圆心角圆周角练习题.doc
圆心角圆周角练习题

圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。
三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
垂径定理、弦、弧、圆心角、圆周角练习

CEOAD B600BB九年垂径定理、弦、弧、圆心角、弦心距练习1. 已知:AB 交圆O 于C 、D ,且AC =BD. 求证:OA =OB2. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽 AB=600mm ,求油面的最大深度。
3.. 如图所示,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,求证:四边形OEAD 为正方形。
4.如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;5.本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到的距离为米,如图所示.请你帮他们求出滴水湖的半径.6.如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( A.)1aB.12a C.24a D.(2a - 7.如图,⊙O 的半径为5,弦AB 的长为8,点M 在线段AB (包括端点AB ,)上移动,则OM 的取值范围是( ) A.35OM ≤≤ B.35OM <≤ 45OM <≤8.如图,已知⊙O 的半径为5mm ,弦8mm AB =,则圆心O 到AB 的距离是( )A .1mmB .2mmC .3mmD .4mm9.如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,则油的深度(指油的最深处即油面到水平地面的距离)为( )A.2dmB.3dmC.2dm 或3dmD.2dm 或8dm10.如图,已知在⊙O 中,直径10MN=,正方形ABCD 的四个顶点分别在半径OM ,OP 以及O 上,并且45POM =∠,则AB 的长为 .11.如图,在半径为2的⊙O 中,弦AB 的长为_______AOB =∠12.在⊙O 中,弦CD 与直径AB 相交于点P ,夹角为30,且分直径为1:5两部分,6AB =厘米,则弦CD 的长为(A.B.C.D.13.如图,在⊙O 中,AB 是弦,OC AB ⊥,垂足为C ,若AB ,6OC =,则O 的半径OA 等于( )A.16B.12C.10D.814. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C , 交弦AB 于点D 。
圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
中考圆专题基础练习题

圆专题一、圆心角、圆周角1.如图,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______.2.如图,AB为⊙O的弦,∠OAB=75O ,则此弦所对的优弧是圆周的______。
4.如图,在△ABC 中,∠C 是直角,∠A=32O 18’ ,以点C 为圆心、BC 为半径作圆,交AB 于点D,交AC 于点E,则⋂BD 的度数是______。
5.如图,点O 是△ABC 的外心,已知∠ACB=100O ,则劣弧⋂AB 所对的∠AOB=______度。
6.如图,AB 是⊙O 的直径,CD 与AB 相交于点E, ∠ACD=60O , ∠ADC=50O ,则∠AEC=______度。
7.如图,以等腰△ABC 的边AB 为直径的半圆,分别交AC 、BC 于点D 、E,若AB=10, ∠OAE=30O,则DE=______。
8.在锐角△ABC 中,∠A=50O ,若点O 为外心,则∠BOC=_____;若点I 为内心,则∠BIC=______;若点H 为垂心,则∠BHC=________.9.若△ABC 内接于⊙O ,∠A=n O,则∠BOC=_______.10.如图,已知AB 和CD 是⊙O 相交的两条直径,连AD 、CB ,那么α和β的关系是( ) A.α=β B.β>21α C.β<21α D.β=2α 11.如图,在⊙O 中,弦AC 、BD 交于点E ,且⋂⋂⋂==CDBC AB ,若∠BEC=130O ,则∠ACD 的度数为( )A.15OB.30OC.80OD.105O12.如图,AB 为半圆的直径,AD ⊥AB,点C 为半圆上一点,CD ⊥AD,若CD=2,AD=3,求AB 的长。
13.如图,AO ⊥BO,AO 交⊙O 于点D ,AB 交⊙O 于点C, ∠A=27O,试用多种方法求⋂DC 、⋂BC 的度数。
14.求证:如果AB 和CD 为⊙O 内互相垂直的两条弦,那么∠AOC 和∠BOD 互补。
浙教版九年级数学上册《圆心角、圆周角》练习题

2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
圆周角圆心角垂径定理练习

江苏通海中学周飞初三数学周末练习班级:姓名:学号:一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()5C2.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()则OP的长为()4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是()二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=_________度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=_________.11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为_________度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________厘米.14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_________.15.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为____.16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_________.三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.2013年10月hylzf的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()AB=×OC==62.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()AB=×3.(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()OM=ON=4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..==5=AB,)AM=,.6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE 是()是二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=70度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=65°.=,可得,继而求得∠中,=++,=11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为54度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.AB=×cm故答案为:14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=4.x=AB=4x=415.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.AB=×==故答案为:16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.ABAB=×三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.∠AC=BC=AOC=∠ABOA=10cm=10cm=××cm18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.DM=OM==319.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=AB=×20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.就是已知,要证明,可以转化为证明=21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.,根据在同圆或等圆中,相等的圆心角所对的弧相等得到=)由,根据在同圆或等圆中,等弧所对的弦相等得到=++,==23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.,24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.的长度为。
圆、圆心角、圆周角 综合

图2OBAC图3OBAC《圆、圆心角、圆周角》 姓名知识点:1、 顶点在圆心,两边与圆相交的角,叫圆心角。
顶点在圆上,两边与圆相交的角,叫圆周角。
2、 圆心角定理:在同圆或等圆中,相等圆心角所对的弦相等、弧相等、所对弦的弦心距也相等。
弧的度数等于弧所对圆心角的度数。
3、 同圆或等圆中(所对):① 圆心角相等, ② 弦相等 ③ 弧相等 ④ 弦心距相等;任选一个作为条件,其它三个结论成立。
4、 圆周角定理:圆周角的度数等于同弧所对的圆心角度数的一半(等于所对弧度数的一半)。
5、 由圆周角定理可得:半圆(或直径)所对的圆周角是直角。
90O 的圆周角所对的弦是直径,弧是半圆。
6、 等弧的概念:只有在同圆或等圆中才有相等的圆心角所对的是等弧。
夹在两平行弦间的两弧相等。
7、 在半径为R 的圆中,垂直于半径中点的弦长等于 。
例证:证明圆周角的度数等于同弧所对的圆心角度数的一半(分类讨论)圆心在角边上时 圆心在角内时 圆心在角外时 证: 证: 证:一、选择题(24分)1、下列说法不正确的是 ( )A 圆周角的度数等于所对弧的度数的一半。
B 圆是中心对称图形,也是轴对称图形C 垂直于直径的弦必被直径平分D 劣弧是大于半圆的弧2、在⊙O 中,AB 、AC 是互相垂直的两条弦,AB=8,AC=6,则⊙O 的半径为 ( )A 4B 5C 8D 103、同圆中两条弦长为10和12,它们的弦心距为m 和n ,则 ( )A m >nB m <nC m =nD m 、n 的大小无法确定 4、平面上有4个点,它们不在同一直线上,过其中3个点作圆,可以作出不重复的圆n 个,则n 的值不可能为 ( ) A 4 B 3 C 2 D 16、如图,⊙O 的直径CD=10,AB 是⊙O 的弦,AB ⊥CD 于M ,且DM ∶MC=4∶1,则AB 的长是 ( )A 2B 8C 16 D91图1OBACCBOADDCBEA OACBEDO A CBD CBAOM 46OP第5题 第6题 第7题6、如图,AB 、CD 为⊙O 直径,则下列判断正确的是 ( )A AD 、BC 一定平行且相等B AD 、BC 一定平行但不一定相等 C AD 、BC 一定相等但不一定平行 D AD 、BC 不一定平行也不一定相等7、点P 为⊙O 内一点,且OP =4,若⊙O 的半径为6,则过点P 的弦长不可能为 ( )A 302B 12C 8D 10.58.如图所示,已知△ACD 和△ABE 都内接于同一个圆,则∠ADC+∠AEB+∠BAC=( ) A.90° B.180° C.270° D.360°9.如图,AB 是⊙的直径,弦AB CD ⊥于E,如果16,20==CD AB ,那么线段OE 的长为 ( ) A .10 B.8 C.6 D.4二、填空题(30分)1、.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为OC 的中点M ,AB=20,分别以DM 、CM 为直径作两个大小不同和⊙O 1和⊙O 2,则图中所示阴影部分的面积为 .(结果保留π)2、已知AB 是⊙O 的弦,且AB=OA ,则∠AOB = 度。
完整版)圆心角圆周角练习题

完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
、
如图,在。
中, AB = AC,
ZB=70°,
则匕A 等
于
5
、
如图,在。
中,
若C是BD的中点,则图中与ABAC相等的角有()
A.1
个
B.2
个
C.3
个
D.4
个
夯实基础
1.如果两个圆心角相等,那么()
A.这两个圆心角所对的弦相等;
B.这两个圆心角所对的孤相等
C.这两个圆心角所对的弦的弦心距相等;
D.以上说法都不对
2.下列语句中不正确的有()
①相等的圆心角所对的孤相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直
径所在直线都是它的对称轴④长度相等的两条孤是等孤
A.3个
B.2个
C.1个
D.以上都不对
3.在同圆或等圆中,下列说法错误的是()
A.相等弦所对的弧相等
B.相等弦所对的圆心角相等
C.相等圆心角所对的弧相等
D.相等圆心角所对的弦相等
6、如图,若AB 是。
0 的直径,AB=10cm, ZCAB=30°,贝ij BC=cm.
题型一:利用圆心角圆周角定理求角度
1、如图,AB是。
的直径,BC=CD=DE, ZCOD=34°,则匕AEO的度数是()
A.51°
B. 56°C- 68° D. 78°A
2、圆中有两条等弦AB=AE,夹角ZA=88°,延长AE到C,使EC=BE,连接BC,如图.则
ZABC的度数是()
A. 90°
B. 80°
C. 69°
D. 65°
3、如图所示。
O中,己矢nZBAC=ZCDA=20°,则匕ABO的度数为.
4、
在。
中,弦AB所对的劣孤为圆周的上,圆的半径等于12,则圆心角ZAOB=__________ ;
4
弦AB的长为.
5、如图,在△ ABC中,AB为。
O的直径,ZB=60°, ZBOD=100°,则NC的度数为()A. 50° B. 60° C. 70° D. 80°
6、如图,点A、B、C在。
O上,ZAOC=60°,则NABC的度数是.
7、如图,点A、B、C、D 在。
O 上,OB_LAC,若ZBOC=56°,则ZADB=度.
8、如图,的弦CD与直径AB相交,若ZBAD=50°,则ZACD=.
9、如图,AB是OO的直径,点C是圆上一点,ZBAC=70°,则ZOCB=.
10、如图,在RtAABC中,ZC=90°, ZA=26°,以点C为圆心,BC为半径的圆分别交AB、
AC于点D、点E,则弧BD所对的圆心角的度数为()
A. 26°
B. 64°
C. 52°
D. 128°
题型二:利用圆心角圆周角的性质定理求线段
1、如图,。
0是Z\ABC的外接圆,ZB=60°, OP±AC于点P, OP=2>/3 ,则。
O的半径
为()
A. 4^3
B. 6^3
C. 8
D. 12
B. AB > 2CD
C. AB < 2CD
D.人8与。
的大小关系不定。
题型三:利用孤、弦、度相等心角、圆周角之间的关系证明弧相等,线段相等,角
3、如图,△ ABC 内接于OO, ZBAC=120% AB=AC, BD 为。
O 的直径,AD=6,则DC=
4、在。
中,AB = 2CD,那么()
A. AB = 2CD
1.如图,在OO 中,C、D 是直径AB ±两点,且AC=BD, MC1AB, ND1AB, M、N
在OO±.
(1)求证:AM = BN;
(2)若C、D分别为OA、OB中点,则AM=MN = NB成立吗?
2、如图,以。
O的直径BC为一边作等边△ABC,AB、AC交③。
于D、E,求证:BD=DE=EC
4、如图,QO的直径扇为10cm,弦AC为6cm, ZACB的平分线交。
O于D,求BC,
AD, BD的长.
5、如图,AB是。
的直径,C是BD的中点,CELAB于E, BD交CE于点、F.
(1)求证:CF= BF;
(2)若CD = 6, AC = 8,则。
的半径为,CE的长是 .
c
D
O E
B
6.如图,A, P, B, C是半径为8的。
O上的四点,旦满足ZBAC=ZAPC=60°,
(1)求证:Z\ABC是等边三角形;
(2)求圆心。
到BC的距离OD.
7、
如图,。
是Z\ABC的外接圆,AB是。
O的直径,D为。
O上一点,ODJ_AC,垂足为E,连接BD
(1)求证:BD平分
ZABC;
(2)当ZODB=30°时,求证:BC=OD.
8、如图所示,以■ABCD的顶点A为圆心,AB为半径作圆,作AD, BC于E, F,延长BA
交。
0于G,求证:GE = EF .。