最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

合集下载

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (26)

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (26)

一、选择题(共10题) 1. 下列计算正确的是 ( ) A . x 2+x 2=x 4 B . (2x )3=6x 3C . (−2a −3)(2a −3)=9−4a 2D . (2a −b )2=4a 2−2ab +b 22. 若 3x =15,3y =5,则 3x−y 等于 ( ) A . 5 B . 3 C . 15 D . 103. 计算 (a −1)2 正确的是 ( ) A .a 2−a +1 B .a 2−2a +1 C .a 2−2a −1 D .a 2−14. 计算 (m −2)(m +2)(m 2+4)−(m 4−16) 的结果为 ( ) A . 0 B . 4m C . −4mD . 2m 45. 已知 (m −53)(m −47)=24.则 (m −53)2+(m −47)2 的值为 ( ) A . 84 B . 60 C . 42 D . 126. 任何一个正整数 n 都可以进行这样的分解:n =s ×t (s ,t 是正整数,且 s ≤t ),如果 p ×q 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p ×q 是 n 的最佳分解,并规定:F (n )=pq .例如 18 可以分解成 1×18,2×9,3×6 这三种,这时就有 F (18)=36=12,给出下列关于 F (n ) 的说法:① F (2)=12,② F (48)=13;③ F (n 2+n )=nn+1;④若 n 是一个完全平方数,则 F (n )=1,其中正确说法的个数是 ( ) A . 4B . 3C . 2D . 17. 如图所示的图形可以直接验证的乘法公式是 ( )A . a (a +b )=a 2+abB . (a +b )(a −b )=a 2−b 2C . (a −b )2=a 2−2ab +b 2D . (a +b )2=a 2+2ab +b 28. 我国宋朝数学家杨辉 1261 年的著作《详解九章算法》给出了在 (a +b )n (n 为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按 a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则 (x +1)2019 展开式中含 x 2018 项的系数是 ( )(a +b )0=1,(a +b )1=a +b (a +b )2=a 2+2ab +b2(a +b )3=a 3+3a 2b +3ab 2+b3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 11 1 12 1 13 3 1 14 6 4 1⋯⋯⋯⋯ A . 2016 B . 2017 C . 2018 D . 20199. 已知 a =2019x +2020,b =2019x +2021,c =2019x +2022,则多项式 a 2+b 2+c 2−ab −bc −ca 的值为 ( ) A . 0 B . 1 C . 2 D . 310. 如图,大正方形的边长为 m ,小正方形的边长为 n ,若用 x ,y 表示四个长方形的两边长(x >y ),观察图案及以下关系式:① x −y =n ;② xy =m 2−n 22;③ x 2−y 2=mn ;④ x 2+y 2=m 2+n 22.其中正确的关系式有 ( )A .①②B .①③C .①③④D .①②③④二、填空题(共7题)11. 如图,用大小相同的小正方形拼大正方形,拼第 1 个正方形需要 4 个小正方形,拼第 2 个正方形需要 9 个小正方形 ⋯,按这样的方法拼成的第 (n +1) 个正方形比第 n 个正方形多 个小正方形.12. 若 a =20180,b =2017×2019−20182,c =(−45)2017×(54)2018,则 a ,b ,c 的大小关系用“<”连接为 .13.观察探索:(x−1)(x+1)=x2−1,(x−1)(x2+x+1)=x3−1,(x−1)(x3+x2+x+1)=x4−1,(x−1)(x4+x3+x2+x+1)=x5−1.根据规律填空:(x−1)(x n+x n−1+⋯+x+1)=.(n为正整数)14.已知a2b2+a2+b2=10ab−16,则a+b的值为.15.计算下列各式然后回答问题:(x+3)(x+4)=;(x+3)(x−4)=;(x−3)(x+4)=;(x−3)(x−4)=.(1)根据以上的计算总结出规律:(x+m)(x+n)=;(2)运用(1)中的规律,直接写出下列各式的结果:① (a+2)(a+3)=;② (m+5)(m−2)=;③ (m+3)(m−3)=;④ (m−3)(m−3)=.16.计算:(a−1)2(a+1)2=.17.计算:(a5−a3)÷a2=.三、解答题(共8题)18.已知长方形的面积为6a2b−4a2+2a,宽为2a,求长方形的周长.19.贾宪三角(如图1)最初于11世纪被发现,原图记载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.施蒂费尔的二项式乘方后展开式的系数规律如图2所示.在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式(a+b)2=a2+2ab+b2展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式(a+b)3=a3+3a2b+3ab2+b3展开式的系数,第五行的五个数恰好对应着两数和的四次方公式(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式的系数,等等.由此可见,贾宪三角可以看成是对我们现在学习的两数和的平方公式的推广而得到的,根据以上材料解决下列问题:(1) (a+b)n展开式中项数共有项;(2) 写出(a+b)7的展开式:(a+b)7=;(3) 计算:25−5×24+10×23−10×22+5×2−1(4) 若(2x−1)2019=a1x2019+a2x2018+⋯+a2018x2+a2019x+a2020,求a1+a2+a3+⋯+a2018+a2019的值.20.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1) 观察图2,写出所表示的数学等式:;(2) 观察图3,写出所表示的数学等式:;(3) 已知(2)的等式中的三个字母可以取任何数,若a=7x−5,b=−4x+2,c=−3x+4,且 a 2+b 2+c 2=37,请利用(2)中的结论求 ab +bc +ac 的值.21. 先化简,再求值:(−x 2+2x )(−x 2−2x ),其中 x =−1.22. 计算下列各题:(1) 3x 2y ×5xy −14x 4y 5÷2xy 3. (2) (2π−6)0+(−1)2019+2−3.23. 计算(结果用科学记数法表示):(1) (3×10−3)×(5×10−4); (2) (6×10−3)2÷(2×10−1)2.24. 计算:(x +y −1)(x +y +1).25. 计算:(1) a 3⋅a 5+(a 2)4−3a 8. (2) ∣−2∣−(23)−2+(π−3)0−(−1)2021.(3) (x −2y +4)(x +2y −4). (4) (3x +1)2(3x −1)2.答案一、选择题(共10题)1. 【答案】C【解析】(A)原式=2x2,故A错误.(B)原式=6x3,故B错误.(D)原式=4a2−4ab+b2,故D错误.【知识点】平方差公式2. 【答案】B【知识点】同底数幂的除法3. 【答案】B【知识点】完全平方公式4. 【答案】A【解析】(m−2)(m+2)(m2+4)−(m4−16) =(m2−4)(m2+4)−(m4−16)=(m4−16)−(m4−16)=0.【知识点】平方差公式5. 【答案】A【解析】设a=m−53,b=m−47,则ab=24,a−b=−6,∴a2+b2=(a−b)2+2ab=(−6)2+48=84,∴(m−53)2+(m−47)2=84.【知识点】完全平方公式6. 【答案】B【解析】∵2=1×2,∴1×2是2的最佳分解,∴F(2)=12,即①正确;∵48=1×48,48=2×24,48=3×16,48=4×12,48=6×8,∴6×8是48的最佳分解,∴F(48)=68=23,即②错误;∵n2+n=n(n+1),∴F(n2+n)=nn+1,即③正确;若n是一个完全平方数,则设n=a×a(a是正整数),∴F(n)=aa=1,即④正确;综上所述,①③④正确,共三个.【知识点】单项式乘多项式7. 【答案】C【解析】图中左下角的正方形面积可以表示为:(a−b)2,也可以表示为a2−2ab+b2,∴(a−b)2=a2−2ab+b2.【知识点】完全平方公式8. 【答案】D【解析】由题意,(x+1)2019=x2019+2019x2018+⋯+12019,可知,展开式中第二项为2019x2018,所以(x+1)2019展开式中含x2018项的系数是2019.【知识点】其他公式9. 【答案】D【解析】∵a=2019x+2020,b=2019x+2021,c=2019x+2022,∴a−b=−1,b−c=−1,a−c=−2,∴ a2+b2+c2−ab−bc−ca=2a2+2b2+2c2−2ab−2bc−2ca2=(a−b)2+(b−c)2+(a−c)22=(−1)2+(−1)2+(−2)22=1+1+42= 3.【知识点】完全平方公式10. 【答案】C【解析】有图形可知,m=x+y,n=x−y,因此①正确;于是有:mn=(x+y)(x−y)=x2−y2,因此③正确;m2−n22=(m+n)(m−n)2=2x⋅2y2=2xy,因此②不正确;m2+n22=(m+n)2−2mn2=(2x)2−2(x2−y2)2=x2+y2,因此④正确;综上所述,正确的结论有:①③④.【知识点】平方差公式、完全平方公式二、填空题(共7题)11. 【答案】 2n +3【解析】 ∵ 第 1 个正方形需要 4 个小正方形,4=22, 第 2 个正方形需要 9 个小正方形,9=32, 第 3 个正方形需要 16 个小正方形,16=42, ⋯,∴ 第 n +1 个正方形有 (n +1+1)2 个小正方形, 第 n 个正方形有 (n +1)2 个小正方形,故拼成的第 n +1 个正方形比第 n 个正方形多 (n +2)2−(n +1)2=2n +3 个小正方形. 【知识点】用代数式表示规律、完全平方公式12. 【答案】 c <b <a【解析】 a =20180=1,b =2017×2019−20182=(2018−1)×(2018+1)−20182=20182−1−20182=−1,c=(−45)2017×(54)2018=(−45×54)2017×54=(−1)2017×54=(−1)×54=−54,∵−54<−1<1,∴c <b <a . 故答案为:c <b <a . 【知识点】平方差公式13. 【答案】 x n+1−1【知识点】平方差公式14. 【答案】 ±4【知识点】完全平方公式15. 【答案】 x 2+7x +12 ; x 2−x −12 ; x 2+x −12 ; x 2−7x +12 ; x 2+(m +n)x +mn ; a 2+5a +6 ; m 2+3m −10 ; m 2−9 ; m 2−6m +9 【知识点】多项式乘多项式、用代数式表示规律16. 【答案】 a 4−2a 2+1【解析】方法一:原式=(a2−2a+1)(a2+2a+1)=a4+2a3+a2−2a3−4a2−2a+a2+2a+1=a4−2a2+1.方法二:原式=[(a−1)(a+1)]2=(a−1)2=a4−2a2+1.【知识点】完全平方公式17. 【答案】a3−a【解析】(a5−a3)÷a2=a3−a.故答案为:a3−a.【知识点】多项式除以单项式三、解答题(共8题)18. 【答案】长方形的长为(6a2b−4a2+2a)÷(2a)=3ab−2a+1,则长方形的周长为2(2a+3ab−2a+1)=2(3ab+1)=6ab+2.【知识点】多项式除以单项式19. 【答案】(1) n+1(2) a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7(3) 原式=25−5×24×(−1)+10×23×(−1)2+10×22×(−1)3+5×2×(−1)4+(−1)5 =(2−1)5=1(4) 当x=0时,a2020=−1,当x=1时,a1+a2+a3+⋯+a2018+a2019+a2020=1,∴a1+a2+a3+⋯+a2018+a2019=2.【知识点】多项式乘多项式20. 【答案】(1) (a+2b)(a+b)=a2+2b2+3ab(2) (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(3) 由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(a+b+c)2=(7x−5−4x+2−3x+4)2=1,1=a2+b2+c2+2ab+2ac+2bc,1=37+2(ab+bc+ac),2(ab+bc+ac)=−36,ab+bc+ac=−18.【知识点】其他公式、多项式乘多项式21. 【答案】x4−4x2,把x=−1代入得:−3.【知识点】平方差公式22. 【答案】(1)3x2y×5xy−14x4y5÷2xy3 =15x3y2−7x3y2=8x3y2.(2)(2π−6)0+(−1)2019+2−3 =1−1+18=18..【知识点】负指数幂运算、单项式乘单项式、单项式除以单项式23. 【答案】(1) 原式=3×5×10−3×10−4 =15×10−7= 1.5×10−6.(2) 原式=(36×10−6)÷(4×10−2) =(36÷4)×(10−6÷10−2)=9×10−4.【知识点】负指数科学记数法24. 【答案】原式=[(x+y)−1][(x+y)+1] =(x+y)2−1=x2+2xy+y2−1.【知识点】完全平方公式25. 【答案】(1) 原式=a 8+a8−3a8=−a8.(2) 原式=2−94+1+1=74.(3)(x−2y+4)(x+2y−4)=[x−(2y−4)][x+(2y−4)] =x2−(2y−4)2=x2−4y2+16y−16.(4) 原式=(9x 2−1)2=81x4−18x2+1.【知识点】完全平方公式、同底数幂的乘法、负指数幂运算、零指数幂运算、幂的乘方、平方差公式11。

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

新北师大版七下第一章《整式的乘除与因式分解》知识点

新北师大版七下第一章《整式的乘除与因式分解》知识点

整式的加减、乘除【知识点一】代数式的概念:①代数式中出现的乘号,通常写作“·”或省略不写,如6×b 常写作6·b 或6b ;②数字与字母相乘时,数字写在字母前面,如6b 一般不写作b6;③除法运算写成分数形式,如1÷a 通常写作()01≠a a④系数1或-1,通常省略1,如1a 写作a ,-1a 写作-a.⑤211a 通常写作23a. 例1、下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213E. mn 35 F. -3× 【知识点二】单项式的概念:由 与 的 构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

例2、bc a 22-的 系数为 ,次数为 ,单独的一个非零数的次数是 。

【知识点三】多项式:几个单项式的 叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

例3、122++-x ab a ,项有 ,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,这个多项式叫 式。

【知识点四】整式:单项式和多项式统称整式。

【注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

】【知识点五】 升幂排列与降幂排列 例4、多项式121322233-+-+-a a b b a ab b a 按字母a 升幂排列为:【知识点六】 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。

【注意:同类项与系数大小无关,与字母的排列顺序无关。

】例5、下列各题中的两个项是不是同类项?(1)3x 2y 与-3x 2y (2)0.2a 2b 与0.2ab 2 (3)11abc 与9bc (4)3m 2n 3与-n 3m 2 (5)4xy 2z 与4x 2yz (6)62与x 2【知识点七】合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

(北师大新版)七年级数学下册第一章整式的乘除1.1--1.3同步知识点训练

(北师大新版)七年级数学下册第一章整式的乘除1.1--1.3同步知识点训练

(北师大新版)七年级数学下册第一章整式的乘除 1.1--1.3 同步知识点训练一.同底数幂的乘法(共 10 小题) 3 3 1.计算 x •x 的结果是( A .2x 3B .2x 62.化简 a •a 的结果是( A .aB .a 63.计算(x ﹣y ) (•y ﹣x )=( A .(x ﹣y )4 B .(y ﹣x )4)C .x 6D .x 93 2 )C .a 5D .a 93)C .﹣(x ﹣y )4C .x 5D .(x+y )4D .x 63 2 4.x •x 的运算结果是( ) A .xB .x 35 3 5.计算 a •a 的结果是( A .a 8B .a 156.已知 2 ×2 =2 ,则 n 的值为( A .8B .12)C .8aD .a 23 9 n )C .18D .277.若 a m =3,a n =2,则 a m+n = 8.若 a m =5,a n =2,则 a m+n =. . +y 9.已知 a x =3,a y =5,则 a x =.10.若 a =2,a =3,则 a 2m+n = ;若 8x =2xx+6,则 =.m n 二.幂的乘方与积的乘方(共 10 小题) 11.下列计算正确的是( )3 2 62 3 6C .x+x =x 32 63 2A .(x ) =xB .x •x =x D .x ÷x =x 12.下列计算正确的是()2 2 4 A .a +a =a B .2(a ﹣b )=2a ﹣b3 2 52 3 5C .a •a =aD .(﹣b ) =﹣b 3 9 6 13.如果:(2a m •b n ) =8a b ,则()A .m =3,n =2B .m =3,n =3C .m =6,n =2D .m =2,n =5 )31 41 61 14.已知 a =81 ,b =27 ,c =9 ,则 a ,b ,c 的大小关系是( A .a >b >cB .a >c >bC .a <b <cD .b >c >a15.下列计算正确的是()2 2 45 2 72 3 52 2 A .a +a =a B .a •a =a C .(a ) =a D .2a ﹣a =22 3 16.计算(ab ) 的结果是( )A .ab 5B .ab 63 5C .a b 3 6D .a b17.下列计算错误的是(A .a•a =a 3 )2 2 2 22 3 5B .(ab ) =a bC .(a ) =aD .﹣a+2a =a18.下列计算正确的是()3 2 65 5 10 A .a •a =a B .a +a =a 3 2 23 2 7C .(﹣3a ) =6aD .(a ) •a =a 19.计算:(﹣0.2)2011×52012 20.若 a x =3,a y =2,则 a 2x+y 三.同底数幂的除法(共 7 小题) = . .= 21.下列计算正确的是( )3 4B .a a =a123 4 12 6 2 3A .3a •4a =12aC .(﹣a ) =aD .a ÷a =a 22.下列计算正确的是( )2 3 5B .a ÷a =a 4 4 2 3 6 2 3 6A .a +b =2a C .a •a =a D .(﹣a ) =﹣a 23.下列计算正确的是()2 3 66 3 2A .a •a =aB .a ÷a =a 2 2 2 3 6C .4x ﹣3x =1D .(﹣2a ) =﹣8a 24.下列运算中,正确的是()2 3 56 3 24 2 6A .a +a =aB .a ÷a =aC .(a ) =aD .a+a =2a25.下列计算正确的是( )2 3 52 3 62 3 66 3 2A .x +x =xB .x •x =xC .(x ) =xD .x ÷x =x 5 26.下列运算中,结果是 a 的是( )A .a•a 3 2 10B .a ÷a 2C .(a )32 D .(﹣a )527.下列各式计算正确的是( ) 2 3 6B .2x+3x =5x 22 3 6 6 2 3A .x x =x C .(x ) =x D .x ÷x =x四.零指数幂(共6小题)28.下列运算正确的是()5510642424440A.a+a=a B.a×a=a C.a+a=2a D.a﹣a=a 29.下列运算正确的是()62464551044 A.a÷a=a B.a×a=a C.a+a=a D.a﹣a=a30.下列计算正确的是(A.(﹣8)﹣8=0)B.(﹣)×(﹣2)=1D.|﹣2|=﹣2C.﹣(﹣1)=131.计算4﹣2018=.32.已知(3x﹣2)有意义,则x应满足的条件是.33.2015=.五.负整数指数幂(共7小题)34.下列运算正确的是()5510642401440 A.a+a=a B.a×a=a C.a÷a=a﹣D.a﹣a=a 0135.计算2016+3=﹣.236.3=﹣.0137.计算(π﹣1)+2=﹣.38.计算=.39.计算:=.240.2=﹣.参考答案(北师大新版)七年级数学下册第一章整式的乘除1.1--1.3同步知识点训练一.同底数幂的乘法(共10小题)1.C;2.C;3.C;4.C;5.A;6.B;7.6;8.10;9.15;10.12;3;二.幂的乘方与积的乘方(共10小题)11.A;12.C;13.A;14.A;15.B;16.D;17.C;18.D;19.﹣5;20.18;三.同底数幂的除法(共7小题)21.C;22.D;23.D;24.D;25.C;26.A;27.C;四.零指数幂(共6小题)28.C;29.A;30.B;31.3;32.x≠;33.1;五.负整数指数幂(共7小题)34.C;35.;36.;37.;38.﹣;39.﹣3;40.;四.零指数幂(共6小题)28.下列运算正确的是()5510642424440A.a+a=a B.a×a=a C.a+a=2a D.a﹣a=a 29.下列运算正确的是()62464551044 A.a÷a=a B.a×a=a C.a+a=a D.a﹣a=a30.下列计算正确的是(A.(﹣8)﹣8=0)B.(﹣)×(﹣2)=1D.|﹣2|=﹣2C.﹣(﹣1)=131.计算4﹣2018=.32.已知(3x﹣2)有意义,则x应满足的条件是.33.2015=.五.负整数指数幂(共7小题)34.下列运算正确的是()5510642401440 A.a+a=a B.a×a=a C.a÷a=a﹣D.a﹣a=a 0135.计算2016+3=﹣.236.3=﹣.0137.计算(π﹣1)+2=﹣.38.计算=.39.计算:=.240.2=﹣.参考答案(北师大新版)七年级数学下册第一章整式的乘除1.1--1.3同步知识点训练一.同底数幂的乘法(共10小题)1.C;2.C;3.C;4.C;5.A;6.B;7.6;8.10;9.15;10.12;3;二.幂的乘方与积的乘方(共10小题)11.A;12.C;13.A;14.A;15.B;16.D;17.C;18.D;19.﹣5;20.18;三.同底数幂的除法(共7小题)21.C;22.D;23.D;24.D;25.C;26.A;27.C;四.零指数幂(共6小题)28.C;29.A;30.B;31.3;32.x≠;33.1;五.负整数指数幂(共7小题)34.C;35.;36.;37.;38.﹣;39.﹣3;40.;四.零指数幂(共6小题)28.下列运算正确的是()5510642424440A.a+a=a B.a×a=a C.a+a=2a D.a﹣a=a 29.下列运算正确的是()62464551044 A.a÷a=a B.a×a=a C.a+a=a D.a﹣a=a30.下列计算正确的是(A.(﹣8)﹣8=0)B.(﹣)×(﹣2)=1D.|﹣2|=﹣2C.﹣(﹣1)=131.计算4﹣2018=.32.已知(3x﹣2)有意义,则x应满足的条件是.33.2015=.五.负整数指数幂(共7小题)34.下列运算正确的是()5510642401440 A.a+a=a B.a×a=a C.a÷a=a﹣D.a﹣a=a 0135.计算2016+3=﹣.236.3=﹣.0137.计算(π﹣1)+2=﹣.38.计算=.39.计算:=.240.2=﹣.参考答案(北师大新版)七年级数学下册第一章整式的乘除1.1--1.3同步知识点训练一.同底数幂的乘法(共10小题)1.C;2.C;3.C;4.C;5.A;6.B;7.6;8.10;9.15;10.12;3;二.幂的乘方与积的乘方(共10小题)11.A;12.C;13.A;14.A;15.B;16.D;17.C;18.D;19.﹣5;20.18;三.同底数幂的除法(共7小题)21.C;22.D;23.D;24.D;25.C;26.A;27.C;四.零指数幂(共6小题)28.C;29.A;30.B;31.3;32.x≠;33.1;五.负整数指数幂(共7小题)34.C;35.;36.;37.;38.﹣;39.﹣3;40.;。

北师大版七年级数学下册期末复习:第一单元 整式的乘除

北师大版七年级数学下册期末复习:第一单元 整式的乘除

期末复习第一章:整式的乘除①本章考点及公式:一、单项式:都是数字与字母的乘积的代数式叫做单项式。

二、多项式:几个单项式的和叫做多项式。

三、整式:单项式和多项式统称为整式。

四、整式的加减:整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

五、同底数幂的乘法:同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n。

六、幂的乘方:幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m )n =a mn。

七、积的乘方:1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab )n =a n b n 。

3、此法则也可以逆用,即:a n b n =(ab )n。

八、同底数幂的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。

九、零指数幂:零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。

十、负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠十一。

单项式与单项式相乘:单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

(二)单项式与多项式相乘:单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc 。

(三)多项式与多项式相乘:多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb 。

十二、平方差公式:(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (9)

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (9)

一、选择题(共10题)的值为( )1.已知a2+b2=6ab,且ab≠0,则(a+b)2abA.2B.4C.6D.82.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b3.计算(−p)8⋅(−p2)3⋅[(−p)3]2的结果是( )A.−p20B.p20C.−p18D.p184.小方将4张长为a,宽为b(a>b)的长方形纸片先按图(1)所示方式拼成一个边长为(a+b)的正方形,然后按图(2)所示连接了四条线段,并画出部分阴影图形,若大正方形的面积是图中阴影部分图形面积的3倍,则a,b满足( )A.a=3b B.2a=5b C.a=2b D.2a=3b5.已知(m−53)(m−47)=24.则(m−53)2+(m−47)2的值为( )A.84B.60C.42D.126.2002年5月15日,我国发射的海洋1号气象卫星进入预定轨道后,如果绕地球运行速度为7.9×103 m/s ,那么运行 2×102 s 的路程用科学记数法表示为 ( ) A . 15.8×105 m B . 1.58×105 m C . 0.158×107 m D . 1.58×106 m7. 下列运算错误的是 ( ) A . (−2a 2b )3=−8a 6b 3 B . (x 2y 4)3=x 6y 12 C . (−x )2⋅(x 3y )2=x 8y 2D . (−ab )7=−ab 78. 计算 −3x 2⋅(4x −3) 等于 ( ) A . −12x 3+9x 2 B . −12x 3−9x 2 C . −12x 2+9x 2 D . −12x 2−9x 29. 有 4 张长为 a ,宽为 b (a >b ) 的长方形纸片,按如图的方式拼成一个边长为 (a +b ) 的正方形,图中阴影部分的面积为 S 1,空白部分的面积为 S 2.若 S 1=12S 2,则 a ,b 满足 ( )A . 2a =3bB . 2a =5bC . a =2bD . a =3b10. 已知 a =2019x +2020,b =2019x +2021,c =2019x +2022,则多项式 a 2+b 2+c 2−ab −bc −ca 的值为 ( ) A . 0 B . 1 C . 2 D . 3二、填空题(共7题)11. 已知等式 a 2−3a +1=0 可以有不同的变形:即可以变形为:a 2−3a =−1,a 2=3a −1,a 2+1=3a ,也可以变形为:a +1a =3,等等.那么: (1)代数式 a 3−8a 的值为 ; (2)代数式 a 2a 2+1 的值 .12. 我们学习的平方差公式不但可以使运算简便,也可以解决一些复杂的数学问题.尝试计算(1+12)(1+122)(1+124)(1+128)+1215 的值是 .13. 若多项式 x 2−12x +k 2 恰好是另一个整式的平方,则 k 的值是 .14. 已知实数 a ,b ,定义运算:a ∗b ={a b ,a >b,a ≠0a −b ,a ≤b,a ≠0,若 (a −2)∗(a +1)=1,则 a = .15. 已知 a +1a =3,则 a 2+1a 2 的值是 .16. 计算:(3x +4y −5z )(3x −4y +5z )= .17. 已知 a 2−2a −3=0,则代数式 3a (a −2) 的值为 .三、解答题(共8题)18. 先化简、再求值:(2a +b )2−4(a +b )(a −b )−b (3a +5b ),其中 a =−1,b =2. 19.(1) 计算下列各式,并用幂的形式表示结果:(24)3= ,(23)4= ; (x 5)2= ,(x 2)5= ; [(−2)4]3= ,[(−2)3]4= ; [(a +b )3]5= ,[(a +b )5]3= .(2) 观察第(1)题的计算结果,你有什么发现?把你的发现用适当的数学符号表示出来. (3) 根据第(2)题的结论计算 [(√2)3]2的值.20. 本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与 a n (a ≠0,m ,n 都是正整数)叫做同底数幂,同底数幂除法记作 a m ÷a n . 运算法则如下: a m ÷a n ={m >n,a m ÷a n =a m−n m =n,a m ÷a n =1m <n,a m ÷a n=1an−m.根据“同底数幂除法”的运算法则,回答下列问题: (1) 填空:(12)5÷(12)2= ,43÷45= . (2) 如果 3x−1÷33x−4=127,求出 x 的值.(3) 如果 (x −1)2x+2÷(x −1)x+6=1,请直接写出 x 的值.21. 规定:a ★b =10a ×10b ,如:2★3=102×103=105.(1) 求12★3和4★8的值;(2) (a★b)★c是否与a★(b★c)(a,b,c均不相等)相等?并说明理由.22.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1) 观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(2) 若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A号卡片1张,B号卡片2张,C号卡片张.(3) 根据(1)题中的等量关系,解决问题:已知:a+b=5,a2+b2=13,求ab的值.23.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1) 观察图2,写出所表示的数学等式:;(2) 观察图3,写出所表示的数学等式:;(3) 已知(2)的等式中的三个字母可以取任何数,若a=7x−5,b=−4x+2,c=−3x+4,且 a 2+b 2+c 2=37,请利用(2)中的结论求 ab +bc +ac 的值.24. 请回答:(1) 已知 a m =3,a n =2,求 a m+2n 的值; (2) 已知 a 2n+1=5,求 a 6n+3 的值.25. 请回答:(1) (−2)2−(12)−1+20170.(2) (−a 3)2+a 2⋅a 4−(2a 4)2÷a 2.答案一、选择题(共10题)1. 【答案】D【解析】(a+b)2=a2+b2+2ab=6ab+2ab=8ab,∵ab≠0,∴(a+b)2ab =8abab=8.故选:D.【知识点】完全平方公式2. 【答案】A【解析】大正方形的面积S=4a2+b2+4ab=(2a+b)2.∴大正方形的边长为2a+b.选A.【知识点】完全平方公式3. 【答案】A【知识点】积的乘方、同底数幂的乘法4. 【答案】B【知识点】完全平方公式5. 【答案】A【解析】设a=m−53,b=m−47,则ab=24,a−b=−6,∴a2+b2=(a−b)2+2ab=(−6)2+48=84,∴(m−53)2+(m−47)2=84.【知识点】完全平方公式6. 【答案】D【知识点】单项式乘单项式7. 【答案】D【解析】A.(−2a2b)3=−8a6b3;故A正确;B.(x2y4)3=x6y12;故B正确;C.(−x)2⋅(x3y)2=x8y2;故C正确;D.(−ab)7=−a7b7,故D错误.故选D.【知识点】单项式乘单项式、积的乘方8. 【答案】A【解析】提示:−3x2⋅(4x−3)=−12x3+9x2.【知识点】单项式乘多项式9. 【答案】C【解析】由题意可得:S2=12b(a+b)×2+12ab×2+(a−b)2=ab+b2+ab+a2−2ab+b2=a2+2b2,S1=(a+b)2−S2=(a+b)2−(a2+2b2)=2ab−b2,∵S1=12S2,∴2ab−b2=12(a2+2b2),∴4ab−2b2=a2+2b2,∴a2+4b2−4ab=0,∴(a−2b)2=0,∴a−2b=0,∴a=2b.【知识点】完全平方公式10. 【答案】D【解析】∵a=2019x+2020,b=2019x+2021,c=2019x+2022,∴a−b=−1,b−c=−1,a−c=−2,∴ a2+b2+c2−ab−bc−ca=2a2+2b2+2c2−2ab−2bc−2ca2=(a−b)2+(b−c)2+(a−c)22=(−1)2+(−1)2+(−2)22=1+1+42= 3.【知识点】完全平方公式二、填空题(共7题)11. 【答案】−3;17【解析】(1)a3−8a=a(a2−8)=a(3a−1−8)(将a2=3a−1代入)=a(3a−9)=3a2−9a=3(a2−3a)(将a2−3a=−1代入)=3×(−1)=−3.故答案为:−3;(2)由题意得:a≠0,∵a2−3a+1=0,∴a+1a=3,∴(a+1a )2=9,∴a2+1a2+2=9,即a2+1a2=7,∴a2a4+1=1a2+1a2=17.故答案为:17.【知识点】完全平方公式12. 【答案】2【解析】原式=2⋅(1−12)(1+12)(1+122)(1+124)(1+128)+1215 =2(1−122)(1+122)(1+124)(1+128)+1215=⋯=2(1−1216)+1215=2−1215+1215=2.【知识点】平方差公式13. 【答案】±6【解析】由两数和(差)的平方公式的结构特点,应根据2ab来求公式中的b.∵±2xk=−12x,∴k=±6.【知识点】完全平方公式14. 【答案】3或1或−1【解析】∵a+1>a−2,∴(a−2)∗(a+1)=(a−2)−(a+1)=1,即(a−2)a+1=1,则a−2=1或a−2=−1或a+1=0,解得,a =3 或 a =1 或 a =−1. 【知识点】零指数幂运算15. 【答案】 7【解析】 ∵a +1a =3, ∴a 2+2+1a 2=9,∴a 2+1a 2=9−2=7.【知识点】完全平方公式16. 【答案】 9x 2−16y 2+40yz −25z 2【知识点】平方差公式17. 【答案】 9【解析】解方程 a 2−2a −3=0 得:(a +1)(a −3)=0. ∴a =−1 或 a =3,当 a =−1 时,3a (a −2)=3×(−1)×(−1−2)=9, 当 a =3 时,3a (a −2)=3×3×(3−2)=9. 【知识点】单项式乘多项式三、解答题(共8题)18. 【答案】 (2a +b )2−4(a +b )(a −b )−b (3a +5b )=4a 2+4ab +b 2−4a 2+4b 2−3ab −5b 2=ab.当 a =−1,b =2 时,原式=−2.【知识点】完全平方公式19. 【答案】(1) 212,212,x 10,x 10,212,212,(a +b )15,(a +b )15.(2) (a m )n =(a n )m . (3) 8.【知识点】幂的乘方20. 【答案】(1) 18;116(2) 3x−1÷33x−4=127, 3x−1−(3x−4)=3−3,x −1−(3x −4)=−3, x =3.(3) x =4,x =0,x =2. 【解析】(1) (12)5÷(12)=(12)5−2=(12)3=18.43÷45=145−3=142=116.(3) ∵(x −1)2x+2÷(x −1)x+6=1, ∴(x −1)2x+2−(x+6)=1.即 (x −1)x−4=1.①当 x −4=0 时,满足题意, ∴x =4.②当 x −1=1 时,满足题意, ∴x =2.【知识点】同底数幂的除法21. 【答案】(1) 12★3=1012×103=1015,4★8=104×108=1012. (2) 不相等.理由如下:(a ★b )★c =(10a ×10b )★c =10a+b ★c =1010a+b×10c =1010a+b +c , a ★(b ★c )=a ★(10b ×10c )=a ★10b+c =10a ×1010b+c=10a+10b+c,因为 a ,b ,c 均不相等, 所以 1010a+b+c ≠10a+10b+c, 所以 (a ★b )★c ≠a ★(b ★c ). 【知识点】同底数幂的乘法22. 【答案】(1) (a +b )2=a 2+b 2+2ab(2) 3(3) ∵(a +b )2=a 2+b 2+2ab ,a +b =5,a 2+b 2=13, ∴25=13+2ab , ∴ab =6. 答:ab 的值为 6. 【解析】(1) 大正方形的面积可以表示为:(a +b )2,或表示为:a 2+b 2+2ab ;因此有(a+b)2=a2+b2+2ab.(2) ∵(a+2b)(a+b)=a2+3ab+2b2,∴需要A号卡片1张,B号卡片2张,C号卡片3张.【知识点】完全平方公式、多项式乘多项式、公式的变形23. 【答案】(1) (a+2b)(a+b)=a2+2b2+3ab(2) (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(3) 由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(a+b+c)2=(7x−5−4x+2−3x+4)2=1,1=a2+b2+c2+2ab+2ac+2bc,1=37+2(ab+bc+ac),2(ab+bc+ac)=−36,ab+bc+ac=−18.【知识点】其他公式、多项式乘多项式24. 【答案】(1) ∵a m=3,a n=2,∴a m+2n=a m⋅a2n=a m⋅(a n)2=3×22=12.(2) ∵a2n+1=5,∴a6n+3=a3(2n+1)=(a2n+1)3=53=125.【知识点】幂的乘方25. 【答案】(1) 原式=4−2+1=3.(2) 原式=a 6+a6−4a6=−2a6.【知识点】负指数幂运算、单项式除以单项式11。

(完整版)北师大版七年级下册数学各章知识点总结(最新整理)

(完整版)北师大版七年级下册数学各章知识点总结(最新整理)

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)ppa aa -=≠p 是正整数。

七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a ⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1. 幂的乘方法则:mn nm a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2.),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n nb a ab =)((n为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10≠=a a,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即ppa a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.四. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘 与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多 项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx+++=++)())((2五.平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。

其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

六.完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±;口决:首平方,尾平方,2倍乘积在中央; 2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。

七.整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; 2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

【典例讲解】(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x( )2.4(m -n )3÷(n -m )2=___________.3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+π0=_________;4101×0.2599=__________.7.2032×1931=( )·( )=___________.8.用科学记数法表示-0.0000308=___________.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是………………………………………………………………( ) (A )a n ·a 2=a 2n(B )(a 3)2=a5(C )x 4·x 3·x =x7(D )a2n -3÷a3-n=a3n -612.x2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1(B )(x m )2+1(C )x ·x2m(D )(x m )m +113.下列运算正确的是………………………………………………………………( ) (A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n)(21×10n )=102n14.化简(a n b m)n ,结果正确的是………………………………………………………( ) (A )a 2n bmn(B )n m n b a 2 (C )mn n b a 2(D )nmn b a 215.若a ≠b ,下列各式中不能成立的是………………………………………………( ) (A )(a +b )2=(-a -b )2(B )(a +b )(a -b )=(b +a )(b -a ) (C )(a -b )2n =(b -a )2n(D )(a -b )3=(b -a )316.下列各组数中,互为相反数的是…………………………………………………( ) (A )(-2)-3与23(B )(-2)-2与2-2(C )-33与(-31)3 (D )(-3)-3与(31)3 17.下列各式中正确的是………………………………………………………………( ) (A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1 (C )(-3x +2)2=4-12x +9x2(D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2;(2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2;(4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );(6)(x -3)(2x +1)-3(2x -1)2.20.用简便方法计算:(每小题3分,共9分) (1)982; (2)899×901+1; (3)(710)2002·(0.49)1000.(四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.22.已知a +b =5,ab =7,求222b a ,a 2-ab +b 2的值.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).。

相关文档
最新文档