专题06超越不等式(方程)型(压轴题解法分析与强化训练)
江苏省2020届三轮复习填空压轴题突破---超越不等式

1江苏省2020届质检填空压轴题分类解析------超越不等式【方法点拨】含指、对函数的不等式,显然不能用常规方法去求解,可以考虑先估根,再利用函数单调性证明,也可以考虑数形结合.【典型题示例】例1 (2020·扬州五月测试·20改编)不等式1ln 0x x x --≤的解集是 . 解法一:显然1x =是方程1ln 0x x x--=一个根 令1()ln f x x x x=--,则22222111112()10x x x f x x x x x ⎛⎫-+ ⎪-+⎝⎭'=+-==> 故()f x 在(0,)+∞单增,且(1)0f =所以不等式1ln 0x x x--≤的解集是(0,1]. 解法二:1ln 0x x x --≤变形为1ln x x x-≤ 设1()f x x x=-,()ln g x x = 而1()f x x x=-在(0,)+∞单减,()ln g x x =在(0,)+∞单增,且图象均过(1,0) 所以不等式1ln 0x x x --≤的解集是(0,1]. 例2 (2016·宿迁三校学情调研·14)已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x )<0的x 的取值范围为 .解析:f (1)=f (e)=0 ∵1(1)()1e x e f x x x---'=-= ∴当(0,1)x e ∈-时,()0f x '<,()f x 在(0,1)e -单减;当(1,)x e ∈-+∞时,()0f x '>,2 ()f x 在(1,)e -+∞单增∴()0f x <的解集是1x e <<令1x e e <<,得01x <<,故f (e x )<0的x 的取值范围为()0,1.【巩固训练】1. 关于x 的不等式2ln 10x x +-≥的解集为___________. 答案:[1,)+∞2.。
2021年中考数学核心考点强化突破方程不等式的实际应用问题含解析

2021年中考数学核心考点强化突破:方程、不等式的实际应用问题类型1 方程(组)、不等式的应用问题1.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2,答:甲队胜了8场,负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5,∵a 为整数,∴a 最小=6,答:乙队在初赛阶段至少要胜6场.2.某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.解:(1)设购买A 种花木x 棵,B 种花木y 棵,则:⎩⎪⎨⎪⎧x +y =10050x +100y =8000,解得:⎩⎪⎨⎪⎧x =40y =60,答:购买A 种花木40棵,B 种花木60棵;(2)设购买A 种花木a 棵,则购买B 种花木(100-a)棵,根据题意,得:100-a≥a,解得:a≤50,设购买总费用为W ,则W =50a +100(100-a)=-50a +10000,∵W 随a 的增大而减小,∴当a =50时,W 取得最小值,最小值为7500元,3.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少 kg?解:(1)设批发西红柿x kg ,西兰花y kg.由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元).答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg ,由题意得(5.4-3.6)a +(14-8)×1520-3.6a8≥1050.解得a ≤100.答:该经营户最多能批发西红柿100 kg.类型2 方程(组)、不等式与函数的应用问题4.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?解:(1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元,市场调节价2.5元.(2)当0≤x≤12时,y =x.当x >12时,y =12+2.5(x -12),即y =2.5x -18.∴y=⎩⎪⎨⎪⎧x (0≤x≤12)2.5x -18(x >12)(3)当x =26时,y =2.5×26-18=65-18=47(元). 答:小黄家三月份应交水费47元.5.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得{x =30,y =27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180.∴y=⎩⎪⎨⎪⎧30x (0<x≤20)21x +180(x >20) (3)设购进玩具z 件(z >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30.所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30.所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30.所以当购进玩具多于20件少于30件,选择购乙种玩具省钱.6.某工厂有甲种原料130 kg ,乙种原料144 kg .现用这两种原料生产出A ,B 两种产品共30件.已知生产每件A 产品需甲种原料5 kg ,乙种原料4 kg ,且每件A 产品可获利700元;生产每件B 产品需甲种原料3 kg ,乙种原料6 kg ,且每件B 产品可获利900元.设生产A 产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A ,B 两种产品的方案有哪几种;(2)设生产这30件产品可获利y 元,写出y 关于x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.解:(1)根据题意得:⎩⎪⎨⎪⎧5x +3(30-x )≤1304x +6(30-x )≤144,解得18≤x≤20,∵x 是正整数,∴x=18、19、20,共有三种方案:方案一:A 产品18件,B 产品12件,方案二:A 产品19件,B 产品11件,方案三:A 产品20件,B 产品10件; (2)根据题意得:y =700x +900(30-x)=-200x +27000,∵-200<0,∴y 随x 的增大而减小,∴x=18时,y 有最大值,y 最大=-200×18+27000=23400元.答:方案一利润最大,最大利润为23400元.。
2025年高考数学一轮复习-泰勒展开式与超越不等式-专项训练【含答案】

2025年高考数学一轮复习-泰勒展开式与超越不等式-专项训练一、基本技能练1.已知a=e0.02,b=1.012,c=ln2.02,则()A.a>b>c B.b>a>cC.a>c>b D.b>c>a2.已知实数a,b,c满足ac=b2,且a+b+c=ln(a+b),则()A.c<a<b B.c<b<aC.a<c<b D.b<c<a3.已知a=sin13,b=13,c=1π()A.c<b<a B.a<b<cC.a<c<b D.c<a<b4.设a=2ln1.01,b=ln1.02,c=1.04-1,则()A.a<b<c B.b<c<aC.b<a<c D.c<a<b5.下列结论中正确的个数为()①sin x<x,x>0;②ln x<x;③e x>x+1.A.0B.1C.2D.36.已知a1,a2,a3,a4成等比数列,且a1+a2+a3=ln(a1+a2+a3+a4),若0<a1<1,则()A.a1<a3,a2<a4B.a1<a3,a2>a4C.a1>a3,a2>a4D.a1>a3,a2<a47.(多选)已知数列{a n}满足a1=2,a n+1=42n a-an,n∈N*,则下列结论正确的是()A.a n>1B.a n+1>a nC.存在无穷多个k∈N*,使a k=23k-2D.1 a1+1a2+…+1a n<18.已知函数f(x)=a e x-ln x-1,证明:当a≥1e时,f(x)≥0. 9.已知函数f(x)=ln x-kx+1.(1)若f(x)≤0恒成立,求实数k的取值范围;(2)<e(n∈N*).二、创新拓展练10.已知函数f(x)=e x,g(x)=ax+1.(1)若f(x)≥g(x)恒成立,求实数a的值;(2)若x∈(0,1),求证:1-ln xf(x)+x-1x<1.参考答案与解析一、基本技能练1.答案A解析因为e x=1+x+x22!+x33!+x44!+…+x nn!+x n+1(n+1)!eθx(0<θ<1),所以e0.02=1+0.02+0.0222+0.0236+…≈1.0202,b=1.012=1.0201,c=ln2.02<1,所以a>b>c,故选A.2.答案A解析设f(x)=ln x-x+1,则f′(x)=1x-1=1-xx,当x∈(0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)≤f(1)=0,即ln x≤x-1,所以ln(a+b)≤a+b-1,所以a+b+c≤a+b-1,即c≤-1,又ac=b2>0,所以a<0,由a+b>0,所以b>-a>0,所以b2>a2,即ac>a2,所以c<a,所以c<a<b.3.答案D解析由sin x=x-x33!+x55!-…+ο(x2n+1),可得x-16x3<sin x<x(x>0),所以sin 13∈,而16253≈3.06<3.14<π,所以53162>1π,即sin 13∈ D.4.答案B 解析显然1.012>1.02,故b <a ,只需比较a ,c 大小即可.考虑函数f (x )=2ln(1+x ),g (x )=1+4x -1,考虑到两者均是比较在x =0附近的数的大小:f (0.01)与g (0.01),所以对两个函数在x =0处进行泰勒展开.ln(1+x )=x -x 22+x 33…+(-1)n -1x n n+ο(x n ),(1+x )α=1+αx +α(α-1)2!x 2+…+α(α-1)…(α-n +1)n !x n +ο(x n ),由上式可得:f (x )=2x -x 2+ο(x 2),g (x )=2x -2x 2+ο(x 2),显然,在x =0附近,f (x )>g (x ),故a >c ,令函数h (x )=ln(1+2x ),由泰勒公式得,h (x )=2x -2x 2+83x 3+ο(x 3),又g (x )=2x -2x 2+4x 3+ο(x 3),在x =ο附近,h (x )<g (x ),所以b <c .综上,b <c <a .故选B.5.答案C 解析令f (x )=x -sin x ,x ∈(0,+∞),则f ′(x )=1-cos x ≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )>f (0)=0,即x -sin x >0,即x >sin x ,x >0,故①正确;令g (x )=x -ln x ,x ∈(0,+∞),则g ′(x )=1-1x =x -1x,所以当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)≥g(1)=1,即x-ln x>0恒成立,所以x>ln x,故②正确;令h(x)=e x-(x+1),h′(x)=e x-1,当x<0时,h′(x)<0,当x>0时,h′(x)>0,所以h(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以h(x)≥h(0)=0,即e x-(x+1)≥0,所以e x≥x+1,当且仅当x=0时取等号,故③错误.故选C. 6.答案A解析设f(x)=ln x-x+1,则f′(x)=1x-1=1-xx,令f′(x)>0,则0<x<1,令f′(x)<0,则x>1,所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以f(x)max=f(1)=0,则f(x)=ln x-x+1≤0,即ln x≤x-1,所以a1+a2+a3=ln(a1+a2+a3+a4)≤a1+a2+a3+a4-1,故a4≥1,又a1,a2,a3,a4成等比数列,且0<a1<1,设其公比为q,则a4a1=q3>1,即q>1,所以a1<a3,a2<a4,故选A.7.答案ABD解析∵a1=2,∴a21-a1=2,a2=42=16>1,则a2n-a n单调递增且大于0,所以42na-an单调递增,所以a n+1>1,即a n>1,故A正确;令y=e x-x-1(x>0),则y′=e x-1≥0,所以y=e x-x-1在(0,+∞)上单调递增,且当且仅当x=0时,y=0,所以y=e x-x-1≥0,即e x≥x+1.因为a2n-a n>0,且42na-an≥e2na-an≥a2n-a n+1,∴a n+1-a n≥(a n-1)2>0,故B正确;∵a 1=2=23×1-2,a 2=16=23×2-2,a 3=416×15>23×3-2,由归纳法可知,a n +1=42n a -an >23n +1,故不存在无穷多个k ∈N *,使a k =23k -2,故C 错误;由a n +1>a 2n -a n +1得1a n +1-1<1a n -1-1a n,即1a n <1a n -1-1a n +1-11a 1+1a 2+…+1a n <1a 1-1-1a 2-1+1a 2-1-1a 3-1+…+1a n -1-1a n +1-1=1a 1-1-1a n +1-1<1,可知D 正确.8.证明当a ≥1e 时,f (x )=a e x -ln x -1≥1e·e x -ln x -1=e x -1-ln x -1,由e x ≥x +1(证明略),得e x -1≥x ,由ln (x +1)≤x (证明略),得ln x ≤x -1,因此e x -1-ln x -1≥x -(x -1)-1=0,当且仅当x =1时等号成立,所以当a ≥1e时,f (x )≥0.9.(1)解由题意得:f (x )定义域为(0,+∞).由f (x )≤0得:k ≥ln x +1x .设g (x )=ln x +1x ,则g ′(x )=-ln x x 2,∴当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )max =g (1)=1,∴k ≥1,即实数k 的取值范围为[1,+∞).(2)证明由(1)知:当k =1,x >1时,f ′(x )=1x -1=1-x x<0,∴f (x )在(1,+∞)上单调递减,∴f (x )<f (1)=0,即ln x <x -1,∴1+13n-1=13n,∴…+<13+132+133+…+13n=31-13=<12,即<12,<e(n∈N*).二、创新拓展练10.(1)解设h(x)=f(x)-g(x)=e x-ax-1,则h′(x)=e x-a.当a≤0时,h′(x)=e x-a>0,h(x)单调递增,h(-1)=e-1+a-1<0,不满足h(x)≥0恒成立;当a>0时,h(x)在x∈(-∞,ln a)上单调递减,在x∈(ln a,+∞)上单调递增,所以h(x)的最小值为h(ln a)=a-a ln a-1≥0,即1-ln a-1a≥0,即ln a+1a-1≤0.设φ(a)=ln a+1a-1,φ′(a)=a-1a2,所以φ(a)在(0,1)上单调递减,在(1,+∞)上单调递增,即φ(a)min=φ(1)=0,故ln a+1a-1≤0的解只有a=1.综上,a=1.(2)证明先证当x∈(0,1)时,e x>x+1恒成立.令t(x)=e x-x-1,t′(x)=e x-1>0,所以t(x)在(0,1)上单调递增,又t(x)>t(0)=0,所以e x>x+1.所以要证1-ln xe x+x-1x<1,即证1-ln xx+1+x-1x<1,即证1-ln x+x2+x-x+1x<x+1,即证ln x-x2+1+1x>0.设F(x)=ln x-x2+1+1x,则F′(x)=1x-2x-1x2=1x2(x-1)-2x<0,所以F(x)在(0,1)上单调递减,所以F(x)>F(1)=1>0,即原不等式成立.所以当x∈(0,1)时,1-ln xf(x)+x-1x<1.。
经典(超越)不等式(解析版)

经典(超越)不等式一、结论(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0且x ≠1)上述两个经典不等式的原型是来自于泰勒级数:e x=1+x +x 22!+⋯+x n n !+e θx(n +1)!x n +1;ln (1+x )=x -x 22+x 33-⋯+(-1)n x n +1n +1+o (x n +1);截取片段:e x ≥x +1(x ∈R )ln (1+x )≤x (x >-1),当且仅当x =0时,等号成立;进而:ln x ≤x -1(x >0)当且仅当x =1时,等号成立二、典型例题1(2023·陕西咸阳·校考模拟预测)已知a =25,b =e -35,c =ln5-ln4,则()A.a >b >cB.a >c >bC.b >a >cD.b >c >a【答案】C【详解】f (x )=e x -1-xf (x )=e x -1,则x ∈0,+∞ ,f (x )>0,x ∈-∞,0 ,f (x )<0,故函数f (x )在-∞,0 单调递减,0,+∞ 单调递增,则f (x )≥f (0)=0则e x -1-x ≥0,即e x ≥1+x 由e x ≥1+x ,∴e -35>25,故b >a 同理可证ln (1+x )≤x又∵ln (1+x )≤x ,∴ln5-ln4=ln 1+14 <14,则b >a >c 故选:C .【反思】对于指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立,该不等式是可以变形使用的:e x≥x +1(x ∈R )-x 替换xe -x≥-x +1,即1ex ≥1-x 当x <1 e x ≤11-x当x >1e x ≥11-x注意使用时x 的取值范围;同样的还可以如下处理:e x ≥x +1(x ∈R )两边同时取对数:x ≥ln (x +1)(x >-1),同样可以变形使用:x ≥ln (x +1)(x >-1)"x -1"替换"x "x -1≥ln x (x >0)左右两边同乘以“-1”1-x ≤-ln x (x >0);1-x ≤-ln x (x >0)⇔1-x ≤ln 1x(x >0)用“1x ”替换“x ”1-1x ≤ln x ⇔x -1x≤ln x 注意使用时x 的取值范围.另外,选择填空题中,涉及到超越不等式可以直接使用,但是注意,解答题中一定要先证后用.2(2023·全国·高三专题练习)已知函数f (x )=e x -x -1.(1)证明:f (x )≥0;(2)证明:1+121+122⋯1+12n<e .【答案】(1)证明见解析(2)证明见解析【详解】(1)f x =e x -1,令f x >0,得x >0;令f x <0,得x <0,所以f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所f x 的最小值为f 0 =0,所以f (x )≥0.(2)由(1)知,当x ∈(0,+∞)时,f (x )>f (0)=0,即e x -x -1>0,即e x >x +1,即x >ln x +1 ,令x =12n ,得ln 1+12n<12n ,所以ln 1+121+122 ⋅⋅⋅1+12n=ln 1+12 +ln 1+122 +⋯+ln 1+12n<12+122+⋯+12n =121-12n 1-12=1-12n <1,故1+121+122⋅⋅⋅1+12n<e .【反思】注意在解答题中e x ≥1+x ,x ≥1+ln x (x >0)等超越不等式,及其变形式,不能直接使用,需要证明后才可以使用,才可以进一步变形得到有利于解题的不等式.三、针对训练举一反三一、单选题1.(2023春·浙江·高三校联考开学考试)设a =12022,b =tan 12022⋅e 12022,c =sin 12023⋅e 12023,则()A.c <b <aB.c <a <bC.a <c <bD.a <b <c【答案】B【详解】设f x =e x -x +1 ,则f x =e x -1,在(0,+∞)时,f (x )>0,在(-∞,0)时,f (x )<0,所以f (x )min =f (0)=0,即e x -x +1 ≥0,所以e x ≥x +1对任意x ∈R 均成立.取x =12022,有e12022>12022+1=20232022,所以12023e 12022>12022.再取x =-12023,可得e -12023>1-12023=20222023,两边取倒数,即e 12023<20232022,所以12023e 12023<12022,又当x ∈0,π2时,设F (x )=x -sin x ,G (x )=tan x -x ,则F(x )=1-cos x >0,G(x )=sin x cos x -1=1-cos 2x cos 2x =sin 2x cos 2x >0,即F (x )和G (x )在0,π2 均递增,所以F (x )>F (0)=0,G (x )>G (0)=0,即x ∈0,π2时,sin x <x <tan x ,所以sin12023⋅e 12023<12023e 12023<12022<12023e 12022<tan 12023⋅e 12022,由tan x 在x ∈0,π2 单调递增,可得tan 12023⋅e 12022<tan 12022⋅e 12022,即c <a <b .故选:B2.(2023秋·江苏苏州·高三常熟中学校考期末)a =e 0.2,b =log 78,c =log 67,则()A.a >b >cB.b >a >cC.a >c >bD.c >a >b【答案】C 【详解】令f (x )=ln (x +1)ln x(x >0)则f (x )=x ln x -(x +1)ln (x +1)x (x +1)ln 2x,显然f (x )<0即f (x )单调递减,所以ln7ln6>ln8ln7,即log 67>log 78,c >b .令g (x )=e x -x -1(x ≥0)则g (x )=e x -1≥0,即g (x )在[0,+∞)上单调递增所以g (x )≥g (0)=0,即e x ≥x +1,所以e 0.2>0.2+1=65令h (x )=x 6-ln xln6则h (x )=16-1x ln6当h (x )>0时,x >6ln6,即h (x )在6ln6,+∞ 上单调递增又h (6)=0,所以当x >6时,h (x )>h (6)=0所以h (7)>h (6)=0,即76-ln7ln6>0即log 67<76,又76<65,所以log 67<76<65<e 0.2,即c <a .综上:a >c >b .故选:C.3.(2023·云南曲靖·统考一模)已知a=e-2,b=1-ln2,c=e e-e2,则()A.c>b>aB.a>b>cC.a>c>bD.c>a>b【答案】D【详解】令f(x)=x-1-ln x,x>0,则f(e)=e-1-ln e=e-2=a,f(2)=2-1-ln2=1-ln2=b,∵f (x)=1-1x =x-1x,∴当x>1时,f (x)>0,f(x)单调递增,∴f(e)>f(2),即a>b,令g(x)=e x-x,则g (x)=e x-1,∴当x>0时,g (x)>0,g(x)单调递增,∴g(e)>g(2),即e e-e>e2-2,所以e e-e2>e-2,即c>a.综上,c>a>b.故选:D.4.(2023·全国·高三专题练习)已知a=e sin1-1,b=sin1,c=cos1,则()A.a<c<bB.a<b<cC.c<b<aD.c<a<b【答案】C【详解】解:当x∈π4,5π4,sin x>cos x,又1∈π4,5π4,所以sin1>cos1,故b>c记f x =e x-x-1,所以f x =e x-1,令f x <0,得x<0,令f x >0,得x>0,所以f x 在-∞,0单调递减,在0,+∞单调递增.所以f x ≥f0 =0,即e x-x-1≥0,当x=0时取等号.所以a=e sin1-1>sin1-1+1=sin1=b,所以c<b<a.故选:C.5.(2023·全国·高三专题练习)已知a>b+1>1则下列不等式一定成立的是()A.b-a>b B.a+1a>b+1bC.b+1a-1<e bln aD.a+ln b<b+ln a【答案】C【详解】取a=10,b=8,则b-a<b,故A选项错误;取a=3,b=13,a+1a=b+1b,则B选项错误;取a=3,b=1,则a+ln b=3,b+ln a=1+ln3<1+ln e2=3,即a+ln b>b+ln a,故D选项错误;关于C选项,先证明一个不等式:e x≥x+1,令y=e x-x-1,y =e x-1,于是x>0时y >0,y递增;x<0时y <0,y递减;所以x=0时,y有极小值,也是最小值e0-0-1=0,于是y=e x-x-1≥0,当且仅当x=0取得等号,由e x≥x+1,当x>-1时,同时取对数可得,x≥ln(x+1),再用x-1替换x,得到x-1≥ln x,当且仅当x=1取得等号,由于a>b+1>1,得到e b>b+1,ln a<a-1,∴a-1ln a>1>b+1e b,即b+1a-1<e bln a,C选项正确.故选:C.6.(2023·全国·高三专题练习)已知实数a,b,c满足ac=b2,且a+b+c=ln a+b,则()A.c<a<bB.c<b<aC.a<c<bD.b<c<a【答案】A【详解】设f x =ln x-x+1,则f x =1x-1=1-xx,当x∈0,1时,f x >0,f x 单调递增,当x∈1,+∞时,f x <0,f x 单调递减,∴f x ≤f1 =0,即ln x≤x-1,所以ln a+b≤a+b-1,所以a+b+c≤a+b-1,即c≤-1,又ac=b2>0,所以a<0,由a+b>0,所以b>-a>0,所以b2>a2,即ac>a2,所以c<a,所以c<a<b.故选:A.7.(2023·全国·高三专题练习)若正实数a,b满足ln a+ln b2≥2a+b22-2,则()A.a+2b=2+14B.a-2b=12-22 C.a>b2 D.b2-4a<0【答案】B到各不等式取等号的条件,解得a,b的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:x-1≥ln x恒成立,且当且仅当x=1时取等号.设f x =x-1-ln x,则f x =1-1 x ,在(0,1)上,f x <0,f x 单调递减;在(1,+∞)上,f x >0,f x 单调递增.故f x min=f1 =1-1-0=0,∴f x =x-1≥ln x恒成立,且当且仅当x=1时取等号.由2a+b22-2≥22a×b22-2=2ab2-1≥2ln ab2=ln a+ln b2,由已知ln a+ln b2≤2a+b22-2,∴ln a+ln b2=2a+b22-2,且2a=b22ab2=1,解得a=12b=2 ,经检验只有B正确,故选:B.8.(2023·四川南充·四川省南充高级中学校考模拟预测)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.二、填空题9.(2022春·广东佛山·高二佛山市顺德区容山中学校考期中)已知对任意x,都有xe2x-ax-x≥1+ln x,则实数a的取值范围是.【答案】(-∞,1]【详解】根据题意可知,x>0,由x⋅e2x-ax-x≥1+ln x,可得a≤e2x-ln x+1x-1x>0恒成立,令f x =e2x-ln x+1x-1,则a≤f x min,现证明e x≥x+1恒成立,设g x =e x-x-1,g x =e x-1,当g x =0时,解得:x=0,当x<0时,g x <0,g x 单调递减,当x>0时,g x <0,g x 单调递增,故x=0时,函数g x 取得最小值,g0 =0,所以g x ≥g0 =0,即e x-x-1≥0⇔e x≥x+1恒成立,f x =e2x-ln x+1x -1=x⋅e2x-ln x-1x-1,=e ln x+2x-ln x-1x -1≥ln x+2x+1-ln x-1x-1=1,所以f x min=1,即a≤1.所以实数a的取值范围是-∞,1.故答案为:-∞,1三、解答题10.(2023·全国·高三专题练习)已知函数f x =e x-a.(1)若函数f(x)的图象与直线y=x-1相切,求a的值;(2)若a≤2,证明f(x)>ln x.【答案】(1)a=2(2)证明见解析(1)解:f(x)=ex-a,∴f′(x)=ex,令f′(x)=1,得x=0,而当x=0时,y=-1,即f(0)=-1,所以f0 =e0-a=-1,解得a=2.(2)证明 ∵a≤2,∴f(x)=ex-a≥ex-2,令φ(x)=ex-x-1,则φ′(x)=ex-1,令φ′(x)=0⇒x=0,∴当x∈(0,+∞)时,φ′(x)>0;当x∈(-∞,0)时,φ′(x)<0,∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(x)min=φ(0)=0,即φ(x)≥0,即ex≥x+1,∴ex-2≥x-1,当且仅当x=0时等号成立,令h(x)=ln x-x+1,则h′x =1x-1=1-xx,令h′(x)=0⇒x=1,∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=0,即h x ≤h1 =0,即ln x≤x-1,∴ln x≤x-1,当且仅当x=1时等号成立,∴ex-2≥x-1≥ln x,两等号不能同时成立,∴ex-2>ln x,即证f(x)>ln x.。
高考含有超越函数压轴题的常用解题策略

高考含有超越函数压轴题的常用解题策略广东省惠州市惠东县惠东中学张海波全国卷近几年压轴题都比较稳定,都是以函数导数为背景而命制的,压轴题中出现的函数都是含有ex型,lnx型,或者ex与lnx两者都含有(我们把这类函数叫做超越函数),所以我们要把握有关这几类超越函数的常见处理方法.策略一超越函数常用变形技巧含有ex型一般变形为:ex×g(x),g(x)为多项式函数;含有lnx型一般变形为:lnx+f(x),f(x)为多项式函数或者xlnx.下面我们简单解释下为何要如此变形,首先要清楚,在解决函数导数问题时有两个个重要的标准:导函数的零点要容易求、导函数的正负要便于判断!以下就含有ex型的超越函数为例来说明.若 f(x)=ex+g(x),则f′(x)=ex+g′(x). 此时f′(x)=ex+g′(x)=0的零点我们是无法准确求出来的(可以就任一高于1次的多项式g(x)进行尝试);但是若f(x)=ex × g(x),则f′(x)=ex(g(x)+g′(x)),此时f′(x)=ex(g(x)+g′(x))=0的根就与ex无关了,并且ex是大于零的.所以ex与一个多项式函数的乘积,不仅导函数的零点易于求得,导函数正负也好判断.例1(2013年辽宁理科第21题节选)已知函数f(x)=(1+x)e-2x,当x∈[0,1],求证:思路如果直接构造函数求导,导函数很复杂,导函数的根和正负无法判断(读者可以自行尝试),则可先等价变形为:指数型ex与某函数的乘积的形式,再来求导解决.证明先证左边.欲证:1-x≤f(x)且x∈[0,1],即(1+x)e-2x≥1-x(此时要注意变形的形式ex与某函数的乘积),则只需证令所以g(x)在[0,1]上是减函数,故g(x)≤ g(0)=1,所以1-x≤f(x)成立.例2 (2010新课标I理科第20题)已知函数f(x)=(x+1)lnx-x+1.(1)略. (2)证明:(x-1)f(x)≥0.思路如果直接求导,导函数非常复杂,无法求出导函数的根,也很难判断导函数正负,所以先要将函数等价变形为:lnx与某个函数之和的形式,然后求导解决!证明 (2)易见,f(x)的定义域是(0,+∞).①当x≥1时,欲证(x-1)f(x)≥0,x-1≥0,即f(x)=(x+1)lnx-x+1≥ 0,即(x+1)lnx ≥ x-1,且令所以g(x)在[1,+∞)为增函数.故g(x)≥ g(1)=0,即故x≥1时,原不等式成立;②当0<x<1时,同理变形可证原不等式也成立(读者可自行完成)..综上所述可得:(x-1)f(x)≥0成立.策略二探根法、设根法(主要针对导函数零点无法求出)例3(2013新课标II理科第21题)已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.解 (1)m=1,增区间(0,+∞),减区间(-1,0).(2)当m≤2时,x+m≤x+2,ln(x+m)≤ln(x+2),-ln(x+m)≥ -ln(x+2),所以f(x)≥ ex-ln(x+2).令而g′(x)的正负和零点都无法求,继续对其导函数求导以g′(x)在 (-2,+∞)单调递增,g′(-1)=e-1-1<0,且g′(0)=1/2> 0,所以存在x0∈ (-1,0),使得g′(x0)=0(设出导函数的根,设根法!)所以当-2< x< x0时,g′(x0) < 0,g(x)单调减,当x ≥ x0时,g′(x0)> 0,g(x)单调增,所以 gmin(x)=g(x0)=ex0-ln(x0+2),又g′(x0)=g(x)>0,又f(x)>g(x),故f(x)>0.点评由于导函数的零点无法求,导函数正负无法判断(且一般其二阶导数恒大于或小于0),采用设根法,整体代入则可判断最小值大于零,本题还可以用常见的重要超越不等式(详见下面的策略三)来解决.策略三利用常见超越不等式放缩,达到化复杂为简单如常见重要不等式:A-G-L不等式等等.我们仅就①给出证明,借助①,不难给出其余不等式的证明.证明令 f(x)=ex-x-1,则f′(x)=ex-1.由f′(x)> 0得x > 0,由f′(x)<0得x <0,所以f(x)在(-∞,0)为减函数,在(0,+∞)为增函数.所以f(x)>f(0)⇔ex-x-1>e0-0-1,所以ex≥x+1.例4(2014新课标I理科第21题)设函数f(x)=曲线y=f(x)在点(1,f(1))处的切线为y=e(x-1)+2.(1)求a,b; (2)证明:f(x)>1.解 (1)a=1,b=2,过程从略.(2)易见,函数f(x)>1的定义域是(0,+∞).要证f(x)>即由不等式,所以只需证:(exlnx+2)>1,即exlnx+1>0.令g(x)=exlnx+1,而g′(x)=elnx+e,由g′(x)=0 解得 x=1.所以 g(x)在(0,1)单调递减,在[1,+∞)单调递增,gmin(x)=g(1)=1.所以g(x)≥1>0,即exlnx+1>0,所以原不等式成立.点评该题主要应用了超越不等式的一个结论○2:ex-1≥x,将题目中的复杂结构变成简单结构了!所以这些不等式取到一个非常重要的作用就是将含有ex、lnx等复杂结构变成简单结构,进而变成容易解决的问题!例5(2013新课标II理科第21题)已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.解 (1)m=1,函数增区间:(0,+∞),减区间:(-1,0),过程从略.(2)由m≤2可得ex-ln(x+m)≥ex-ln(x+2),所以要证:ex-ln(x+m)>0,只需证ex-ln(x+2)>0.由上面重要不等式①:ex≥x+1,所以ex-ln(x+2)≥x+1-ln(x+2),则只需证:x+1-ln(x+2)>0.由重要不等式④:ln(x+1)≤x,则ln(x+2)≤x+1.所以-ln(x+2)≥-(x+1),所以x+1-ln(x+2)>0.所以原不等式成立.点评因此我们只有积累了常见的重要超越不等式,解决这类压轴题的时候才能有一个方向,达到更好的变形,以起到化繁为简的功效,使得够迅速解决出来.另外还要注意题目中出现超越不等式的形式,然后选择恰当的变形方向进行变形.(请读者思考:如何选择恰当的方法放缩不等式?) 策略四分开超越部分,构造两个函数例6(2014新课标I理科第21题)设函数曲线y=f(x)在点(1,f(1))处的切线为y=e(x-1)+2.(1)求a,b; (2)证明:f(x)>1.解 (1)a=1,b=2.(2)函数f(x)的定义域是(0,+∞).要证即证:点评本题将两个复杂的超越函数分开,构造出两个相对简单的超越函数,进而就很容易求出它们的最值,证明出所要的结果.本题还可利用重要不等式放缩来证明(即利用策略三),请读者自行尝试.。
一个超越不等式在解高考压轴题中应用(泰勒公式,源头活水)

一个超越不等式在高考中的应用背景:泰勒公式是一个用函数在某点的信息描述其附近取值的公式,是用(无限或者有限)若干连加式(级数)来表示一个函数,这些相加的项由函数在某一点的导数求得。
在导数存在的情况下,我们规定:函数()f x 的导数称为()f x 的一阶导数,记为'()f x ;'()f x 的导数称为()f x 的二阶导数,记为''()f x ;''()f x 的导数称为()f x 的三阶导数,记为'''()f x ;'''()f x 的导数称为()f x 的四阶导数,记为(4)(1)(),,()n f x f x -的导数称为()f x 的n 阶导数,记为(n)()f x 。
在上述符号定义下,有下面的泰勒公式成立:泰勒公式:若函数()f x 在点0x 的某邻域内有定义,在0x 处存在n 阶导数,则在0x 处附近有(n)23000000000''()'''()()()()'()()()()()2!3!!n f x f x f x f x f x f x x x x x x x x x n =+-+-+-++-+ 若00x =,上述泰勒公式即为 (n)23''(0)'''(0)(0)()(0)'(0)2!3!!n f f f f x f f x x x x n =+⋅+⋅+⋅++⋅+对于函数()e x f x =,在00x =处的泰勒展开式如下:麦克劳林展开式:211!2!!nx x x x e n =+++++下面以此出发,演绎出一些常用的不等式。
当01x <<时,有1.2.3.4. 1加强后有5.6.4加强后有7.例题讲解:例1.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x .证明:当1ea ≥时,()0≥f x .例2. (2013新课标Ⅱ)已知函数()()ln xf x e x m =-+ (Ⅱ)当2m ≤时,证明()0f x >.一、不等式1x e x ≥+的应用:例3.(2010新课标)设函数()2()1x f x x e ax =--,若当x ≥0时()f x ≥0,求a 的取值范围.例4.设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.例5、设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.例6、设函数1()ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.二、不等式ln(1)(1)x x x +<>- 的应用例7、(2017新课标Ⅲ)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值.三、不等式ln(1)(1)1x x x x x ≤+≤>-+ 的应用 例8、(2016年全国III 卷)设函数()ln 1f x x x =-+. (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x -<<例9、(2013新课标Ⅱ)已知函数()()ln xf x e x m =-+ (Ⅱ)当2m ≤时,证明()0f x >.例10、(2010全国I )已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥公式组: 2ln(1)(1)ln(1)ln(11111ln ln 1(011)11ln(1))1x n x e x x x x x x x xx x x x x x x xx x +<<+++++=-<=--+<-<--=+++<+<<<+①②③④。
高考数学之冲破压轴题讲与练 专题06 函数、导数与数列、不等式的综合应用【解析版】

第一章函数与导数专题06 函数、导数与数列、不等式的综合应用【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.1.数列不等式问题,通过构造函数、应用函数的单调性或对不等式进行放缩,进而限制参数取值范围.如2.涉及等差数列的求和公式问题,应用二次函数图象和性质求解.3.涉及数列的求和问题,往往要利用“错位相减法”、“裂项相消法”等,先求和、再构造函数.【压轴典例】例1.(2018·浙江高考真题)已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.例2.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈例3.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =,当k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 例4.(2010·湖南高考真题)数列中,是函数的极小值点(Ⅰ)当a=0时,求通项; (Ⅱ)是否存在a ,使数列是等比数列?若存在,求a 的取值范围;若不存在,请说明理由. 【答案】(1);(2)详见解析【解析】 易知.令.(1)若,则当时,单调递增;当时,单调递减; 当时,单调递增.故在取得极小值.由此猜测:当时,.下面先用数学归纳法证明:当时,.事实上,当时,由前面的讨论知结论成立.假设当时,成立,则由(2)知,,从而,所以.故当时,成立.于是由(2)知,当时,,而,因此.综上所述,当时,,,.(Ⅱ)存在,使数列是等比数列.事实上,由(2)知,若对任意的,都有,则.即数列是首项为,公比为3的等比数列,且.而要使,即对一切都成立,只需对一切都成立.记,则令,则.因此,当时,,从而函数当时,可得数列不是等比数列.综上所述,存在,使数列是等比数列,且的取值范围为.例5.(2017·浙江高考真题)已知数列{}n x 满足: ()()*1n n 1n 1x =1x x ln 1x n N ++=++∈, 证明:当*n N ∈时 (I )n 1n 0x x +<<;(II )n n 1n 1n x x 2x -x 2++≤; (III) n n 1n-211x 22-≤≤【答案】(I )见解析;(II )见解析;(Ⅲ)见解析. 【解析】(Ⅰ)用数学归纳法证明: 0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则()110ln 10k k k x x x ++<=++≤,矛盾,故10k x +>. 因此()*0n x n N >∈.所以()111ln 1n n n n x x x x +++=++>,因此()*10n n x x n N +<<∈. (Ⅱ)由()11ln 1n n n x x x ++=++得,()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++≥,()()22'ln 10(0)1x x f x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()()0f x f ≥=0,因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=≥,故()*1122n n n n x x x x n N ++-≤∈. (Ⅲ)因为()11111ln 12n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥, 由1122n n n n x x x x ++≥-,得111112022n n x x +⎛⎫-≥-> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫-≥-≥⋅⋅⋅≥-= ⎪ ⎪⎝⎭⎝⎭, 故212n n x -≤.综上,()*121122n n n x n N --≤≤∈. 例6.(2019·湖南高考模拟(理))设函数()ln(1)(0)f x x x =+≥,(1)()(0)1x x a g x x x ++=≥+.(1)证明:2()f x x x ≥-.(2)若()()f x x g x +≥恒成立,求a 的取值范围; (3)证明:当*n N ∈时,22121ln(32)49n n n n-++>+++L . 【答案】(1)见解析;(2)(,1]-∞;(3)见解析. 【解析】(1)证明:令函数()()2h x ln x 1x x =+-+,[)x 0,∞∈+,()212x xh x 2x 101x 1x+=+=++'-≥,所以()h x 为单调递增函数,()()h x h 00≥=, 故()2ln x 1x x +≥-.(2)()()f x x g x +≥,即为()axln x 11x+≥+, 令()()axm x ln x 11x=+-+,即()m x 0≥恒成立, ()()()()22a 1x ax 1x 1a m x x 11x 1x +-+-=-=++'+, 令()m x 0'>,即x 1a 0+->,得x a 1>-.当a 10-≤,即a 1≤时,()m x 在[)0,∞+上单调递增,()()m x m 00≥=,所以当a 1≤时,()m x 0≥在[)0,∞+上恒成立;当a 10->,即a 1>时,()m x 在()a 1,∞-+上单调递增,在[]0,a 1-上单调递减, 所以()()()min m x m a 1m 00=-<=, 所以()m x 0≥不恒成立.综上所述:a 的取值范围为(],1∞-. (3)证明:由(1)知()2ln x 1x x +≥-,令1x n=,*n N ∈,(]x 0,1∈, 2n 1n 1ln n n +->,即()2n 1ln n 1lnn n-+->,故有ln2ln10->,1ln3ln24->, …()2n 1ln n 1lnn n-+->, 上述各式相加可得()212n 1ln n 149n-+>+++L . 因为()()22n 3n 2n 1n 10++-+=+>,2n 3n 2n 1++>+,()()2ln n 3n 2ln n 1++>+,所以()2212n 1ln n 3n 249n-++>+++L . 例7.(2018·福建省安溪第一中学高三期中(文))公差不为零的等差数列中,,,成等比数列,且该数列的前10项和为100,数列的前n 项和为,且满足.Ⅰ求数列,的通项公式;Ⅱ令,数列的前n 项和为,求的取值范围.【答案】(I ),;(II ).【解析】Ⅰ依题意,等差数列的公差,,,成等比数列,,即,整理得:,即,又等差数列的前10项和为100,,即,整理得:,,;,,即,当时,,即,数列是首项为1、公比为2的等比数列,;Ⅱ由可知,记数列的前n项和为,数列的前n项和为,则,,,,,,记,则,故数列随着n的增大而减小,又,,.例8.(2019·江苏高考模拟)已知数列满足(),().(1)若,证明:是等比数列;(2)若存在,使得,,成等差数列.① 求数列的通项公式;② 证明:.【答案】(1)见解析;(2)①,②见解析【解析】(1)由,得,得,即,因为,所以,所以(),所以是以为首项,2为公比的等比数列.(2)① 设,由(1)知,,所以,即,所以.因为,,成等差数列,则,所以,所以,所以,即.② 要证,即证,即证.设,则,且,从而只需证,当时,.设(),则,所以在上单调递增,所以,即,因为,所以,所以,原不等式得证.【压轴训练】1.(黑龙江省哈尔滨三中高考模拟)已知1(1)32(1,2)n n n b b a b n b--+-=>≥,若对不小于4的自然数n ,恒有不等式1n n a a +>成立,则实数b 的取值范围是__________. 【答案】3+∞(,) 【解析】由题设可得1(1)(1)32(1)32n n n b b n b b b b-+-+--+->,即22(1)341n b b b ->-+,也即(1)31n b b ->-对一切4n ≥的正整数恒成立,则3141b b b -<≥-,即31444311b b b b -⇒---,所以3b >,应填答案(3,)+∞. 2.(2019·山东济南一中高三期中(理))(1)已知函数的图象经过点,如图所示,求的最小值;(2)已知对任意的正实数恒成立,求的取值范围.【答案】(1)最小值,当且仅当时等号成立;(2)【解析】 ⑴函数的图象经过点,当且仅当时取等号 ⑵① 令,,当时,,递增当时,,递减代入时,②,令,,,综上所述,的取值范围为3.(2019·桃江县第一中学高三月考(理))已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,求n的最小值.【答案】6【解析】∵,∴,∵,∴,即,∴,∵,∴,∴,∴,∴,∴数列为等比数列,∴,∴,即,所以n的最小值为6.4.(2019·福建省漳平第一中学高三月考(文))已知数列的首项,前项和满足,.(1)求数列通项公式;(2)设,求数列的前项为,并证明:.【答案】(1);(2)见解析【解析】 (1)当时,,得. 又由及得,数列是首项为,公比为的等比数列,所以.(2),①②①②得: ,所以,又,故,令,则,故单调递减,又,所以恒成立,所以.5.(2019·江苏高考模拟(文))已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 6.(2019·黑龙江高三月考(理))已知数列的前n 项和为, 其中,数列满足.(1)求数列的通项公式;(2)令,数列的前n 项和为,若对一切恒成立,求实数k 的最小值.【答案】(1),;(2)【解析】 (1)由可得,两式相减得: ,又由可得,数列是首项为2,公比为4的等比数列,从而,于是.(2)由(1)知,于是,依题意对一切恒成立,令,则由于易知,即有,∴只需,从而所求k的最小值为.7.(2018·浙江高考模拟)已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.8.(2018·浙江镇海中学高三期中)已知数列的前项和为,且,(1)求证:数列为等比数列,并求出数列的通项公式;(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.【答案】(1)证明略;(2)【解析】证明:(1)已知数列{a n}的前n项和为S n,且,①当n=1时,,则:当n≥2时,,②①﹣②得:a n=2a n﹣2a n﹣1﹣+,整理得:,所以:,故:(常数),故:数列{a n}是以为首项,2为公比的等比数列.故:,所以:.由于:,所以:(常数).故:数列{b n}为等比数列.(2)由(1)得:,所以:+(),=,=,假设存在实数λ,对任意m,n∈N*,不等式恒成立,即:,由于:,故当m=1时,,所以:,当n=1时,.故存在实数λ,且.9.(2019·宁夏银川一中高三月考(理))(1)当时,求证:;(2)求的单调区间;(3)设数列的通项,证明.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)的定义域为,恒成立;所以函数在上单调递减,得时即:(2)由题可得,且.当时,当有,所以单调递减,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递减,当有,所以单调递增,(3)由题意知.由(1)知当时当时即令则,同理:令则.同理:令则以上各式两边分别相加可得:即所以:10.(2019·北京人大附中高考模拟(理))已知数列{a n}满足:a1+a2+a3+…+a n=n-a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n-1}是等比数列;(Ⅱ)令b n=(2-n)(a n-1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【答案】(Ⅰ)见解析. (Ⅱ).【解析】(Ⅰ)由题可知:,①,②②-①可得.即:,又.所以数列是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)可得,∴.由可得,由可得.所以,,故有最大值.所以,对任意,都有,等价于对任意,都有成立.所以,解得或.所以,实数的取值范围是.11.(2019·江苏高三月考)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,…,(,)为等差数列,求的最大值.【答案】(1),,;(2)详见解析;(3)3.【解析】(1)由,对任意的正整数,恒成立取,得,即,得.取,,得,取,,得,解得,.(2)取,得,取,得,两式相除,得,即,即.由于,所以对任意均成立,所以是首项为4,公比为2的等比数列,所以,即.时,,而也符合上式,所以.因为(常数),所以是等比数列.(3)由(2)知,.设,,成等差数列,则.即,整理得,.若,则,因为,所以只能为2或4,所以只能为1或2.若,则.因为,故矛盾.综上,只能是,,,成等差数列或,,成等差数列,其中为奇数.所以的最大值为3.12.(2019·上海高考模拟)已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.⑴求,,并猜想不要求证明);⑵令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;⑶已知数列满足:,数列满足:,求证:.【答案】⑴,,;⑵;⑶详见解析【解析】,猜想,由,,,,对任意恒成立⑶证明:,记,则,记,则,当时,可知:,13.(2019·广西高考模拟(理))已知函数2()2ln 1()f x ax x x a =--∈R .(1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析 【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 14.(2019·宁夏高考模拟(文))已知函数()()ln 1(0)f x ax x a =->.()1求函数()y f x =的单调递增区间; ()2设函数()()316g x x f x =-,函数()()h x g x =' . ①若()0h x ≥恒成立,求实数a 的取值范围;②证明:()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈【答案】(1)单调递增区间为[)1,+∞.(2)①(]0,e .②见证明 【解析】()10a >,0x >.()()1'ln 1ln 0f x a x ax a x x=-+⋅=≥. 解得1x ≥.∴函数()y f x =的单调递增区间为[)1,+∞.()2函数()()316g x x f x =-,函数()()21h =x ln 2x g x a x '=-.()'ah x x x=-①,0a ≤时,函数()h x 单调递增,不成立,舍去; 0a >时,()('x x a h x x xx+=-=,可得x =()h x 取得极小值即最小值,()11ln 022h x ha a a ∴≥=-≥,解得:0a e <≤. ∴实数a 的取值范围是(]0,e .②证明:由①可得:a e =,1x ≥时满足:22ln x e x ≥,只有1x =时取等号.依次取x n =,相加可得:()222221232ln1ln2ln ln(12)en e n n +++⋯+>++⋯⋯+=⨯⨯⋯.因此()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈15.(2019·黑龙江高考模拟(理))已知函数2()2ln 2(1)(0)a f x ax x a a x-=-+-+>. (1)若()0f x ≥在[1,)+∞上恒成立,求实数a 的取值范围; (2)证明:11113521n ++++>-L *1ln(21)()221n n n N n ++∈+.【答案】(1)[1,)+∞;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,+∞,()2222222a ax x a f x a x x x--+-=--=' ()221a a x x a x -⎛⎫-- ⎪⎝⎭=. ①当01a <<时,21aa->, 若21a x a -<<,则()0f x '<,()f x 在21,a a -⎡⎫⎪⎢⎣⎭上是减函数,所以21,a x a -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x ≥在[)1,+∞上不恒成立. ②当1a ≥时,21aa-≤,当1x >时,()0f x '>,()f x 在[)1,+∞上是增函数,又()10f =,所以()0f x ≥. 综上所述,所求a 的取值范围是[)1,+∞.(2)由(1)知当1a ≥时,()0f x ≥在[)1,+∞上恒成立.取1a =得12ln 0x x x --≥,所以12ln x x x-≥. 令21121n x n +=>-,*n N ∈,得2121212ln 212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭, 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭. 上式中1,2,3,,n n =L ,然后n 个不等式相加, 得到()11111ln 213521221n n n n ++++>++-+L . 16.(2019·江苏高考模拟)已知数列{}n a ,12a =,且211n n n a a a +=-+对任意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+L (n N *∈); (2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满足211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+L 成立 下证:当1n k =+时,112211k k k k a a a a a a +-+=+L 成立. 因为()211211111k k k k k a a a a a +++++=-+-+=()()11221112211111k k k k k k k k a a a a a a a a a a a a +--+--=+=++-L L即:当1n k =+时,112211k k k k a a a a a a +-+=+L 成立 由①、②可知,112211n n n n a a a a a a +--=+L (n *N ∈)成立. (2)(ⅰ)当1n =时,221221311a >=-=++成立,当2n =时,()2322222172131112a a a a a =-+=-+=>⨯>++成立,(ⅱ)假设n k =时(3k ≥),结论正确,即:11kk a k +>+成立 下证:当1n k =+时,()1211k k a k ++>++成立.因为()()2211112111111kkkk k k k k k a a a a a k k kk +++++-+==-+>++=++要证()1211k k a k ++>++,只需证()12111k k k k k k +++>++只需证:()121k k k k ++>,只需证:()12ln ln 1k k k k ++>即证:()()12l l n n 10k k k k -++>(3k ≥) 记()()()2ln 11ln h x x x x x -++=∴()()()()2ln 1112ln 11ln ln x x x x h x +-++=-++⎡⎤⎦=⎣'21ln 1ln 12111x x x x ⎛⎫=+=++-+ ⎪++⎝⎭当12x +≥时,1111ln 121ln 221ln 1ln 10122x x e ⎛⎫⎛⎫++-+≥+-+=+>+= ⎪ ⎪+⎝⎭⎝⎭所以()()()2ln 11ln h x x x x x -++=在[)1,+∞上递增, 又()6423ln34ln3ln 34ln729ln2564l 0n h ⨯-=-=->=所以,当3x ≥时,()()30h x h ≥>恒成立. 即:当3k ≥时,()()30h k h ≥>成立.即:当3k ≥时,()()12l l n n 10k k k k -++>恒成立. 所以当3k ≥,()1211k k a k ++>++恒成立.由(ⅰ)(ⅱ)可得:对任意的正整数n *∈N ,不等式11nn a n +>+恒成立,命题得证.。
高考数学压轴专题新备战高考《不等式》专项训练解析附答案

【最新】数学高考《不等式》专题解析一、选择题1.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.2.若实数,x y满足不等式组2,36,0,x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩则3x y+的最小值等于()A.4B.5C.6D.7【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小, 所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.3.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()223f x x =+D .()42xx f x e e=+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案.A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2222333f x x x x ==++++, 233x +≥,故()433f x ≥,C 错误; D. ()422422xx f x e e =+-≥-=,当4xxe e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知函数())22log 1f x x x =+,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】 2210,x x x x x x +≥-=所以定义域为R ,因为()22log 1f x x x =++,所以()f x 为减函数 因为()22log 1f x x x=++,())22log 1f x x x -=+,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.6.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式2133tan tan ββ≤=+,当且仅当tan β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.7.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.8.已知x 、y 满足约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y =+,则实数z 的最小值为( )AB .25C .12D .2【答案】C 【解析】 【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y +的最小值,进而可得出实数z 的最小值. 【详解】作出不等式组122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min2122x y⎛⎫+== ⎪ ⎪⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.9.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .2B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.10.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.13.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.14.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18 B .17 C .16 D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.15.在ABC ∆中,22223sin a b c ab C ++=,则ABC ∆的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 【答案】D【解析】【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫- ⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案.【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=- ⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭ 所以03C π-=,即3C π=,又a b =, 所以ABC ∆是等边三角形,故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.16.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )ABC.D .172【答案】A【解析】【分析】 先作可行域,再根据图象确定MN 的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.17.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( )A .10B .9C .8D .7 【答案】B【解析】【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由2x y xy +=得:211x y+= ()212222225529x y x y x y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.18.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A.169πB.89πC.1627πD.827π【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r,高为x,体积为V,则由题意可得323r x-=,332x r∴=-,∴圆柱的体积为23()(3)(02)2V r r r rπ=-<<,则33333163331616442()(3)()9442939r r rV r r r rπππ++-=-=g g g g….当且仅当33342r r=-,即43r=时等号成立.∴圆柱的最大体积为169π,故选:A.【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.19.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C 相切于点2,2,(2,2-,(2,2,2,2-, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.20.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A.855B.8C.16515D.163【答案】D【解析】【分析】222424512x yx y----=⨯+,而222412x y--+表示点(,)x y到直线240x y--=的距离,作出可行域,数形结合即可得到答案.【详解】因为222424512x yx y----=⨯+,所以24x y--可看作为可行域内的动点到直线240x y--=的距离的5倍,如图所示,点44(,)33A到直线240x y--=的距离d最小,此时224424333512d-⨯-==+所以24x y--1653d=.故选:D.【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 超越不等式(方程)型
[真题再现]
例1 (2020·南京三模·20改编)已知函数2e ()x
f x x ax a
=-+(a ∈R),其中e 为自然对数的底数,若函数()f x 的定义域为R ,且(2)()f f a >,求a 的取值范围.
【解析】由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4.
方法1(讨论单调性)
由f (x )=e x x 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2
. ①当a =2时,f (2)=f (a ),不符题意.
②当0<a <2时,
因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,
所以f (a )>f (2),不符题意.
③当2<a <4时,
因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减,
所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4).
方法2(转化为解超越不等式,先猜根再使用单调性)
由f (2)>f (a ),得e 24-a >e a a
.因为0<a <4,所以不等式可化为e 2>e a a (4-a ). 设函数g (x )=e x x
(4-x )-e 2, 0<x <4. 因为g'(x )=e x
·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减. 又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4).
例2(2016·宿迁三校学情调研·14)已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数
的底,则满足f (e x )<0的x 的取值范围为 .
【解析】易得f (1)=f (e)=0,∵1(1)()1e x e f x x x
---'=-= ∴当(0,1)x e ∈-时,()0f x '<,()f x 在(0,1)e -单减;当(1,)x e ∈-+∞时,()0f x '>,()f x 在(1,)e -+∞单增,∴()0f x <的解集是1x e <<
令1x e e <<,得01x <<,故f (e x )<0的x 的取值范围为()0,1.
例3(2020·扬州五月测试·20改编)不等式
1
ln0
x x
x
--≤的解集是
.
【解法一】显然1
x=是方程
1
ln0
x x
x
--=一个根
令
1
()ln
f x x x
x
=--,则
2
2
222
1
1
1112
()10
x
x x
f x
x x x x
⎛⎫
-+
⎪
-+⎝⎭
'=+-==>故()
f x在(0,)
+∞单增,且(1)0
f=,所以不等式
1
ln0
x x
x
--≤的解集是(0,1].【解法二】
1
ln0
x x
x
--≤变形为
1
ln
x x
x
-≤设
1
()
f x x
x
=-,()ln
g x x
=而
1
()
f x x
x
=-在(0,)
+∞单减,()ln
g x x
=在(0,)
+∞单增,且图象均过(1,0)所以不等式
1
ln0
x x
x
--≤的解集是(0,1].
例4 方程33
123340
x x x
+++++=的根是.
【解析】原方程可化为()()
33
1123230
x x x x
+++++++=
设3
()
f x x x
=+,易得其为R上的单增奇函数,()()
1230
x x
+++=,
4
3
x=-为所求. [强化训练]
1.(2020·北京·6)已知函数()21
x
f x x
=--,则不等式()0
f x>的解集是().A. (1,1)
- B. (,1)(1,)
-∞-+∞ C. (0,1) D. (,0)(1,)
-∞⋃+∞
【解析】因为()21
x
f x x
=--,所以()0
f x>等价于21
x x
>+,
在同一直角坐标系中作出2x
y=和1
y x
=+的图象如图:
两函数象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.
所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.
2. 关于的不等式的解集为___________.
【答案】[1,)+∞
3. 方程e eln e 0x x x +-=的根是___________.
【解析】设()e eln x x x x e ϕ=+-,则e ()(1)e 0x x x x
ϕ'=++>,所以()x ϕ单调递增, 因为(1)0ϕ=,所以1x =.
4.已知α、β分别是方程510x x ++=
、10x +
=的根,则α+β的值是 . 【答案】-1
5.已知实数x 、y
满足(
1x y =,则2234662020x xy y x y ----+的值是 .
【提示】两边取自然对数得(
(ln ln 0x y +++=
设(()ln f x x =+,则易得其为R 上的单增奇函数
所以0x y +=,
故2234662020()(4)6()20202020x xy y x y x y x y x y ----+=+--++=. x 2ln 10x x +-≥。