1)在现实世界中存在着大量的轴对称现象,你能举 出一些例子吗?成轴对称的图形有什么特点?
(2)在我们学过的几何图形中,有哪些是轴对称图形? 它们的对称轴与这个图形有怎样的位置关系?
(3)一个图形经过轴对称变换后,对应点所连线段与 对称轴有什么关系?如何作出一个图形的轴对称 图形?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.(4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(5)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(6)等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.③如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

④两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点(x, y)关于x轴对称的点的坐标为(x, -y).②点(x, y)关于y轴对称的点的坐标为(-x, y).③点(x, y)关于原点对称的点的坐标为(-x,- y)⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.常考例题精选1.(2015·三明中考)下列图形中,不是轴对称图形的是( )2.(2015·日照中考)下面所给的交通标志图中是轴对称图形的是( )3.(2015·杭州中考)下列“表情图”中,属于轴对称图形的是( )4.(2015·凉山州中考)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A.30°B.45°C.60°D.75°5.(2015·德州中考)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为( )A.(1,4)B.(5,0)C.(6,4)D.(8,3)6.(2015·南充中考)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是( )A.70°B.55°C.50°D.40°7.(2015·玉溪中考)若等腰三角形的两边长分别为4和8,则它的周长为( )A.12B.16C.20D.16或208.(2014·海门模拟)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是( )A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)9.(2015·绵阳中考)如图,AC,BD相交于O,AB∥DC,AB=BC,∠D=40°,∠ACB= 35°,则∠AOD= .10.(2015·丽水中考)如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.1.(2015·遵义)观察下列图形,是轴对称图形的是( )2.点P(5,-4)关于y轴的对称点是( )A.(5,4) B.(5,-4) C.(4,-5) D.(-5,-4)3.如图,△ABC与△ADC关于AC所在的直线对称,∠BCD=70°,∠B =80°,则∠DAC的度数为( )A.55°B.65°C.75°D.85°,第3题图)4.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC长为( )A.2 B.3 C.4 D.以上都不对,第4题图)5.如图,AB=AC=AD,若∠BAD=80°,则∠BCD=( )A.80°B.100°C.140°D.160°,第5题图)6.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥,第6题图)7.(2015·玉林)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是( )A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=12BC,第7题图)8.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE,AC=5,BC=3,则BD的长为( ) A.1 B.1.5 C.2 D.2.5,第8题图)9.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是( )A.10 B.8 C.6 D.4,第9题图)10.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE 与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是( )A.2个B.3个C.4个D.5个,第10题图)12.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF等于.,第12题图)13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.,第13题图)14.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为E.若∠B=35°,则∠DAC的度数为.,第14题图)15.在△ABC中,AC=BC,过点A作△ABC的高AD,若∠ACD=30°,则∠B=.16.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):.,第16题图)17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是.,第17题图)18.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM =10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为.,第18题图)19.如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.(不写作法,保留作图痕迹)20.如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D与点A关于y轴对称,则点D的坐标为;(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为;(3)求A,B,C,D组成的四边形ABCD的面积.21.如图,在△ABC中,AB=AC,D为BC为上一点,∠B=30°,∠DAB =45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.(2015·潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.23.如图,△ABC,△ADE是等边三角形,B,C,D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.24.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,已知AE⊥FE,垂足为E,且E是DC的中点.(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.。

相关文档
最新文档