八年级上十二章轴对称知识点总结
八年级上数学轴对称知识点

八年级上数学轴对称知识点数学中的轴对称是一个重要的概念,它在几何学中有着特殊的地位。
轴对称是一种在几何上对称性的表示,就是说经过此类对称变换后,物体会维持原来的形状。
轴对称广泛应用于数学的各个领域,从简单的平面图形到三维几何图形,都可以应用轴对称进行变形。
而在八年级上数学的学习中,轴对称是数学中一个重要的知识点。
接下来,本文将为大家详细介绍八年级上数学轴对称的知识点。
一、轴对称的定义及性质1.定义:平面上的轴对称是指当一个点绕着轴旋转180度后,仍能落在原来的位置上的变换。
2.性质:若点P和点P'在轴对称的图形上位于同一位置,则它们在轴上的距离相等,且轴垂直于P和P'之间的连线。
二、轴对称的应用1.轴对称可以应用于平面图形的构造,如圆,矩形,三角形等。
2.轴对称可以帮助我们求出平面图形的对称中心,并用这个对称中心得到一些图形的性质。
3.轴对称可以用于解题,如对称图形的面积、图形重心的求解等。
三、轴对称与对称中心的求解1.对称中心的定义:一个平面图形可以有很多对称中心,但每个对称中心都必须满足:通过这个对称中心,将图形分为对称的两部分,且分割的两部分的对应点在图形轴对称的位置上。
2.求解对称中心的方法:通过找到轴对称图形上的对称关系,确定对称直线的位置,然后在对称直线上作垂线,交点即为对称中心。
四、轴对称的练习1.练习一:如图,在平面直角坐标系中,直线l是x轴的正半轴,正方形ABCD经过轴对称后,变为图形A'B'C'D',点C、C'、E在同一直线上,且EE'的坐标为(7,4),求正方形ABCD的边长。
解:通过图形的观察,我们可以得出以下结论:1)正方形ABCD在x轴上的对称点是A’B’C’D’,因为它们的横坐标相等,纵坐标互为相反数。
2)点C、C’、E在同一直线上,因此点E的坐标应该是在点C和C’连线上的,可以算出点C(x,y)的坐标后,求出点C’的坐标,再连通C’E’的直线,求出其上与x轴交点的坐标即可求出正方形的边长。
初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。
知识点2 对称轴的性质1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。
例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。
八年级轴对称数学知识点

八年级轴对称数学知识点
轴对称是数学中比较基础的概念之一,对数学学习的深入和有效应用有很大帮助。
在初中数学学习中,八年级轴对称是一个非常重要的知识点。
本文将就八年级轴对称这个知识点进行详细的介绍。
一、什么是轴对称
轴对称是指图形对某条直线具有对称性。
具体的表现形式是:图形关于某一直线对称之后,在原图形的基础上能“翻转”到副本的位置,并且重叠相拼即可得到。
二、轴对称的性质
1、轴对称图形的对称轴是唯一的。
2、轴对称图形中的任意一点,关于对称轴的对称点必然满足在对称轴同侧。
3、轴对称图形的内部点对称于对称轴上的点,整体上左右对称。
三、常见八年级轴对称问题类型
1、求轴对称的轴线:当给出轴对称图形时,需要从图形上分
析出轴对称的轴线。
2、用轴对称复制图形:当给出了一个图形和它的对称轴时,
需要求出轴对称的图形。
3、判断轴对称图形:当给出来了几个图形时,需要判断哪些
是轴对称图形。
4、证明轴对称性:当给出一个轴对称图形时,需要证明这个
图形具有轴对称性。
四、轴对称的应用
1、绘画:许多艺术作品都运用了轴对称的特性,如某些建筑物、雕塑等,能够更加精确和美观的呈现在人们面前。
2、工程:在设计一些具有轴对称性质的工程中能够更好地满
足实际需求,如建筑、桥梁等。
3、其他学科:在生物、化学等学科中都涉及到轴对称的概念。
五、本章小结
八年级轴对称是一个相对比较基础且重要的知识点,对于学习几何以及正方形、矩形、圆等问题都有着一定的应用。
掌握了轴对称的性质及应用,能够更好地促进数学的学习效果,提高学生的综合素质。
八年级数学上册轴对称知识点总结

轴对称知识点总结(zǒngjié)1、轴对称图形(túxíng):一个图形沿一条直线对折,直线两旁(liǎngpáng)的部分能够完全重合。
这条直线(zhíxiàn)叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个(liǎnɡɡè)图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB,直线m⊥AB于C,点P是直线m上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,直线m是线段AB的垂直平分线,∴点P在直线m上。
6、等腰三角形:图1 图2 图3(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
②等边对等角。
如图5,在△ABC中∵AB=AC∴∠B=∠C 。
八年级上册数学知识点复习:轴对称

15-16 学期八年级上册数学知识点复习:轴对称知识点对朋友们的学习特别重要,大家必定要仔细掌握,查词典数学网为大家整理了15-16 学期八年级上册数学知识点复习:轴对称,让我们一同学习,一同进步吧!1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直均分线。
(2)角均分线上的点到角两边距离相等。
(3)线段垂直均分线上的随意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直均分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边平等角 )4.等腰三角形的顶角均分线、底边上的高、底边上的中线相互重合,简称为“三线合一”。
5.等腰三角形的判断:等角平等边。
6.等边三角形角的特色:三个内角相等,等于60°,7.等边三角形的判断:三个角都相等的三角形是等腰三角形。
有一个角是 60°的等腰三角形是等边三角形有两个角是 60°的三角形是等边三角形。
8.直角三角形中, 30°角所对的直角边等于斜边的一半。
第1页/共3页1 / 3唐宋或更早以前,针对“经学”“律学”“算学”和“书学”各科目,其相应教授者称为“博士”,这与此刻“博士”含义已经相去甚远。
而对那些特别解说“武事”或解说“经籍”者,又称“讲课老师”。
“教授”和“助教”均原为学官称呼。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的解说者;尔后者则于西晋武帝时代即已建立了,主要辅助国子、博士培育生徒。
“助教”在古代不单要作入流的学问,其教书育人的职责也十分清晰。
唐朝国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。
在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。
下面将对轴对称的知识点进行总结。
一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。
这个平面被称为轴线或对称轴。
沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。
轴对称可以存在于二维图形、立体物体以及其他几何结构中。
二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。
2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。
3. 对称图形的面积、周长和内角和与其镜像图形相等。
4. 对称图形的对称中心与图形的每一个点距离的平方和最小。
三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。
2. 通过自身对折或平移观察是否可以重合。
3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。
四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。
2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。
3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。
4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。
特别是在图论中,轴对称是许多图形算法的基础。
五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。
2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。
研究轴对称问题可以进一步理解和应用线性代数等数学知识。
六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。
八年级上十二章轴对称知识点总结(最全最新)

轴对称知识点(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
关于谁谁不变,关于原点都相反(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称知识点
(一)轴对称和轴对称图形
1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.
2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)
3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画岀关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系
区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.
联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线
(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).
(2)线段的垂直平分线上的点与这条线段两个端点的距离相等:反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂宜平分线可以看成与线段两个端点距离相等的所有点的集合. (四)用坐标表示轴对称
1、点(x, y)关于x轴对称的点的坐标为(-x, y);
2、点(x, y)关于y轴对称的点的坐标为(x, -y);
3、点(x, y)关于原点对称的点的坐标为(-x, -y)。
关于谁谁不变,关于原点都相反
(五)关于坐标轴夹角平分线对称
点P(X, y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y, x)
点P (x, y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(一y, — x)(六)关于平行于坐标轴的直线对称
(七)点P (x, y)关于直线x=m对称的点的坐标是(2m—x, y);
点P (x, y)关于直线y=n对称的点的坐标是(x, 2n—y);
(七)等腰三角形
1、等腰三角形性质:
性质1:等腰三角形的两个底角相等(简写成“等边对等角”)
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的髙相互重合。
(三线合一)2、等腰三角形的判左:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边“)(A)等边三角形
(九)肚义:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
1、性质和判定:
(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3 )有一个角是60°的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30。
,那么它所对的直角边等于斜边的一半。
(九)其他结论
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
作图题专练
1.如图:已知ZAOB和C、D两点,求作一点P,使PC=PD,且P到ZAOB两边的距离相等.
(4)如果两点位于直线异侧,谙你去解决上述问题
(1)如图,在/上求作一点M,使得1 AM-BM 1最小:作法:
• B
A.
(2)如帥年(上枣作二息妙像得!申旷??也!垠末作
法:
• • •
•B
A •
(3)如图,在/上求作一点M,使得AM+BM最小.
2.已知:A、B两点在直线/的同侧,试分别画出符合条件的点M.
变式练习
• • • •
1、如图,巳知直线MN与MN同侧阿点A、B求作:点P,使点P在MN上,H_:APM=ZBPN o
B
0 A
M N
2.如哥点d、.p、・g年皐线(旳回勢.年皐线(4.枣作二总片.僅得四汝开代q矽囲惟垠心
C.
仁・B
鼻如囲弓缈线段中.息小•弓华皐线/丄勺回伽.奁真线(上,.枣作西虑?、. Q•(息£年息2妝车倒2耳?2亍化四汝形APQB的周长最小.
4、已知:如图点M在锐角ZAOB的内部,在0A边上求作一点P,在0B边上求作一点0使得4PM0的周长最小:
A
5.牙切:.^^3714,息甲李锐第<理兀於内那年他辿上枣作二虑仆像得息£到息沟於闕囲与息£至!J0辿的距离之和最小・
6、一条河两岸有爪B两地,要设il•一条道路,并在河上垂直于河岸架一座桥,用來连接A. B两地.问路线怎样走,桥应架在什么地方, 才能使从A到B所走的路线最短?。