七年级数学期末复习培优提高训练(四)
北师大版2020七年级数学下册期末模拟测试题4(培优 附答案)

北师大版2020七年级数学下册期末模拟测试题4(培优 附答案) 1.下列长度的三条线段能组成三角形的是( ) A .3, 4, 6B .6, 9,17C .5, 12, 18D .2, 2, 42.如图,将一副直角三角板摆放,点C 在EF 上,AC 经过点D ,已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =( )A .20oB .25oC .30oD .35o3.如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为O ,若射线OF 在AOE ∠的内部,EOF 25∠=︒,2AOF BOD 3∠∠=,则BOC ∠的度数为( )A .120︒B .135︒C .141︒D .145︒4.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°5.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=22°,那么∠2的度数是( )A .21°B .22°C .23°D .25°6.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS7.下列四个算式中,可以直接用平方差公式进行计算的是( ) A .(﹣a +b )(﹣a ﹣b ) B .(2a +b )(a ﹣2b ) C .(a ﹣b )(b ﹣a )D .(a +b )(﹣a ﹣b )8.如图,点E, F 在直线AC 上,DF=BE , ∠AFD=∠CEB,下列条件中不能判断△ADF ≌△CBE 的是( )A .∠D=∠B B .AD=CBC .AE=CFD .AD// BC9.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则∠A 与∠1+∠2之间有始终不变的关系是( )A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3A =∠1+∠2D .3∠A =2(∠1+∠2)10.下列运算正确的是( ) A .3a 2b 5ab +=B .325a a a ⋅=C .824a a a ⋅=D .236(2a )6a =-11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=60°,则∠3=____.12.用简便方法计算:20192-2019×38+361=________.13.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC∆和APQ ∆全等.14.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法:①△BDF ≌△CDE ;②CE=BF ; ③BF ∥CE ;④△ABD 和△ACD 周长相等.其中正确的有___________(只填序号)15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.16.已知|x-2|+y 2+2y+1=0,则x y 的值为__________________17.“国际半程马拉松”的赛事共有三项:A .“半程马拉松”、B .“10公里”、C .“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.小明和小刚被分配到不同项目组的概率______;18.如图,已知△ABC ≌△DEC ,∠E =40°,∠ACB=110°,则∠D 的度数为________.19.如图所示,是一块三角形木板,量的100A ∠=o ,40B ∠=o 则这块三角形木板的另外一个角的度数是___.20.若a m =4,a n =8,则a m +n =_____.21.已知ABC V 中,90BAC ∠=o ,AB AC =,点D 为直线BC 上的一动点(点D 不与点B 、C 重合),以AD 为边作ADE V ,使90DAE ∠=o ,AD AE =,连接CE . 发现问题:如图1,当点D 在边BC 上时,()1请写出BD 和CE 之间的位置关系为______,并猜想BC 和CE 、CD 之间的数量关系:______. 尝试探究:()2如图2,当点D 在边BC 的延长线上且其他条件不变时,()1中BD 和CE 之间的位置关系、BC 和CE 、CD 之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由; 拓展延伸:()3如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,2CE =,求线段ED 的长.22.已知,点D 和三角形ABC 在同一平面内.(1)如图1,点D 在BC 边上,DE BA P 交AC 于E ,DF CA ∥交AB 于F .若o(2)如图2,点D 在BC 的延长线上,DF CA ∥,EDF A ∠=∠,证明:DE BA P . (3)点D 是三角形ABC 外部的任意一点,过D 作DE BA P 交直线AC 于E ,DF CA ∥交直线AB 于F ,直接写出EDF ∠与A ∠的数量关系(不需证明).23.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt △ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点(1,2)处.则①OA 的长为 ;②点B 的坐标为 (直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰R t △ACB 如图放置,直角顶点 C (-1,0),点A (0,4),试求直线AB 的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B (4;3),过点B 作BA ⊥y 轴,垂足为点A ;作BC ⊥x 轴,垂足为点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上一动点.问是否存在以点P 为直角顶点的等腰R t △APQ ,若存在,请求出此时P 的坐标,若不存在,请说明理由.24.如图,长方形ABCD 表示一块草地,点E ,F 分别在边AB 、CD 上,BF ∥DE ,四边形EBFD 是一条水泥小路,若AD =12米,AB =7米,且AE ∶EB =5∶2,求草地的面积.25.已知:如图,AC ∥DF ,直线AF 分别直线BD 、CE 相交于点G 、H ,∠1=∠2,求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH (_________________) ∴∠2=__________(______________) ∴BD ∥CE (________________) ∴∠C= ________(_______________) 又∵AC ∥DF∴∠D=∠ABG (________________) ∴∠C=∠D (________________)26.已知△ABC 三边长分别为4,2a +1,7,求a 的取值范围. 27.(1)02201820181( 3.14)(0.5)()(3)3π---+⨯-; (2)(﹣3a )2•(a 2)3÷a 3.28.先化简再求值:x²(x-1)- x (x²+x-1),其中x=1参考答案1.A【解析】【分析】根据三角形的三边关系:三角形任意两边的和大于第三边进行分析判断.【详解】A、3+4=7>6,能组成三角形;B、9+6<17,不能组成三角形;C、5+12<18,不能够组成三角形;D、2+2=4,不能组成三角形.故选A.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B【解析】【分析】由AB=AC,∠A=90°,根据等腰直角三角形的性质可得∠ACB=45°,即可求得∠ACE=85°,又因∠ACE=∠F+∠CDF,∠F=60°,由此可得∠CDF=25°.【详解】∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选B.【点睛】本题考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C【解析】【分析】由ED⊥CD可得∠EOC=∠EOD=90°,根据对顶角的定义可得∠AOC=∠BOD,根据∠AOC+∠AOF+∠EOF=∠EOC=90°,即可求出∠AOC的度数,利用邻补角的定义即可求出∠BOC的度数.【详解】∵ED⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,∠AOF=23∠BOD,∠EOF=25°,∴∠AOC+∠AOF+∠EOF=∠EOC=90°∴∠AOC+23∠AOC+25°=90°,∴∠AOC=39°,∴∠BOC=180°-∠AOC=180°-39°=141°,故选C.【点睛】本题考查了垂直的定义、对顶角的性质及角的和差运算,认真观察图形是解题关键. 4.C【解析】【分析】本题先运用邻补角定义,得到∠BAC的度数,然后根据平行得到结果.【详解】解:∵∠BAE=50°,∴∠BAC=180°-50°=130°,∵AB CD∥,∴∠ACD=∠BAC=130°.故选择:C.【点睛】本题考查了平行线的性质和邻补角的定义,解题的关键是熟练运用平行线的性质.5.C【解析】【分析】直接利用平行线的性质,求得∠AFE的度数,进而结合等腰直角三角形的性质得出答案.【详解】如图,∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=22°,∴∠AFE=23°,∴∠2=23°,故选:C.【点睛】此题考查平行线的性质,等腰直角三角形的性质,正确运用平行线的性质是解题关键.6.B【解析】【分析】根据题目确定出△ABC和△EDC全等的条件,然后根据全等三角形的判定方法解答即可;【详解】∵C是BD的中点,∴BC=DC,∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵在△ABC和△EDC中,90ABC EDC BC DCACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B . 【点睛】本题主要考查了全等三角形的应用,掌握全等三角形的应用是解题的关键. 7.A 【解析】 【分析】根据平方差公式的结构特点“两数之和与两数之差的乘积等于这两数的平方差”,对各项分析判断即可. 【详解】解:A 、(﹣a +b )(﹣a ﹣b )=(﹣a )2﹣b 2=a 2﹣b 2,符合平方差公式的结构特点,正确; B 、(2a +b )(a ﹣2b ),不是相同的两个数的和与差的积,不符合平方差公式的结构特点,错误;C 、(a ﹣b )(b ﹣a ),两项互为相反数,不符合平方差公式的结构特点,错误;D 、(a +b )(﹣a ﹣b ),两项互为相反数,不符合平方差公式的结构特点,错误; 故选:A . 【点睛】本题考查的是平方差公式的结构特点,熟记公式的结构是解题的关键. 8.B 【解析】 【分析】已知条件有一角和一边,可采用ASA 、AAS 或SAS 判定全等,据此逐项判断即可. 【详解】A. ∠D=∠B ,与已知条件组合可用ASA 判定△ADF ≌△CBE ,不符合题意;B. AD=CB ,与已知条件组合为“SSA ”,不能判定△ADF ≌△CBE ,符合题意;C. 由AE=CF 可得AF=CE ,与已知条件组合可用SAS 判定△ADF ≌△CBE ,不符合题意;D. 由AD// BC可得∠A=∠C,与已知条件组合可用AAS判定△ADF≌△CBE,不符合题意;故选B.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.9.B【解析】【分析】本题问的是关于角的问题,当然与折叠中的角是有关系的,∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)在△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2)则2∠A=∠1+∠2,故选择B项.【点睛】本题考查折叠和三角形内角和的性质,解题的关键是掌握折叠的性质.10.B【解析】【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.考查合并同类项,同底数幂的乘法和幂的乘方,解题关键是熟记运算法则.11.100°【解析】【分析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【详解】如图所示:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=60°+40°=100°.故答案是:100°.【点睛】考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.12.4000000【解析】【分析】运用完全平方公式进行计算即可.【详解】20192-2019×38+361=20192-2×2019×19+192=(2019-19)2=4000000.故答案为:4000000.【点睛】本题考查了完全平方公式.13.5㎝或10㎝【解析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中PQ AB AP BC=⎧⎨=⎩,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中PQ AB AP AC=⎧⎨=⎩,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为:5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.14.①②③【解析】【分析】根据AD是中线可知BD=CD,结合题意从而可证△BDF≌△CDE,继而可知CE=BF,BF∥CE,由于△ABC的两边AB与AC不一定相等,可判断△ABD和△ACD周长相等的对错,进而可以得出答案.【详解】∵AD 是△ABC 的中线,∴BD=CD在△BDF 和△CDE 中BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CDE (SAS )故①正确;∵△BDF ≌△CDE∴BF=CE ,∠FBD=∠ECD故②正确;∵∠FBD=∠ECD∴BF ∥CE (内错角相等两直线平行)故③正确;∵△ABC 中AB 和AC 不一定相等∴△ABD 和△ACD 周长不一定相等故④错误;综上,答案为①②③.【点睛】本题考查的是中线的性质,三角形全等的判定与性质和平行线的判定,能够根据中线得出BD=CD 证得△BDF ≌△CDE 是解题的关键.15.1.3-【解析】【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.12. 【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】解:由题意得,|x-2|+(y+1)2=0,则x-2=0,y+1=0,解得,x=2,y=-1, 则y 1x 2= 故答案为:12 . 【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.17.23; 【解析】【分析】利用树状图法列出所有的分配情况,再看小明和小刚被分配到不同项目组的情况,根据概率公式求解即可.【详解】解:画树状图如图所示:由图可知,共有9种情况,其中小明和小刚被分配到不同项目组有6种情况,根据概率公式,则可知小明和小刚被分配到不同项目组的概率是:61 =93.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.18.30°【解析】【分析】根据全等三角形的性质得到∠DCE=∠ACB=110°,然后利用三角形内角和定理求∠D即可. 【详解】解:∵△ABC≌△DEC,∠E=40°,∴∠DCE=∠ACB=110°,∴∠D=180°-∠E-∠DCE=180°-40°-110°=30°,故答案为:30°.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知三角形内角和为180°是解题关键. 19.40【解析】【分析】直接根据三角形内角和定理解答即可.【详解】∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°−∠A−∠B=180°−100°−40°=40°故答案为:40°【点睛】此题考查三角形内角和定理,难度不大20.32【解析】【分析】根据同底数幂的乘法,底数不变指数相加计算.【详解】解:∵a m =4,a n =8,∴a m +n =a m ×a n =4×8=32. 故答案为:32【点睛】题考查同底数幂的乘法,一定要记准法则才能做题.21.(1)BD CE ⊥;BC CD CE =+;(2)BD CE ⊥成立,数量关系不成立,关系为BC=CE-CD ;(3)DE =【解析】【分析】()1根据条件AB AC =,BAC 90∠=o ,AD AE =,DAE 90∠=o ,判定ABD V ≌()ACE SAS V ,即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE CD BC +=;()2根据已知条件,判定ABD V ≌()ACE SAS V,得出BD CE =,再根据BD BC CD =+,即可得到CE BC CD =+;()3根据条件判定ABD V ≌()ACE SAS V ,得出BD CE =,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,即可解决问题.【详解】()1如图1,BAC DAE 90∠∠==o Q ,BAD CAE ∠∠∴=,在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,B ACE 45∠∠==o ,BCE 454590∠∴=+=o o o ,即BD CE ⊥;由①可得,ABD V ≌ACE V, BD CE ∴=,BC BD CD CE CD ∴=+=+,故答案为BD CE ⊥,BC CD CE =+;()2BD CE ⊥成立,数量关系不成立,关系为BC CE CD =-.理由:如图2中,由()1同理可得,BAC DAE 90∠∠==o Q ,∴BAC CAD DAE CAD ∠∠∠∠+=+即BAD CA ∠∠=E ,∴在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,ACE ABC ∠∠=,AB AC =Q ,ABC ACB 45∠∠∴==o ,BD BC CD ∴=+,即CE BC CD =+,ACE ACB 90∠∠+=o ,BC CE CD ∴=-;BD CE ⊥;()3如图3中,由()1同理可得,BAC DAE 90∠∠==o Q ,BAC BAE DAE BAE ∠∠∠∠∴-=-,即BAD EAC ∠∠=,易证ABD V ≌()ACE SAS V, BD CE 2∴==,ACE ABD 135∠∠==o ,CD BC BD BC CE 8∴=+=+=,∵ACB 45∠=oDCE 90∠∴=o ,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,DE ∴=【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.22.(1)85o ;(2)见解析;(3)EDF A ∠=∠或180EDF A ∠+∠=o【解析】【分析】根据题意可知:(1)通过DE BA P 得到两同位角A DEC ∠=∠,DF CA ∥得到两内错角DEC EDF ∠=∠,然后等量代换.(2)通过延长BA ,构造出新的角BGD ∠,再用等量代换找到内错角EDF BGD ∠=∠,从而证明直线平行.(3)直线BA 与直线AC 相交分成四部分,分别考虑这四部分且在三角形ABC 外部的点,可知只有EDF A ∠=∠或180EDF A ∠+∠=o 这两种情况.【详解】(1)∵DE BA P ,DF CA ∥,∴A DEC ∠=∠,DEC EDF ∠=∠,∵85EDF ∠=o ,∴85A EDF ∠=∠=o ;(2)证明:如图1,延长BA 交DF 于G .∵DF AC P ,∴BAC BGD ∠=∠.又∵EDF BAC ∠=∠,∴EDF BGD ∠=∠.∴DE BA P .(3)EDF A ∠=∠或180EDF A ∠+∠=o证明如下:①按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形) 所以EDF A ∠=∠(平行四边形对角相等)②按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形)所以 EDF FAE ∠=∠(平行四边形对角相等)又因为180FAE BAC ∠+∠=o所以180EDF BAC ∠+∠=o BAC ∠即为原图中的A ∠BAC ∠即为原图中的A ∠,即180EDF A ∠+∠=o故答案为EDF A ∠=∠或180EDF A ∠+∠=o【点睛】本题运用到两直线平行内错角相等,内错角相等两直线平行的知识点。
2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷一、选择题1、下列方程中,是一元一次方程的是( )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +94、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( )A .2B .﹣2C .1D .﹣15、解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .47、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解是___ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC .x +x +1964=xD .x +x +1964=3x10、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②;③;④40m+10=43m+1,其中正确的是( )A .①②B .②④C .②③D .③④ 二、填空题 11、若关于x 的方程32-m x ﹣3m +6=0是一元一次方程,则这个方程的解是12、代数式2a+1与1﹣a 互为相反数,则a=13、在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是______ 14、小华同学在解方程5x ﹣1=( )x+3时,把“( )”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=15、已知与互为倒数,则x 等于 16、一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a △b =ab ﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x +1)=1,则x =三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙进价(元/件) 22 30售价(元/件) 29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(答案)一、选择题1、下列方程中,是一元一次方程的是(B )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( D )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +9解:∵5x ﹣7y =2,∴﹣2﹣7y =﹣5x ,∴选项A 符合题意;∵6x ﹣3=x +4,∴6x ﹣3=4+x ,∴选项B 不符合题意;∵8﹣x =x ﹣5,∴﹣x ﹣x =﹣5﹣8,∴选项C 不符合题意;∵x +9=3x ﹣1,∴3x ﹣1=x +9,∴选项D 不符合题意.故选:A .4、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( ) A .2 B .﹣2 C .1D .﹣1 解:将x=2代入方程可得:1﹣=,解得:a=﹣2,故选:B .5、解方程4x -2=3-x 的正确顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .4解:将x =2代入一元一次方程ax ﹣2=b 得2a ﹣b =2∵3b ﹣6a +2=3(b ﹣2a )+2∴﹣3(2a ﹣b )+2=﹣3×2+2=﹣4即3b ﹣6a +2=﹣4故选:B .7、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解, 则该方程的解是___x=2827_________ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是____1000____cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC.x+x+1964=x D.x+x+1964=3x解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(D)A.①②B.②④C.②③D.③④二、填空题11、若关于x的方程32mx﹣3m+6=0是一元一次方程,则这个方程的解是解:∵关于x的方程3x m﹣2﹣3m+6=0是一元一次方程,∴m﹣2=1,解得:m=3,此时方程为3x﹣9+6=0,解得:x=1,故答案为:x=112、代数式2a+1与1﹣a互为相反数,则a= ﹣213、在有理数范围内定义运算“☆”,其规则是a☆b=a3-b.若x☆2与4☆x的值相等,则x的值是__52____14、小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15、已知与互为倒数,则x等于解:根据题意得:•=1,去分母得:3(x﹣2)=24,即x﹣2=8,解得:x=10,故答案为:1016、一辆慢车从A地开往300 km外的B地,同时,一辆快车从B地开往A地,已知慢车速度为40 km/h,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a△b=ab﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x+1)=1,则x=解:根据题中的新定义得:﹣3(x+1)﹣3(x+1)=1,去括号得:﹣3x﹣3﹣3x﹣3=1,移项合并得:﹣6x=7,解得:x=﹣,故答案为:﹣三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.解:(1)去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?解:设甲从A 地到达B 地走了x 小时,则甲走了10xkm,乙走了6xkm,根据题意可得,10x -6x =8 解得 x =2 则 10x =20(km )答:甲走了2小时,A 、B 两地的距离为20km21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?解:(1)甲商场的费用为:4000+(x -4000)80%=0.8x +800(元);乙商场的费用为:3000+(x -3000)90%=0.9x +300(元).(2)当x =6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300,解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同.22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.。
人教版 七年级数学上册 第4章 几何图形初步 培优训练(含答案)

人教版七年级数学第4章几何图形初步培优训练一、选择题1. 如图所示的几何体属于球的是()2. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm3. 图中的几何体的面数是()A.5B.6C.7D.84. 如图所示的几何体是由一些小正方体组成的,那么从左面看这个几何体得到的图形是()5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. [2019·北京一模]下列几何体中,是圆锥的为()7. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB8. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题11. 如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.13. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.14. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.15. 图中可用字母表示出的射线有条.16. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、作图题17. 如图①②,画出绕虚线旋转一周得到的立体图形.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题19. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?20. 如图,下列各几何体的表面中包含哪些平面图形?21. 计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.22. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.23. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步培优训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】A5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】D7. 【答案】B8. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.13. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同14. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.16. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、作图题17. 【答案】解:如图所示:18. 【答案】解:如图所示.四、解答题19. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.22. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.23. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。
初中数学 人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)

人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)1.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点A、B分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示﹣3和2的两点之间的距离是;数轴上表示x和﹣3两点之间的距离是;(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;(3)当a=时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5﹣3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上表示数a的点与表示﹣2的点之间的距离表示为;(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是;(3)a、b、c、d在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.3.我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A.B两点之间的距离为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A、B之间的距离是(列式表示),如果|AB|=2,那么x的值为;(3)写出|x+1|+|x+2|的最小值是.4.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为﹣20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.5.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B在原点的右边.(Ⅰ)求点A,点B对应的数;(Ⅱ)数轴上点A以每秒1个单位长度出发向左移动,同时点B以每秒3个单位长度的速度向左移动,在点C处追上了点A,求点C对应的数.(Ⅲ)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中,线段的值是否变化?若不变,请说明理由并求其值;若变化,请说明理由.6.一只电子跳蚤在数轴上左右跳动,最开始在数轴上的位置记为A,按如下指令运动:第一次向右跳动一格到A1.第二次在第一次的基础上向左跳动两格到A2.第三次在第二次的基础上向右跳动三格到A3.第四次在第三次的基础上向左跳动四格到A4,以此类推(1)若点A0表示原点,则跳动 10次后到点A10,它的位置在数轴上表示的数是.若每跳一格用时一秒,则跳动10次后到点A10,共用去时间是秒.(2)若跳动100次后到点A100,且所表示的数恰好是50,试求电子跳蚤的A初始位置所表示的数A.7.已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…(1)求出5秒钟后动点Q所处的位置;(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q 从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.8.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?9.如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.10.根据下面给出的数轴,解答下面的问题:(1)请根据图中A、B两点的位置,分别写出它们所表示的有理数(点B在﹣3和﹣2的正中间):A:;B:.(2)观察数轴,与点B的距离为4个单位的点表示的数是.(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.(4)若数轴上M、N两点之间的距离为2018个单位(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:,N:.参考答案1.解:(1)﹣3和2的两点之间的距离是|2﹣(﹣3)|=5;数轴上表示x和﹣3两点之间的距离是|x﹣3|;故答案为:5,|x﹣3|;(2)当﹣4≤a≤2时存在最小值,且最小值=(a+4)+(2﹣a)=6;(3)当a=1时,|a+4|+|a﹣1|+|a﹣2|=5+0+1=6.故当a=1时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值为6.故答案为1,6.2.解:(1)根据题意,得:|3﹣2|=1,|a﹣(﹣2)|=|a+2|,故答案为:1,|a+2|;(2)设点Q表示的点为x,根据题意,得:|x﹣2|=3,∴x﹣2=3,或x﹣2=﹣3,解得:x=5或x=﹣1,故答案为:5或﹣1;(3)根据题意,可知:,①﹣③,得:d﹣c=3④,④﹣③,得:b﹣c=﹣4,∴|b﹣c|=4,故答案为:4.3.解:(1)根据题意,得:|﹣2﹣(﹣5)|=|﹣2+5|=3,|1﹣(﹣3)|=|1+3|=4,故答案为:3,4;(2)根据题意,得AB的距离为:|x﹣(﹣1)|=|x+1|,∵|AB|=2,∴|x+1|=2,即x+1=2或x+1=﹣2,解得:x=1或x=﹣3,故答案为:|x+1|,1或﹣3;(3)当x>﹣1时,|x+1|+|x+2|=x+1+x+2=2x+3>1,当﹣2≤x≤﹣1时,|x+1|+|x+2|=﹣x﹣1+x+2=1,当x<﹣2时,|x+1|+|x+2|=﹣x﹣1﹣x﹣2=﹣2x﹣3>1,综上所述,|x+1|+|x+2|的最小值为1,故答案为:1.4.解:(1)∵P是AB的中点,A、B所对应的数值分别为﹣20和40.∴点P应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20 ∴点P位于原点的右侧,和原点O的距离为10.(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度).故P点所运动的路程是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中7.5≤t≤15,P点经过t秒钟后,在数轴上对应的数值为3t﹣35;③存在.点P接触到点A后调转方向,向B运动时,假设P为AB的中点,由题意,3t﹣35=,解得t=.∴满足条件的t的值为.5.(Ⅰ)解:∵点A在原点的左边,距离原点8个单位长度,∴点A表示的数为﹣8,而|AB|=28,且B在原点的右边,∴点B表示的数为20.即A、B点对应的数分别为﹣8,20.(Ⅱ)解:由题意可设经过x秒后,点B在C处追上了点A,列方程得3x﹣x=28解得x=14因此C点在A点向左14个单位处,即﹣8﹣14=﹣22故C点表示的数为﹣22.(Ⅲ)解:设运动时间为t秒,则NO=20+2t,AM=t,OB=20而P为线段NO的中点,所以OP=(20+2t)=10+t于是故该线段的值不随时间变化而变化,为常数6.解:(1)∵在数轴原点上第一次向右跳动一格,到数1;第二次在第一次基础上向左跳两格,到数﹣1;第三次在第二次的基础上向右跳动三格;第四次在第三次的基础上向左跳四格,∴它跳10次后,它的位置在数轴上表示的数=0+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5.答:它跳10次后,它的位置在数轴上表示的数是﹣5;电子跳蚤跳10次所跳过的格数=1+2+3+4+5+6+7+8+9+10=55,∵它每跳一格用时1秒,∴它跳10次共用去的时间=55×1=55秒.答:它每跳一格用时1秒,它跳10次共用去55秒.故答案为﹣5,55;表示的数为a,则a+1﹣2+3﹣4+…+99﹣100=50.(2)设A∴a+(1﹣2)+(3﹣4)+…+(99﹣100)=50.∴a﹣50=50.∴a=100.表示的数是100.∴点A7.解:(1)∵2×5=10,∴点Q走过的路程是1+2+3+4=10,Q处于:1﹣2+3﹣4=4﹣6=﹣2;(2)①当点A在原点右边时,设需要第n次到达点A,则=20,解得n=39,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+|﹣38|+39,=1+2+3+ (39)==780,∴时间=780÷2=390秒(6.5分钟);②当点A原点左边时,设需要第n次到达点A,则=20,解得n=40,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+39+|﹣40|,=1+2+3+ (40)==820,∴时间=820÷2=410秒(6分钟).8.解:(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是3,此时A,B两点间的距离是5.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是2;此时A,B两点间的距离是1.故答案为3,5,2,1;(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时终点B表示的数为m+n﹣t此时A、B两点间的距离为:AB=|(m+n﹣t)﹣m|=|n﹣t|9.解:(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是,符号是“﹣”,故答案是:﹣.(2)当t=3,t=4时 0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t =3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P 的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t﹣0.3.(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是﹣1.6.此时点P到点A距离是2.6个单位长度,所以r=2.6÷0.3=8.故答案是8(4)根据数轴上两点间的距离公式点M和N的距离等于|m﹣n|,故答案是|m﹣n|.10.解:(1)A:1,B:﹣2.5;(2)在B的左边时,﹣2.5﹣4=﹣6.5,在B的右边时,﹣2.5+4=1.5,所表示的数是﹣6.5或1.5;(3)设点B对应的数是x,则=,解得x=0.5.所以,点B与表示数0.5的点重合;(4)∵M、N两点之间的距离为2018,∴MN==1009,对折点为=﹣1,∴点M为﹣1﹣1009=﹣1010,点N为﹣1+1009=1008.故答案为:(1)1,﹣2.5;(2)﹣6.5或1.5;(3)0.5;(4)﹣1010,1008.。
2022-2023学年浙江七年级数学上学期阶段性复习精练(浙教版)专题4-3 代数式(培优篇)

专题4.3 代数式(培优篇)专项练习一、单选题1.用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a 千克一等毛线的钱去买二等毛线,可以买( )A .43a 千克B .34a 千克C .73a 千克D .74a 千克 2.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .563.当x =(4x 3﹣1997x ﹣1994)2001的值为( ) A .1 B .﹣1 C .22001 D .﹣22001 4.合并同类项m-3m 5m-7m -2019m ++⋅⋅⋅的结果为( )A .0B .-1009mC .-1010mD .以上答案都不对 5.观察算式,探究规律:当n =1时,S 1=13=1=12;当n =2时,S 2=13+23=9=32 ;当n =3时,S 3=13+23+33=36=62;当n =4时,S 4=13+23+33+43=100=102;…那么S n 与n 的关系为( )A .14n 4+12n 3B .14n 4+12n 2C .14n 2(n +1)2D .12n(n +1)26.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下: 若输入的值为π,则10y 的值为( )A .2562551ππ+B .5125111ππ+C .102410231ππ+D .204820471ππ+ 7.把所有偶数从小到大排列,并按如下规律分组:第1组: 2,4第2组: 6,8,10,12第3组: 14,16,18,20,22,24第4组: 26,28,30,32,34,36,38,40……现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左往右数),如A 10=(2,3),则A 2020=( )A .(31,63)B .(32,18)C .(32,19)D .(31,41)8.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个9.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记1123(1)n k k n n ==+++⋅⋅⋅+-+∑,3()(3)(4)()nk x k x x x n =+=++++⋅⋅⋅++∑;已知[]22()(1)22nk x k x k x x m =+-+=++∑,则m+n 的值是( )A .-40B .-5C .-6D .5二、填空题 10.观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2010个单项式是______.第n 个单项式怎样表示________.11.已知28x y +=,7xy =,那么整式321xy x y --+的值为_________.12.阅读下列运算程序,探究其运算规律:a b t =※,且()()1312a b t a b t +=--=+※,※,若2010220=※,则120※等于________. 13.370.1250.2548x x -+-合并同类项后是________. 14.若(x -1)4(x+2)5=a 0+a 1x+a 2x 2+…+ a 9x 9,求:a 1+a 3+a 5+a 7+a 9=________.15.已知P =xy ﹣5x +3,Q =x ﹣3xy +1,若无论x 取何值,代数式2P ﹣3Q 的值都等于3,则y =_____.16.若2520x x -+=,则3227112020x x x --+的值为_________________.17.已知(x +1)2021=a 0+a 1x 1+a 2x 2+a 3x 3+…+a 2021x 2021,则a 2+a 4+…+a 2018+a 2020=_____. 18.如图,将正整数按下图所示规律排列下去,若用有序数对(,)n m 表示n 排从左到右第m 个数.如(4,3)表示9,则(2020,8)表示__________. 19.如图,把五个长为b 、宽为a (b a >)的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为1C ,图2中阴影部分的周长为2C ,若大长方形的长比宽大()6a -,则21C C -的值为______.20.在数学兴趣小组活动中,小明为了求2341111122222n ++++⋯+的值,在边长为1的正方形中,设计了如图所示的几何图形.则(1)23411112222+++的值为_____________ (2)2341111122222n ++++⋯+的值为____________(结果用含n 式子表示). 三、解答题21.计算与化简:(1)3557()()()212212-+-++- (2)2201723(1)9(3)-+⨯--÷- (3)224()2(2)m n n m ++- (4)222252(3)ab a b a b ab ⎡⎤-+-⎣⎦22.已知多项式2212A x my =+-,236B nx y =-+.(1)若2(2)|3|0m n ++-=,化简A B -; (2)若A B +的结果中不含有2x 项以及y 项,求m n mn ++的值.23.已知x 、y 为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※(─4)的值;(2)求〔1※4〕※(-2)的值;(3)探索a ※(b +c )与a ※b +a ※c 的关系,并用等式把它们表达出来.24.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款 元(用含x 的代数式表示).若该客户按方案二购买,需付款 元.(用含x 的代数式表示)(2)若x 等于30,通过计算说明此时按哪种方案更合算.(3)当x =30,你能给出一种更为省钱的购买方案吗?25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯.将以上三个等式的两边分别相加,得: 111111223344556++++⨯⨯⨯⨯⨯. (1)直接写出计算结果:111111223344556++++⨯⨯⨯⨯⨯=________. (2)计算:1111122334(1)n n ++++⨯⨯⨯⨯+. (3)猜想并直接写出:1111133557(21)(21)n n ++++⨯⨯⨯-⨯+=________.(n 为正整数) 26.一个多项式的次数为m ,项数为n ,我们称这个多项式为m 次多项式或者m 次n 项式,例如:322523x y x y xy -+为五次三项式,222232x y xy x -++为二次四项式.(1)22333243xy x y x y -+-+为________次________项式.(2)若关于x 、y 的多项式232A ax xy x =-+,242B bxy x y =-+,已知23A B -中不含二次项,求a+b 的值.(3)已知关于x 的二次多项式,()()3223325a x x x b x x x -++++-在2x =时,值是17-,求当2x =-时,该多项式的值.27.按如下规律摆放五角星: (1)填写下表:(2)直接写出第20个图案的五角星个数为______.(3)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2019个五角星? (4)计算前20个五角星图案中五角星的总个数.28.小明同学在写作业时,不小心将一滴墨水滴在卷子上,遮住了数轴上134-和94之间的数据(如图),设遮住的最大整数是a ,最小整数是b . (1)求23b a -的值.(2)若211132m a a =--,211423n b b =-++,求()()2222352mn m m mn m mn ⎡⎤-----+⎣⎦的值.参考答案1.A【解析】设买1千克的一等毛线花x 元钱,买1千克的二等毛线花y 元钱,根据题意得: 3x=4y ,则43x y =,故买a 千克一等毛线的钱可以买二等毛线43x y =a .故选A .点睛:先设出买1千克的一等毛线花的钱数和买1千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a 千克即可求出答案.2.B【分析】把1x =-代入3238x bx -+计算结果18,变形后得2310a b -+=,整体代入1282b a -+计算即可.解:当1x =-时,323823818ax bx a b -+=-++=,所以2310a b -+=,所以81240a b -+=,则128240242b a -+=+=,故选:B .【点拨】本题考查了已知字母数值,求代数式的值,整体代换求值,掌握整体代换求值是解题的关键.3.B【分析】由题意得(2x−1)2=1994,得到4x 2−4x -1993=0,将原式转化为(4x 3−4x−1993x−1993−1)2001=[x(4x 2−4x−1993)+(4x 2−4x−1993)−1]2001的值,再将4x 2−4x +1=1994代入可得出答案.解:※x =, ※(2x−1)2=1994,※4x 2−4x +1=1994,※4x 2−4x -1993=032001(419971994)x x --32001(44199319931)x x x =----222001[(441993)(441993)1]x x x x x =--+--- =2001(1)-=-1故选:B .【点拨】本题难度较大,需要对要求的式子进行变形,同学们要学会转化的思想,这是数学上很重要的一种思想.4.C【分析】m 与-3m 结合,5m 与-7m 结合,依此类推相减结果为-2m ,得到505对-2m,再进行计算,即可得到结果,解:m-3m 5m-7m -2019m ++⋅⋅⋅=-2m -2m -2m...-2m=-2m×505=1010m即答案为C.【点拨】本题考查了合并同类项,弄清式子的规律确定-2m 的个数是解答本题的关键. 5.C【解析】观察以上结果,1=1,3=1+2,6=1+2+3,10=1+2+3+4,所以S n =(1+2+3+4+⋯⋯+n)2=(n(n+1)2)2= 14n 2(n +1)2。
七年级数学培优补差工作计划(5篇)

七年级数学培优补差工作计划提高优生的自主和自觉学习能力,进一步巩固并提高中等生的学习成绩,帮助后进生取得适当进步,让后进生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成语文基本能力。
培优计划要落到实处,发掘并培养一批语文尖子,挖掘他们的潜能,从培养语文能力入手,训练良好学习习惯,从而形成较扎实的基础和阅读写话能力,并能协助老师进行辅差活动,提高整个班级的语文素养和语文成绩。
制定目标:在这个学期的培优辅差活动中,培优对象能按照计划提高读、说、写的综合语文能力,成绩稳定在____分左右,并协助老师实施辅差工作,帮助后进生取得进步。
辅差对象能按照老师的要求做好,成绩有一定的提高,特别是应对语文考试的能力。
制定内容:培优主要是继续提高学生的阅读能力和写话能力。
介绍或推荐适量课外阅读,让优生扩大阅读面,摄取更多课外知识,尤其是散文化倾向方面,多给他们一定的指导,以期在写作中能灵活运用,提高写话水平,定时安排一定难度的练习任务要求他们完成,全面提高语文能力。
辅差的内容是教会学生敢于做题,会做题,安排比较基础的内容让他们学习,写话至少能写得出,可先布置他们摘抄。
仿写,后独立完成,保证每个后进生有话可说,有文可写。
训练后进生的口头表达能力,堂上创造情境,让后进生尝试说、敢于说、进而争取善于说。
主要措施:l.课外辅导,利用课余时间。
2.采用一优生带一后进生的一帮一方式。
3.请优生介绍学习经验,后进生加以学习。
4.课堂上创造机会,用优生学习思维、方法来影响后进生。
5.对后进生实施多读多写措施;对优生适当增加读写难度,并安排课外作品阅读,不断提高阅读和写作能力。
6.采用激励机制,对后进生的每一点进步都给予肯定,并鼓励其继续进取;在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。
7.充分了解后进生现行学习方法,给予正确引导,朝正确方向发展,保证后进生改善目前学习差的状况,提高学习成绩。
七年级数学期末复习培优提高训练(四)

)
A. 237600毫升 B. 2.376×105毫升 C. 23.8×104毫升
D. 237.6×103毫升
4、甲从A出发向北偏东45度走到点B,乙从点A出发向北偏西30度走到点C ,
则∠BAC等于
()
A、15度 B、75度 C、105度 D、135度
5、规定a b= a, ,b则(6 4)○3等于 ab
七年级数学期末复习培优提高训练(四) (2020-2021学年)
1、下列说法错误的是
( )
A. 0是绝对值最小的有理数 C. 若|x|=|-4|, 那么x=-4
B. 如果x的相反数是-5, 那么x=5 D. 任何非零有理数的平方都大于0
2、如图, 点C在线段AB上, E是AC中点, D是BC中点, 若ED=6, 则线段AB的长为( )
6 (元)
24 a 8 a 解这个方程, 得x=19.2
答: 零售票应按每张19.2元定价, 才符合要求
小结
1.注重备课。要结合课本和教参,完善每一节课的教学内容,对其重新进行审视,将其取舍、增补、 校正、拓展,做到精通教材、驾奴教材,做最好的准备。
参考答案
37 1、C ;2、C;3、B ;4、B;5、A;6、(1) 4
(2)-3;7、x=-2;8、(1)白炽灯(2)节能灯
(3)1000小时; 9、解: 设总票数为a张, 六月份零售票应按每张x元定价.
3
2
a
2a
12 2 a 24 a
五月份: 团体票售出票数为: 5 3 5 ;票款收入为:
A. 6
B. 8
C. 12
D. 16
3、我国是一个严重缺水的国家, 大家应倍加珍惜水资源, 节约用水. 据测试, 拧不紧的水龙头每秒钟会滴
人教版数学初中七年级上期末几何培优提升训练(线与角动点问题)

人教版数学七年级上期末几何培优提升训练(线与角动点问题)一、线段动点1. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则 A ,B 两点之间的距离AB=|a -b |,线段AB 的中点表示的数为2a b 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB= ________,线段AB 的中点表示的数为________ ; ②用含t 的代数式表示:t 秒后,点P 表示的数为 ________;点Q 表示的数为________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.2. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示_______的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.3.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:________ ;用含t的代数式表示点P和点C的距离:PC=________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动的过程中有________ 处相遇,相遇时t=________ 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)4.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A所对应的数为_______,点C所对应的数为_______,p的值为_______;若以C为原点,则p的值为_______ ;(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点O 向右移动a(a>0)个单位,则p的值为_______;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,则p=_______;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.二、角度运动1.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________.(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD 同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.4. 已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE=________°;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF= 12(∠BOE-∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学期末复习培优提高训练(四)
1、下列说法错误的是 ( )
A. 0是绝对值最小的有理数
B. 如果x 的相反数是-5, 那么x=5
C. 若|x|=|-4|, 那么x=-4
D. 任何非零有理数的平方都大于0
2、如图, 点C 在线段AB 上, E 是AC 中点, D 是BC 中点, 若ED=6, 则线段AB 的长为( )
A. 6
B. 8
C. 12
D. 16
3、我国是一个严重缺水的国家, 大家应倍加珍惜水资源, 节约用水. 据测试, 拧不紧的水龙头每秒钟会滴下2滴水, 每滴水约0.05毫升. 若每天用水时间按2小时计算, 那么一天中的另外22小时水龙头都在不断的滴水. 请计算, 一个拧不紧的水龙头, 一个月(按30天计算)浪费水__________(用科学计数法表示).( )
A. 237600毫升
B. 2.376×105毫升
C. 23.8×104毫升
D. 237.6×103
毫升 4、甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C ,
则∠BAC 等于 ( )
A、15度 B、75度 C、105度 D、135度
5、规定a○b= , ,则(6○4)○3等于 ( )
A、4 B、13 C、15 D、30
6、(1)|5|)2()2
13(4322-+---+-= (2)|3||3
12|75.0)431()3(2-÷-⨯⨯-÷-= 7、已知(a -3)2+|b+6|=0,则方程ax=b 的解为_________________.
8、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时
(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?
(3)照明多少时间用两种灯费用相等?(本大题10分)
a b a b +-
9、某音乐厅五月初决定在暑假期间举办学生音乐会, 入场券分为团体票和零售票, 其中团体票占总票数的32, 若提前购票, 则给予不同程度的优惠, 在五月份内, 团体票每张12元, 共售出团体票数的53, 零售票每张16元, 共售出零售票数的一半; 如果在六月份内, 团体票按每张16元出售, 并计划在六月份内售出全部余票, 那么零售票应按每张多少元才能使这两个月的票价收入持平?
参考答案
1、C ;
2、C ;
3、B ;
4、B ;
5、A ;
6、(1)4
37 (2)-3;7、x=-2;8、(1)白炽灯(2)节能灯(3)1000
小时;
9、解: 设总票数为a 张, 六月份零售票应按每张x 元定价.
五月份: 团体票售出票数为: a 52a 3253=⨯;票款收入为: a 5
24a 5212=⨯(元);零售票售出票数为: a 61a 3121=⨯;票款收入为: a 3
8a 6116=⨯(元) 六月份: 团体票所剩票数为:
a 154a 3252=⨯;可收入: a 1564a 15416=⨯(元);零售票所剩票数为: a 61a 3121=⨯;可收入: ax 6
1x a 61=•(元) 由题意, 得ax 6
1a 1564a 38a 524+=+. 解这个方程, 得x=19.2 答: 零售票应按每张19.2元定价, 才符合要求。