2020年广州九年级初三海珠区一模数学试卷
2020年珠海市中考数学一模试题(含答案)

2020年珠海市中考数学一模试题(含答案)一、选择题1.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 2.在△ABC 中(2cosA-2)2+|1-tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差4.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .9 5.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 6.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 7.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.58.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 9.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 10.如果,则a 的取值范围是( ) A . B . C . D .11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.当m =____________时,解分式方程533x m x x-=--会出现增根. 18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.计算:21(1)211x x x x ÷-+++=________. 20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,在平面直角坐标系中,直线AB 与函数y =k x(x >0)的图象交于点A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使OD =12OC ,且△ACD 的面积是6,连接BC . (1)求m ,k ,n 的值;(2)求△ABC的面积.23.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.24.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.2.D解析:D【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC一定是等腰直角三角形,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.A解析:A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.6.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 7.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.8.D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
广东省广州市海珠区中考一模数学考试卷(解析版)(初三)中考模拟.doc

广东省广州市海珠区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)【题文】实数﹣3的绝对值是()A. 3B. ﹣3C. 0D. ±【答案】A【解析】试题分析:根据负数的绝对值是它的相反数,可得﹣3的绝对值是3,故A正确. 故选:A.考点:绝对值【题文】下面汽车标志中,属于轴对称图形的是()A. B. C. D.【答案】C【解析】试题分析:根据轴对称图形的概念对各选项分析判断:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.考点:轴对称图形【题文】如图,在平行四边形ABCD中,如果∠A=50°,则∠C=()A.40° B.50° C.130° D.150°【答案】B【解析】评卷人得分试题分析:利用平行四边形的对角相等进而得出∠A=∠C=50°.故选:B.考点:平行四边形的性质【题文】下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4 D.aa2=a2【答案】D【解析】试题分析: A、根据合并同类项的法则,可知2a-3a=-a,故正确,不合题意;B、根据积的乘方的运算法则,可得(-ab)3=-a3b3,故正确,不合题意;C、根据同底数幂的除法,可得a6÷a2=a4,故正确,不合题意;D、根据同底数幂的乘法,可得a·a2=a3,故错误,故此选项符合题意.故选:D.考点:1、积的乘方运算,2、同底数幂的除法运算,3、同底数幂的乘法【题文】方程组的解是()A. B. C. D.【答案】D【解析】试题分析:利用加减消元法求出方程组的解方程组:,①+②得:2x=4,即x=2,把x=2代入①得:y=1,则方程组的解为,故选D考点:二元一次方程组的解【题文】为了解当地气温变化情况,某研究小组记录了寒假期间连续4天的最高气温,结果如下(单位:℃):5,﹣1,﹣3,﹣1.则下列结论错误的是()A.方差是8 B.中位数是﹣1C.众数是﹣1 D.平均数是0【答案】A【解析】试题分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可:平均数=(5﹣1﹣3﹣1)÷4=0,选项D正确由数据﹣1出现两次最多,∴众数为﹣1,选项C正确中位数是﹣1;选项B正确方差=[(5﹣0)2+2(﹣1﹣0)2+(﹣3﹣0)2]=9.故选A.考点:1、方差,2、平均数,3、中位数,4、众数【题文】某几何体的三视图如图所示,则其侧面积是()A.12π B.6π C.4π D.6【答案】B【解析】试题分析:由三视图可知该几何体是底面直径为2,高为3的圆柱体,因此该圆柱体的侧面积为:2π×3=6π,故选:B.考点:三视图【题文】已知一元二次方程x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根D.无法确定【答案】A【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.由a=1,b=﹣5,c=3,可得△=b2﹣4ac=(﹣5)2﹣4×1×3=13>0,因此方程有两个不相等的实数根.故选:A.考点:一元二次方程根的判别式【题文】如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是()A.R=2r B.R=r C.R=3r D.R=4r【答案】D【解析】试题分析:根据扇形的弧长公式可知:扇形的弧长是:,再由圆的半径为r,则底面圆的周长是2πr,而圆锥的底面周长等于侧面展开图的扇形弧长则得到: =2πr,可得=2r,即:R=4r,r与R之间的关系是R=4r.故选D.考点:有关扇形和圆锥的相关计算【题文】将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是()A.1 B.2 C.3 D.4【答案】B【解析】试题分析:把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可得,解得;把抛物线解析式y=x2﹣4x+3整理成顶点式形式y=x2﹣4x+3=(x﹣2)2﹣1,然后写出顶点坐标(2,﹣1);根据顶点坐标求出向上平移的距离PP′=1,再根据阴影部分的面积等于平行四边形A′APP ′的面积=1×2=2.故选B.考点:二次函数的综合【题文】已知∠α=25°,那么∠α的余角等于度.【答案】65【解析】试题分析:根据余角的定义得到∠α的余角=90°﹣∠α,然后把∠α=25°代入计算即可得到∠α的余角=90°﹣∠α=90°﹣25°=65°.考点:余角【题文】若在实数范围内有意义,则x的取值范围是.【答案】x≥﹣2【解析】试题分析:【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可解得:x≥﹣2.考点:二次根式中被开方数的取值范围【题文】不等式组的解集是.【答案】﹣1<x<5【解析】试题分析:首先解中的每个不等式,即可知:解①得x>﹣1,解②得x<5.则不等式组的解集是﹣1<x<5.考点:一元一次不等式组的解法【题文】反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围.【答案】m>3【解析】试题分析:根据反比例函数的增减性,由反比例函数y=,在每一象限内,y随x的增大而减小,可得m﹣3>0,解得m>3.考点:反比例函数的性质【题文】如图,两建筑物AB和CD的水平距离为24米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为米.(结果保留根号)【答案】16【解析】试题分析:延长CD交AM于点M,则AM=24,可根据直角三角形的性质得DM=AM×tan30°=8,同理可得CM=24,因此CD=CM﹣DM=16(米).考点:三角函数解【题文】如图,正方形ABCD的边长为3,对角线AC与BD相交于点O,CM交BD于点N,若BM=1,则线段ON的长为.【答案】1【解析】试题分析:首先过点M作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH=MH=AM=×2=, MB=MH=, OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON=1.考点:1、正方形的性质,2、相似三角形的判定与性质,3、角平分线的性质【题文】解方程:.【答案】x=﹣4【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x=2x+4,解得:x=﹣4,经检验x=﹣4是分式方程的解.考点:解分式方程【题文】如图,四边形ABCD是平行四边形.(1)利用尺规作∠ABC的平分线BE,交AD于E(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求证:AB=AE.【答案】(1)作图见解析(2)证明见解析【解析】试题分析:(1)由角平分线的作法,即可得出结果;(2)由(1)得:∠ABE=∠CBE,再由平行四边形的性质得出∠ABE=∠AEB,即可得出结论.试题解析l(1)化简A;(2)若x2﹣2x+1=0,求A的值.【答案】(1)A=2x2﹣4x;(2)-2【解析】试题分析:(1)原式利用完全平方公式及平方差公式化简即可得到结果;(2)已知等式变形后代入A计算即可求出值.试题解析:(1)A=x2﹣4x+4+x2﹣4=2x2﹣4x;(2)由x2﹣2x+1=0,得到x2﹣2x=﹣1,则A=2(x2﹣2x)=﹣2.考点:整式的混合运算﹣化简求值【题文】已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.【答案】(1)y1=x+2,y2=(2)x>1或﹣3<x<0【解析】试题分析:(1)根据待定系数法即可解决问题.(2)观察图象y1>y2时,y1的图象在y2的上面,由此即可写出x的取值范围.试题解析:(1)把点A(1,3)代入y2=,得到m=3,∵B点的横坐标为﹣3,∴点B坐标(﹣3,﹣1),把A(1,3),B(﹣3,﹣1)代入y1=kx+b得到解得,∴y1=x+2,y2=.(2)由图象可知y1>y2时,x>1或﹣3<x<0.考点:反比例函数与一次函数的图象【题文】为了庆祝新年的到来,我市某中学举行“青春飞扬”元旦汇演,正式表演前,把各班的节目分为A (戏类),B(小品类),C(歌舞类),D(其他)四个类别,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加汇演的节目数共有个,在扇形统计图中,表示“B类”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)学校决定从本次汇演的D类节目中,选出2个去参加市中学生文艺汇演.已知D类节目中有相声节目2个,魔术节目1个,朗诵节目1个,请求出所选2个节目恰好是一个相声和一个魔术概率.【答案】(1)25,144,32(2)10(3)【解析】试题分析:(1)根据A类别的人数除以所占的百分比求出总人数,根据B类别的人数占被调查节目总数比例求得B类别扇形圆心角的度数,用C类别节目出节目总数乘100可得m;(2)求出等级B的人数,补全条形统计图即可;(3)画树状图得出所有等可能的情况数,找出一个相声和一个魔术的情况数,即可求出所求的概率.试题解析:(1)参加汇演的节目数共有3÷0.12=25(个),表示“B类”的扇形的圆心角为:×360°=144°,m=×100=32;故答案为:25,144,32.(2)“B”类节目数为:25﹣3﹣8﹣4=10,补全条形图如图:(3)记两个相声节目为A1、A2,魔术节目为B,朗诵节目为C,画树状图如下:由树状图可知,共有12种等可能结果,其中恰好是一个相声和一个魔术的有4种,故所选2个节目恰好是一个相声和一个魔术概率为.考点:列表法或树状图法【题文】某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)AB甲38622乙54402(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?【答案】(1)26,8(2)9【解析】试题分析:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,就有3x+8y=622和5x+4y=402,由这两个方程构成方程组求出其l∴m最小取9.∴最少购买9个A型号篮球.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A种型号的篮球最少能采购9个.考点:1、一元一次不等式的应用,2、二元一次方程组的应用【题文】如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当时,求P点所经过的弧长(不考虑点P与点B重合的情形).【答案】(1)2(2)(3)、、【解析】试题分析:(1)OA和AB的长度是一元二次方程的根,所以利用韦达定理即可求出AB的长度.(2)作出△AOB的高OC,然后求出OC的长度即可.(3)由题意知:两三角形有公共的底边,要面积相等,即高要相等.试题解析:(1)由题意知:OA和AB的长度是x2﹣4x+a=0的两个实数根,∴OA+AB=﹣=4,∵OA=2,∴AB=2;(2)过点C作OC⊥AB于点C,∵OA=AB=OB=2,∴△AOB是等边三角形,∴AC=AB=1在Rt△ACO中,由勾股定理可得:OC=∴S△AOB=ABOC=×2×=(3)延长AO交⊙O于点D,由于△AOB与△POA有公共边OA,当S△POA=S△AOB时,∴△AOB与△POA高相等,由(2)可知:等边△AOB的高为,∴点P到直线OA的距离为,这样点共有3个①过点B作BP1∥OA交⊙O于点P1,∴∠BOP1=60°,∴此时点P经过的弧长为:,②作点P2,使得P1与P2关于直线OA对称,∴∠P2OD=60°,∴此时点P经过的弧长为:,③作点P3,使得B与P3关于直线OA对称,∴∠P3OP2=60°,∴此时P经过的弧长为:,综上所述:当S△POA=S△AOB时,P点所经过的弧长分别是、、.考点:一元二次方程与圆的综合知识【题文】已知正方形ABCD和正方形CEFG,连结AF交BC于点O,点P是AF的中点,过点P作PH⊥DG于H ,CD=2,CG=1.(1)如图1,点D、C、G在同一直线上,点E在BC边上,求PH的长;(2)把正方形CEFG绕着点C逆时针旋转α(0°<α<180°)①如图2,当点E落在AF上时,求CO的长;②如图3,当DG=时,求PH的长.【答案】(1)(2)①②【解析】试题分析:(1)先判断出四边形APGF是梯形,再判断出PH是梯形的中位线,得到PH=(FG+AD);(2)①先判断出△COE∽△AOB,得到AO是CO的2倍,设出CO,表示出BO,AO,再用勾股定理计算,②先找出辅助线,再判断出△ARD≌△DSC,△CSG≌△GTF,求出AR+FT,最后用梯形中位线即可.试题解析:(1)PH⊥CD,AD⊥CD,∴PH∥AD∥FG,∵点P是AF的中点,∴PH是梯形APGF的中位线,∴PH=(FG+AD)=,(2)①∵∠CEO=∠B=90°,∠COE=∠AOB,∴△COE∽△AOB,∴,∴,设CO=x,∴AO=2x,BO=2﹣x,在△ABO中,根据勾股定理得,4+(2﹣x)2=(2x)2,∴x=或x=(舍),∴CO=x=.②如图3,分别过点A,C,F作直线DG的垂线,垂足分别为R,S,T,∵∠ADR+∠CDS=90°,∠CDS+∠DCS=90°,∴∠ADR=∠DCS,∵∠ADR=∠CSD=90°,∵AD=CD∴△ARD≌△DSC,∴AR=DS,同理:△CSG≌△GTF,∴SG=FT,∴AR+FT=DS+SG=DG=,同(1)的方法得,PH是梯形ARTF的中位线,∴PH=(AR+FT)=.考点:四边形综合题【题文】如图,抛物线1=x2+bx+c与x轴交于点A、B,交y轴于点C(0,﹣2),且抛物线对称轴x=﹣2交x轴于点D,E是抛物线在第3象限内一动点.(1)求抛物线y1的解析式;(2)将△OCD沿CD翻折后,O点对称点O′是否在抛物线y1上?请说明理由.(3)若点E关于直线CD的对称点E′恰好落在x轴上,过E′作x轴的垂线交抛物线y1于点F,①求点F 的坐标;②直线CD上是否存在点P,使|PE﹣PF|最大?若存在,试写出|PE﹣PF|最大值.【答案】(1)y1=x2+2x﹣2;(2)不在(3)①F(2,6﹣2)②存在,6﹣2【解析】试题分析:(1)先由抛物线对称轴方程可求出b=2,再把点C(0,﹣2)代入y1=x2+bx+c可得c=2,所以抛物线解析式为y1=x2+2x﹣2;(2)过O′点作O′H⊥x轴于H,如图1,由(1)得D(﹣2,0),C(0,2),在Rt△OCD中利用三角函数可计算出∠ODC=60°,再利用折叠的性质得O′D=OD=2,∠O′DC=∠ODC=60°,所以∠O′DH=60°,接着在Rt△O′DH中利用三角函数可计算出O′H=,利用勾股定理计算出DH=1,则O′(﹣3,﹣),然后根据二次函数图象上点的坐标特征判断O′点是否在抛物线y1上;(3)①利用二次函数图象上点的坐标特征设E(m,m2+2m﹣2)(m<0),过E作EH⊥x轴于H,连结DE ,如图2,则DH=﹣2﹣m,EH=﹣m2﹣2m+2,由(2)得∠ODC=60°,再利用轴对称性质得DC平分∠EDE′,DE=DE′,则∠EDE′=120°,所以∠EDH=60°,于是在Rt△EDH中利用三角函数的定义可得﹣m2﹣2m+2=(﹣2﹣m),解得m1=2(舍去),m2=﹣4,则E(﹣4,﹣2),接着计算出DE=4,所以DE′=4,于是得到E ′(2,0),然后计算x=2时得函数值即可得到F点坐标;②由于点E关于直线CD的对称点E′恰好落在x轴,则PE=PE′,根据三角形三边的关系得|PE′﹣PF|≤E ′F(当点P、E′F共线时,取等号),于是可判断直线CD上存在点P,使|PE﹣PF|最大,最大值为6﹣2.试题解析:(1)∵抛物线对称轴x=﹣2,∴﹣=﹣2,解得b=2,∵点C(0,﹣2)在抛物线y1=x2+bx+c上,∴c=2,∴抛物线解析式为y1=x2+2x﹣2;(2)O点对称点O′不在抛物线y1上.理由如下:过O′点作O′H⊥x轴于H,如图1,由(1)得D(﹣2,0),C(0,2),在Rt△OCD中,∵OD=2,OC=,∴tan∠ODC==,∴∠ODC=60°,∵△OCD沿CD翻折后,O点对称点O′,∴O′D=OD=2,∠O′DC=∠ODC=60°,∴∠O′DH=60°,在Rt△O′DH中,sin∠O′DH=,∴O′H=2sin60°=,∴DH==1,∴O′(﹣3,﹣),∵当x=﹣3时,y1=x2+2x﹣2=×9+2×(﹣3)﹣2≠﹣,∴O′点不在抛物线y1上;(3)①设E(m,m2+2m﹣2)(m<0),过E作EH⊥x轴于H,连结DE,如图2,则DH=﹣2﹣m,EH=﹣(m2+2m﹣2)=﹣m2﹣2m+2,由(2)得∠ODC=60°,∵点E关于直线CD的对称点E′恰好落在x轴上,∴DC垂直平分EE′,∴DC平分∠EDE′,DE=DE′,∴∠EDE′=120°,∴∠EDH=60°,在Rt△EDH中,∵tan∠EDH=,∴EH=HDtan60°,即﹣m2﹣2m+2=(﹣2﹣m),整理得m2+(4+2)m﹣8=0,解得m1=2(舍去),m2=﹣4,∴E(﹣4,﹣2),∴HD=2,EH=2,∴DE==4,∴DE′=4,∴E′(2,0),而E′F⊥x轴,∴F点的横坐标为2,当x=2时,y1=x2+2x﹣2=6﹣2,∴F(2,6﹣2);②∵点E关于直线CD的对称点E′恰好落在x轴,∴PE=PE′,∴|PE′﹣PF|≤E′F(当点P、E′F共线时,取等号),∴直线CD上存在点P,使|PE﹣PF|最大,最大值为6﹣2.考点:二次函数综合题。
2020年广东省广州市海珠区中考数学一模试卷

2020年广东省广州市海珠区中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)(2020•海珠区一模)下列各数中是无理数的是()A.B.C.0.D.132.(3分)(2020•海珠区一模)下列图形中是中心对称图形的是()A.B.C.D.3.(3分)(2020•海珠区一模)下列计算正确的是()A.(a3)2=a5B.a3•a5=a8C.a5+a2=a7D.a6÷a2=a34.(3分)(2020•海珠区一模)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cmC.5cm,8cm,2cm D.4cm,5cm,6cm5.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14357则这20名同学年龄的众数和中位数分别是()A.15,14B.15,15C.16,14D.16,156.(3分)(2020•海珠区一模)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.它的图象经过第一、二、四象限C.当x>0时,y<0D.y的值随x值的增大而增大7.(3分)(2010•青岛)如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C 按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是()A.(﹣3,3)B.(3,﹣3)C.(﹣2,4)D.(1,4)8.(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.9.(3分)(2020•海珠区一模)如图,在平行四边形ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,交AB于点G,则S△BGC:S四边形ADCG的值是()A.B.C.D.10.(3分)(2020•海珠区一模)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<4二、填空题(每题3分,共18分)11.(3分)(2020•海珠区一模)若在实数范围内有意义,则x的取值范围是.12.(3分)(2020•海珠区一模)如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于.13.(3分)(2018•黔西南州)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是.甲乙丙丁7887s21 1.20.9 1.814.(3分)(2020•海珠区一模)抛物线y=x2+bx+c经过点A(﹣2,0)、B(1,0)两点,则该抛物线的顶点坐标是.15.(3分)(2020•海珠区一模)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P 于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是.16.(3分)(2020•海珠区一模)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的是.三、解答题(本题共9小题,共102分.解答要求写出文字说明,证明过程或计算步骤)17.(10分)(2020•海珠区一模)(1)计算:2sin45°+|﹣|﹣(π﹣2020)0﹣;(2)解分式方程:.18.(10分)(2010•丽水)已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:AF=CE.19.(10分)(2020•海珠区一模)如图,甲袋子中有3张除数字外完全相同的卡片,乙袋子中有2张除数字外完全相同的卡片,若先从甲袋子中抽出一张数字为a的卡片,再从乙袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).(1)请用树形图或列表法列出(a,b)的所有可能的结果;(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.20.(10分)(2020•海珠区一模)先化简,再求值:,其中a满足方程x2+5x+6=0.21.(10分)(2020•海珠区一模)如图,已知△ABC中,AB=BC=10,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线EF与边AB、BC的交点分别为E,F,求的值.22.(12分)(2020•海珠区一模)矩形ABCD中,点E是DC上一点,连接AE.(1)在BC上取一点F,使∠AFE=90°,且BF<FC.(用尺规作图,找出点,保留作图痕迹);(2)连接AF,EF,延长EF与AB的延长线交于点G,求证:BF2=BG•AG﹣BG2.23.(12分)(2020•海珠区一模)在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线y=(k≠0)与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标.(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值和点Q的坐标;(3)若k>0,连接PO,记△POB的面积为S.若<S<1,求k的取值范围.24.(14分)(2020•海珠区一模)已知二次函数l1:y=x2+6x+5k和l2:y=kx2+6kx+5k,其中k≠0且k≠1.(1)分别直接写出关于二次函数l1和l2的对称轴及与y轴的交点坐标;(2)若两条抛物线l1和l2相交于点E,F,当k的值发生变化时,判断线段EF的长度是否发生变化,并说明理由;(3)在(2)中,若二次函数l1的顶点为M,二次函数l2的顶点为N;①当k为何值时,点M与点N关于直线EF对称?②是否存在实数k,使得MN=2EF?若存在,求出实数k的值,若不存在,请说明理由.25.(14分)(2020•海珠区一模)圆内接四边形ABCD,点A是的中点,∠ADC=120°.(1)求∠ABC的度数,并求证:AB+DC=BC;(2)连接AC,BD相交于点H,如图1,若AD=3,BC=5,求HD•AC的值;(3)在(2)的条件下,点E是四边形ABCD内一动点,点P在线段BC上,且PE=1,PC=3,以点D为旋转中心,将DE逆时针旋转120°,并缩短得到线段DF,使得DF=DE,如图2,连接PF,试探索PF的长是否有最小值,若有请求出该值;若没有,请说明理由.2020年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:,0.,13是有理数,是无理数,故选:B.2.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.3.【解答】解:A、(a3)2=a6,错误;B、a3⋅a5=a8,正确;C、a5与a2不是同类项,不能合并,错误;D、a6÷a2=a4,错误;故选:B.4.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能够组成三角形;C、2+5=7<8,不能组成三角形;D、4+5>6,能组成三角形.故选:D.5.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选:D.6.【解答】解:A、当x=1时,y=﹣3x+1=﹣2,则点(1,3)不在函数y=﹣3x+1的图象上,所以A选项错误;B、k=﹣3<0,b=1>0,函数图象经过第一、二、四象限,所以B选项正确;C、当x>0时,y<1,所以C选项错误;D、y随x的增大而减小,所以D选项错误.故选:B.7.【解答】解:△A′B′C的位置如图.A ′(﹣3,3). 故选:A . 8.【解答】解:A 、对于直线y =bx +a 来说,由图象可以判断,a >0,b >0;而对于抛物线y =ax 2+bx 来说,对称轴x =﹣<0,应在y 轴的左侧,故不合题意,图形错误.B 、对于直线y =bx +a 来说,由图象可以判断,a <0,b <0;而对于抛物线y =ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y =bx +a 来说,由图象可以判断,a <0,b >0;而对于抛物线y =ax 2+bx 来说,图象开口向下,对称轴x =﹣位于y 轴的右侧,故符合题意,D 、对于直线y =bx +a 来说,由图象可以判断,a >0,b >0;而对于抛物线y =ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选:C . 9.【解答】解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AD =BC ,AB ∥CD , ∵AE ∥BC ,∴△AEG ∽△BCG , ∴=()2=()2=()2=,即S △BCG =9S △AEG , ∵AG ∥CD ,∴△EAG ∽△EDC , ∴=()2=()2=()2=,即S △EDC =16S △EAG , ∴S 四边形ADCG =15S △EAG ,∴S △BGC :S 四边形ADCG =9S △AEG :15S △EAG =3:5. 故选:A .10.【解答】解:∵max{3,8﹣2x,2x﹣5}=3,则,∴x的取值范围为:≤x≤4,故选:B.二、填空题(每题3分,共18分)11.【解答】解:由题意得,2﹣x≥0,解得,x≤2,故答案为:x≤2.12.【解答】解:∵∠AOB与∠ACB都对,∠AOB=72°,∴∠ACB=∠AOB=36°,故答案为:36°13.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为:丙.14.【解答】解:∵抛物线y=x2+bx+c经过点A(﹣2,0)、B(1,0)两点,∴,解得:,∴y=x2+x﹣2=(x+)2﹣,∴顶点坐标为(﹣,﹣),故答案为:(﹣,﹣).15.【解答】解:过点P作AP⊥EF交EF于点A,连接PE,设OP=x,∵⊙P与x轴相切于原点O,∴OP⊥OE,∵平行于y轴的直线交⊙P于E,F两点,∴四边形APOB是矩形,∴AB=OP=x,∵点E的坐标是(﹣3,﹣1),∴AP=OB=3,AE=AB﹣BE=x﹣1,在Rt△ABE中,32+(x﹣1)2=x2,解得x=5,∴AE=4,∵AF=AE,∴EF=8,∴BF=EF+BE=9,∴点F的坐标是(﹣3,﹣9).故答案为(﹣3,﹣9).16.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故答案为:①②③④.三、解答题(本题共9小题,共102分.解答要求写出文字说明,证明过程或计算步骤)17.【解答】解:(1)原式=2×+﹣1﹣3=+﹣1﹣3=﹣1﹣;(2)分式方程:﹣=,去分母得:6﹣x=x﹣2,解得:x=4,检验,把x=4代入得:2(x﹣2)≠0,∴分式方程的解为x=4.18.【解答】证明:方法1:∵四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,∴AE=CF,又∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF.∴四边形AFCE是平行四边形,∴AF=CE;方法2:∵四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,∴BF=DE,又∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS)∴AF=CE.19.【解答】解:(1)画树状图如图:所有可能的结果有6个为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2);(2)在(a,b)中,使方程ax2+bx+1=0没有实数根的结果有5个,∴在(a,b)中,使方程ax2+bx+1=0没有实数根的概率为.20.【解答】解:=•==,解方程x2+5x+6=0得:x=﹣2或﹣3,∵分式中a不能为±2,0,∴a=﹣3,当a=﹣3时,原式==﹣.21.【解答】解:(1)作A作AE⊥BC,如图1,在Rt△ABD中,tan∠ABC=,AB=10,∴AD=6,BD=8,∴CD=BC﹣BD=10﹣8=2,在Rt△ACD中,根据勾股定理得:AC=;(2)如图2,连接CE,∵EF垂直平分BC,∴BE=CE,BF=CF=5,∵tan∠EBF==,∴EF=,在Rt△BEF中,根据勾股定理得:BE==,∴AE=10﹣=,则.22.【解答】解:(1)根据题意作图如下,(2)如图2,∵∠AFE=90°,∴∠AFG=90°,∵四边形ABCD为矩形,∴∠ABC=∠GBF=90°,∴∠BAF+∠AFB=∠BAF+∠G=90°,∴∠AFB=∠G,∴△ABF∽△FBG,∴,∴BF2=BG•AB,∴BG2=BG(AG﹣BG),∴BF2=BG•AG﹣BG2.23.【解答】解:(1)∵直线l:y=x+b与x轴交于点A(﹣2,0)∴﹣2+b=0∴b=2∴一次函数解析式为:y=x+2∴直线l与y轴交于点B为(0,2)∴点B的坐标为(0,2);(2)∵双曲线y=(k≠0)与直线l交于P,Q两点∴点P在直线l上∴当点P的横坐标为2时,y=2+2=4∴点P的坐标为(2,4)∴k=2×4=8,∴y=,解得或,∴Q(﹣4,﹣2);(3)如图:∵k>0,S△BOP=×2×x p=x p,∵<S<1,∴<x p<1,∴<y p<3,∴<k<3;综上,k的取值范围为:<k<3.24.【解答】解:(1)二次函数l1的对称轴为x=﹣=﹣=﹣3,令x=0,则y=5k,故该抛物线和y轴的交点坐标为(0,5k);同理可得:l2的对称轴为x=﹣3,与y轴的交点坐标(0,5k);(2)线段EF的长度不发生变化,理由:当y1=y2时,x2+6x+5k=kx2+6kx+5k,整理得:(k﹣1)(x2+6x)=0.∵k≠1,∴x2+6x=0,解得:x1=0,x2=﹣6.不妨设点E在点F的左边,则点E的坐标为(﹣6,5k),点F的坐标为(0,5k),∴EF=|0﹣(﹣6)|=6,∴线段EF的长度不发生变化;(3)①由y1=x2+6x+5k=(x+3)2+5k﹣9得M(﹣3,5k﹣9),由y2=kx2+6kx+5k=k(x+3)2﹣4k得N(﹣3,﹣4k).∵直线EF的关系式为y=5k,且点M与N关于直线EF对称,∴﹣4k﹣5k=5k﹣(5k﹣9),解得:k=﹣1,∴当k为﹣1时,点M与N关于直线EF对称;②∵MN=|(5k﹣9)﹣(﹣4k)|=|9k﹣9|,MN=2EF=12,∴|9k﹣9|=12,解得k1=,k2=﹣,∴实数k为或﹣.25.【解答】解:(1)如图1,在BC上截取BM=AB,连接AM,∵∠ADC=120°,∴∠ABC=60°,∴△ABM为等边三角形,∴BM=AB,∠AMB=60°,∴∠AMC=∠ADC=120°,∵A的中点,∴AD=AB=BM,∠ACB=∠ACD,∵∠ACB=∠ACD,∠AMC=∠ADC,AD=AM,∴△AMC≌△ADC(AAS),∴MC=DC,∴AB+CD=BM+MC=BC.(2)∵点A是的中点,∴∠ACD=∠ADB,∵∠CAD=∠CAD,∴△ADC∽△AHD,∴,∴HD•AC=AD•DC,由(1)知,AB=AD=3,AB+DC=BC,∴DC=BC﹣AB=2,∴HD•AC=3×2=6;(3)PF的最小值为,理由如下:如图2,连接CF,延长BA至K,使AK=PC,连接KE,过点K作KN⊥PC于N,∵,=,∴,又∵∠ADC=∠EDF=120°,∴∠ADE=∠CDF,∴△ADE∽△CDF,∴,∠DAE=∠DCF,∵四边形ABCD是圆内接四边形,∴∠KAD=∠BCD,∴∠KAE=∠PCF,又∵=,∴△PCF∽△KAE,∴,∴PF=KE,∵PE=1,PC=3,∴点E在以点P为圆心,PE长为半径的圆上,∴当点K,点E,点P三点共线时,KE有最小值,即PF有最小值,∵BK=BA+AK=3+PC=3+=,∠ABC=60°,∠KNB=90°,∴∠BKN=30°,BN=,KN=BN=,∵PN=BN﹣BP=﹣(5﹣3)=,∴PK===,∴EK的最小值为﹣1,∴PF的最小值为KE=.。
2020届广东省广州市海珠区中考数学一模试卷((有答案))

广东省广州市海珠区中考数学一模试卷.选择题(共 10小题,满分 30 分,每小题 3分) 若 a 2=4,b 2=9,且 ab <0,则 a ﹣b 的值为(凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送 一本,某组共互赠了 210 本图书,如果设该组共有8.某测量队在山脚 A 处测得山上树顶仰角为 45°(如图),测量队在山坡上前进 600 米到 D 处,再测得树顶的仰角为 60°,已知这段山坡的坡角为 30°,如果树高为 15米,则山高为( )(精确到 1 米,1.2. 3. A .﹣ 2 下列计算正确的是( A .x 2?x 3=x 6元一次不等式组 A .B .±5 ) B.( x 2)3=x 5C D .﹣ 53 ﹣ =2 D . x 5﹣ x 2=x 3 D .50° 6.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是A .B .C . 某车间 20 名工人每天加工零件数如表所示: 每天加工零件数人数这些工人每天加工零件数的众数、 中位数分别是A .5,5B .5,6C .6,D .6,5 7. A . x ( x+1 )= 210 C .2x (x ﹣1)= 210 D. x ( x ﹣1)= 210x ( x ﹣ 1)= 210 x 名同学,那么依题意,可列出的方程是( C .5.C ,∠ 1=55°,则∠ 2 的度数是(65° D .相切,若点 A 的坐标为( 0, 8),则圆心 M 的坐标为( )10.如图,以正方形 ABCD 的 AB 边为直径作半圆 O ,过点 C 作直线切半圆于点 E ,交 AD 边于点 F ,则 sin二.填空题(共 6 小题,满分 18分,每小题 3分)11.﹣ 的绝对值是 ,倒数是 .12.要使代数式 有意义, x 的取值范围是13.如图,点 A 、B 、C 、D 都在方格纸的格点上,若△ AOB 绕点 O 按逆时针方向旋转到△ COD 的位置, 则旋转角为 .B .1014 米C .805 米D .820 米 9.如图,在直角坐标系中,四边形 OABC 为正方形,顶点 A ,C 在坐标轴上,以边 AB 为弦的⊙M 与 x 轴 B .(﹣ 5,4) C .(﹣ 4, 6) D .(﹣ 4, 5)=1.732)A . 585米 A .(4,5)∠FCD =( )14.若 a 是方程 x 2﹣ 3x+1= 0 的根,计算: a 2﹣3a+ = .15.已知 ⊙O 的半径为 26cm ,弦 AB ∥CD ,AB =48cm ,CD = 20cm ,则 AB 、CD 之间的距离为 16.在直角坐标系内,设 A (0,0),B (4,0),C (t+4,4),D (t ,4)(t 为实数),记 N 为平行四边形 ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则 N 的值可能三.解答题(共 9 小题,满分 102 分)17.(9 分)解方程组:2),( 1)画出△ ABC 关于点 C 成中心对称的△ A 1B 1C ;平移△ ABC ,若点 A 的对应点 A 2的坐标为 (0,﹣4), 画出平移后对应的△ A 2B 2C 2;2)△ A 1B 1C 和△ A 2B 2C 2关于某一点成中心对称,则对称中心的坐标为1)一辆车经过此收费站时,选择 A 通道通过的概率是2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.点 E 在 BC 上, AE = AD ,DF ⊥ AE 于 F ,连接 DE . 证明: DF =DC . 19.( 10 分)如图,在平面直角坐标系中, Rt △ABC 的三个顶点分别是 A (﹣4,2)、B (0,4)、C (0,20.10 分)车辆经过润扬大桥收费站时, 4 个收费通道 A 、 B 、C 、D 中,可随机选择其中一个通过.18.21.( 12分)某工厂准备购买 A 、B 两种零件,已知 A 种零件的单价比 B 种零件的单价多 30元,而用 900元购买 A 种零件的数量和用 600元购买 B 种零件的数量相等.( 1)求 A 、B 两种零件的单价;(2)根据需要,工厂准备购买 A 、B 两种零件共 200 件,工厂购买两种零件的总费用不超过 14700元, 求工厂最多购买 A 种零件多少件?22.( 12分)如图, AB 是⊙O 的直径,点 D 在⊙O 上, OC ∥AD 交⊙O 于 E ,点 F 在CD 延长线上,且∠BOC+∠ADF = 90°.( 1)求证: ;(2)求证: CD 是⊙O 的切线.23.( 12 分)如图,已知点 A 在反比函数 y = (k <0)的图象上,点 B 在直线 y =x ﹣3 的图象上,点 B 的纵坐标为﹣ 1, AB ⊥x 轴,且 S △OAB =4.1)求点 A 的坐标和 k 的值;k < 0)的图象上,点 Q 在直线 y =x ﹣3 的图象上, P 、Q 两点关于 y24.( 14分)已知, AB 是⊙O 的直径,点(1)如图 1,若∠ PCB =∠ A .① 求证:直线 PC 是⊙O 的切线;② 若 CP = CA ,OA = 2,求 CP 的长;(2)如图 2,若点 M 是弧 AB 的中点, CM 交 AB 于点 N ,MN?MC =9,求 BM 的值. 2)若点 P 在反比例函数 y =C 在 ⊙ O 上,点 P 是 AB 延长线上一点,连接 CP . n ),求 的值.3)a =﹣ 1 时,直线 y =﹣ 2x 与抛物线在第二象限交于点 G ,点 G 、H 关于原点对称,现将线段 GH 沿 y 轴向上平移 t 个单位( t > 0),若线段 GH与抛物线有两个不同的公共点,试求25.( 14 分)已知,抛物线 y = ax 2+ax+b (1)求 b 与 a 的关系式和抛物线的顶点 a ≠0)与直线 y =2x+m 有一个公共点 M ( 1, 0),且 a <b .D 坐标(用 a 的代数式表示); 2)直线与抛物线的另外一个交点记为 N ,求△ DMN 的面积与 a 的关系式;t 的取值范围.广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30 分,每小题3分)1.【分析】利用平方根的定义得出a,b 的值,进而利用ab的符号得出a,b 异号,即可得出a﹣b 的值.【解答】解:∵ a2=4,b2=9,∴ a=± 2,b=± 3,∵ab<0,∴ a =2,则 b =﹣ 3 ,a=﹣2,b=3,则a﹣b 的值为:2﹣(﹣3)= 5 或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b 的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B 、原式=x6,错误;C、原式= 2 ,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3< x≤2.在数轴上表示不等式组的解集为:..故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠ 3,再求出∠ BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3 =55°,∵AC⊥AB,∴∠ BAC=90°,∴∠ 2=180°﹣∠ BAC ﹣∠ 3=35°,【点评】本题考查了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有 2 个正方形,第二层最左边有一个正方形.故选:B.点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.解答】解:由表知数据 5 出现次数最多,所以众数为5;因为共有20 个数据,所以中位数为第10、11 个数据的平均数,即中位数为故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点 D 作DE⊥ AC,可得到△ ACB 是等腰直角三角形,直角△ ADE 中满足解直角三角形的条件.可以设EC=x,在直角△ BDF 中,根据勾股定理,可以用x 表示出BF,根据AC=BC 就可以得到关于x 的方程,就可以求出x,得到BC,求出山高.【解答】解:过点 D 作DF⊥AC 于F.在直角△ ADF 中,AF=AD ?cos30°=300 米,DF=AD=300 米.设FC=x,则AC=300 +x.在直角△ BDE 中,BE=DE=x,则BC=300+ x.在直角△ ACB 中,∠ BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴ 300 +x=300+ x.解得:x=300.∴BC=AC=300+300 .∴山高是300+300 ﹣15=285+300 ≈805 米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M 作MD⊥AB 于D,连接AM,设⊙M 的半径为R,因为四边形OABC 为正方形,顶点A, C 在坐标轴上,以边AB 为弦的⊙M 与x轴相切,若点 A 的坐标为(0,8),所以DA=4,AB=8,DM =8﹣R,AM=R,又因△ ADM 是直角三角形,利用勾股定理即可得到关于R 的方程,解之即可.【解答】解:过点M 作MD⊥AB 于D,连接AM,设⊙M 的半径为R,∵四边形OABC 为正方形,顶点A,C 在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,点 A 的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ ADM 是直角三角形,根据勾股定理可得AM2=DM 2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴ M (﹣4, 5 ).故选: D .【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD 为正方形,得到四个内角为直角,四条边相等,可得出AD 与BC 都与半圆相切,利用切线长定理得到FA=FE ,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC 表示出EC,由AD﹣AF 表示出FD,在直角三角形FDC 中,利用勾股定理列出关系式,用 a 表示出x,进而用 a 表示出FD 与FC,利用锐角三角函数定义即可求出sin∠ FCD 的值.【解答】解:∵四边形ABCD 为正方形,∴∠A=∠ B=90°,AB=BC=CD=AD,∴ AD 与BC 都与半圆O 相切,又CF 与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴ FC=EF+EC=4a+x,FD =AD﹣AF=4a﹣x,在Rt△DFC 中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC 中,sin∠FCD ==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共 6 小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是 1 的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0 且x≠1,故答案为:x≥0且x≠ 1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠ BOD 即为旋转角.【解答】解:∵△ AOB 绕点O 按逆时针方向旋转到△ COD 的位置,∴对应边OB、OD 的夹角∠ BOD 即为旋转角,∴旋转的角度为90 °.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵ a 是方程x2﹣3x+1=0 的根,∴ a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD 的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED 和直角三角形OBF 中,利用勾股定理求得OE 、OF 的长度;最后根据图示的两种情况计算EF 的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴ EF 就是AB、CD 间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵ OD =OB=26cm,∴在直角三角形OED 和直角三角形OBF 中,∴ OE =24cm,OF =10cm(勾股定理),∴ ① EF=24+10=34cm② EF=24﹣10=14cm.故答案为:34 或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t =0 时,平行四边形ABCD 内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9 个点,所以N(0)=9,此时平行四边形ABCD 是矩形,当平行四边形ABCD 是一般平行四边形时,将边AD ,BC 变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N 的值可能为:9 或11 或12.故答案为:9 或11 或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9 小题,满分102 分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,① +② ×3得:10x=50,解得:x=5,把x=5 代入② 得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠ AED =∠ EDC ,∠ DFE =∠ C,证△ DFE ≌△ DCE ,即可得出答案.【解答】证明:∵ DF⊥AE于F,∴∠ DFE =90°在矩形ABCD 中,∠ C=90°,∴∠ DFE =∠ C,在矩形ABCD 中,AD ∥BC∴∠ ADE =∠ DEC,∵AE=AD,∴∠ ADE =∠ AED,∴∠ AED =∠ DEC,∠ DFE=∠ C=90°,又∵DE 是公共边,∴△ DFE ≌△ DCE(AAS),∴DF =DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点 C 成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点 A 、B 、C 平移后的对应点 A 2、B 2、C 2的位置,然后顺次连接即可; (2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】 解:( 1)△ A 1B 1C 如图所示,△ A 2B 2C 2 如图所示;【点评】 本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置 是解题的关键.20. 【分析】 (1)根据概率公式即可得到结论; (2)画出树状图即可得到结论.解答】 解:( 1)选择 A 通道通过的概率=故答案为:2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有 16 种可能的结果,其中选择不同通道通过的有 12 种结果, 点评】 本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键. 21.【分析】 (1)设 B 种零件的单价为 x 元,则 A 零件的单价为( x+30)元,根据用 900元购买 A 种零件 的数量和用 600元购买 B 种零件的数量相等,列方程求解;(2)设购进 A 种零件 m 件,则购进 B 种零件(200﹣m )件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出 m 的取值范围,然后求出工厂最多购买 A 种零件多少件.解答】 解:( 1)设 B 种零件的单价为 x 元,则 A 零件的单价为( x+30)元.∴选择不同通道通过的概率=解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答: A 种零件的单价为90 元,B 种零件的单价为60 元.(2)设购进 A 种零件m 件,则购进 B 种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m 在取值范围内,取最大正整数,m=90.答:最多购进 A 种零件90 件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠ COD 即可;(2)由(1)可得∠ BOC=∠ OAD,∠ OAD=∠ ODA ,再由已知条件证明∠ ODF =90°即可.【解答】证明:(1)连接OD .∵AD∥OC,∴∠ BOC=∠ OAD,∠ COD =∠ ODA ,∵OA=OD,∴∠ OAD=∠ ODA.∴∠ BOC=∠ COD ,∴=;(2)由(1)∠ BOC=∠ OAD ,∠ OAD =∠ ODA .∴∠ BOC =∠ ODA .∵∠ BOC+∠ ADF=90°.∴∠ ODA+∠ ADF=90°,即∠ ODF =90°.∵OD 是⊙O 的半径,∴ CD 是⊙ O 的切线.【点评】 本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为 半径),再证垂直即可.23.【分析】 (1)想办法求出点 A 坐标即可解决问题;(2)设 P (m ,﹣ ),则 Q (﹣ m ,﹣ ),想办法构建方程即可解决问题;【解答】 解:( 1)由题意 B ( 2,﹣ 1),∵ ×2×AB = 4,∴ AB = 4,∵AB ∥y 轴,∴A (2,﹣ 5),∵A (2,﹣ 5)在 y = 的图象上,∴k =﹣ 10.∵点 Q 在 y = x ﹣ 3 上,解得 m =﹣5或 2,+= 点评】 本题考查反比例函数系数 k 的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵 活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】 (1)① 欲证明 PC 是⊙ O 的切线,只要证明 OC ⊥PC 即可;② 想办法证明∠ P = 30°即可解决问题;2)如图 2中,连接 MA .由△ AMC ∽△ NMA ,可得 ,由此即可解决问题;解答】 (1)① 证明:如图 1 中,当 m =﹣ 5,n = 2时,2)设 P (m ,),则 Q (﹣ m ,﹣ ),∴﹣ 整理得: m 2+3m ﹣10= 0,m ﹣3,当 m = 2, n =+﹣5时,∵OA=OC,∴∠ A=∠ ACO ,∵∠ PCB =∠ A,∴∠ ACO =∠ PCB,∵ AB 是⊙O 的直径,∴∠ ACO+∠ OCB=90°,∴∠ PCB+∠OCB =90°,即OC⊥CP,∵ OC 是⊙ O 的半径,∴ PC 是⊙O 的切线.② ∵ CP=CA,∴∠P=∠ A,∴∠ COB=2∠A=2∠P,∵∠ OCP=90°,∴∠ P=30°,∵OC=OA=2,∴OP=2OC=4,∴.∵点M 是弧AB 的中点,∴=,∴∠ ACM =∠ BAM ,∵∠ AMC =∠ AMN ,∴△ AMC ∽△ NMA ,∴AM2=MC?MN,∵ MC ?MN =9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M 点坐标代入抛物线解析式可得到b 与 a 的关系,可用 a 表示出抛物线解析式,化为顶点式可求得其顶点 D 的坐标;(2)把点M(1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△ DMN 的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b 有一个公共点M(1,0),∴ a+a+b=0,即b=﹣2a,∴ y=ax2+ax+b=ax2+ax﹣2a=a();∴抛物线顶点 D 的坐标为(﹣2)∵直线y=2x+m 经过点M(1,0),∴ 0=2× 1+m,解得m=﹣2,∴ y=2x﹣2,得ax2+(a﹣2)x﹣2a+2=0,x﹣1)(ax+2a﹣2)=0,﹣2,∴N 点坐标为(解得x=1或x=∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△ DMN 的面积为S,∴S=S =|(﹣2)﹣1|?|﹣﹣(﹣3)|=,∴ S=S△DEN+ S△DEM =|(﹣2)﹣1|?|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+ )2+ ,有,﹣x2﹣x+2 =﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H 关于原点对称,∴H(1,﹣2),设直线GH 平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2 =﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M 的坐标得到 b 与 a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得GH 与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2020年广东省广州市中考数学一模试卷

2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)在实数13、0、1-、2-中,最小的实数是( )A .2-B .1-C .0D .132.(3分)如图所示的几何体的俯视图是( )A .B .C .D .3.(3分)下列运算正确的是( ) A .111x y x y+=+ B .2353()p q p q -=- C .ab ab =D .222()a b a b +=+4.(3分)如图所示,将面积为5的ABC ∆沿BC 方向平移至DEF ∆的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为( )A .10B .15C .20D .255.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )A .2B .2.8C .3D .3.36.(3分)菱形具有而平行四边形不具有的性质是( ) A .对角线互相垂直 B .两组对角分别相等C .对角线互相平分D .两组对边分别平行7.(3分)不等式组3020x x +>⎧⎨-⎩的解集是( )A .2x <B .3x -C .32x -<D .2x8.(3分)如图,ABC ∆的顶点都是正方形网格中的格点,则tan (ABC ∠= )A .12B .2C .55D .2559.(3分)已知α,β是一元二次方程2520x x --=的两个实数根,则22ααββ++的值为( ) A .1-B .9C .23D .2710.(3分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为 . 12.(3分)若1a <,化简2(1)1a --= . 13.(3分)分式方程211x =+的解是 . 14.(3分)如图,是用一把直尺、含60︒角的直角三角板和光盘摆放而成,点A 为60︒角与直尺交点,点B 为光盘与直尺唯一交点,若3AB =,则光盘的直径是 .15.(3分)如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 2cm .16.(3分)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上, 下列结论:①BE DF EF +=;②CE CF =;③75AEB ∠=︒;④23ABCD S =+正方形, 其中正确的序号是 .三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.) 17.(9分)计算034cos 458(3)(1)π︒++-.18.(9分)如图,在ABCD 中,对角线AC 、BD 交于点O ,M 为AD 中点,连接OM 、CM ,且CM 交BD 于点N ,1ND =. (1)证明:~MNO CND ∆∆;(2)求BD 的长.19.(10分)先化简,再求值:22x y x y x y-++,其中23,23x y =+=-. 20.(10分)当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为1A ,2A ,3A ,4A ,现对1A ,2A ,3A ,4A 统计后, 制成如图所示的统计图 .(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;(2) 将条形统计图补充完整, 并求出1A 所在扇形的圆心角的度数;(3) 现从1A ,2A 中各选出一人进行座谈, 若1A 中有一名女生,2A 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .21.(12分)如图,一次函数y ax b =+与反比例函数ky x =的图象交于A 、B 两点,点A 坐标为(6,2),点B 坐标为(4,)n -,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)分别求出一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积.22.(12分)某超市预测某饮料有发展前途, 用 1600 元购进一批饮料, 面市后果然供不应求, 又用 6000 元购进这批饮料, 第二批饮料的数量是第一批的 3 倍, 但单价比第一批贵 2 元 . (1) 第一批饮料进货单价多少元?(2) 若二次购进饮料按同一价格销售, 两批全部售完后, 获利不少于 1200 元, 那么销售单价至少为多少元?23.(12分)如图,在ABC ∆中,90ACB ∠=︒,点O 是BC 上一点.(1)尺规作图:作O ,使O 与AC 、AB 都相切.(不写作法与证明,保留作图痕迹) (2)若O 与AB 相切于点D ,与BC 的另一个交点为点E ,连接CD 、DE ,求证:2DB BC BE =.24.(14分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.25.(14分)如图①,在四边形ABCD中,AC BD==,点M为BC⊥于点E,AB AC BD中点,N为线段AM上的点,且MB MN=(1)求证:BN平分ABE∠;(2)若1BD=,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:MFN BDC∠=∠.2020年广东省广州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)在实数13、0、1-、2-中,最小的实数是( )A .2-B .1-C .0D .13【解答】解:12103-<-<<,∴在实数13、0、1-、2-中,最小的实数是2-.故选:A .2.(3分)如图所示的几何体的俯视图是( )A .B .C .D .【解答】解:如图所示的几何体的俯视图是.故选:C .3.(3分)下列运算正确的是( ) A .111x y x y+=+ B .2353()p q p q -=- C ab ab =D .222()a b a b +=+【解答】解:A 、11y xx y xy++=,故此选项错误;B 、2363()p q p q -=-,故此选项错误;C 、ab ab =,正确;D 、222()2a b a ab b +=++,故此选项错误;故选:C .4.(3分)如图所示,将面积为5的ABC ∆沿BC 方向平移至DEF ∆的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为( )A .10B .15C .20D .25【解答】解:设点A 到BC 的距离为h ,则152ABC S BC h ∆==, 平移的距离是BC 的长的2倍,2AD BC ∴=,CE BC =,∴四边形ACED 的面积111()(2)33515222AD CE h BC BC h BC h =+=+=⨯=⨯=.故选:B .5.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )A .2B .2.8C .3D .3.3【解答】解:(3152113114)30⨯+⨯+⨯+⨯÷(3103344)30=+++÷ 9030=÷3=.故30名学生参加活动的平均次数是3. 故选:C .6.(3分)菱形具有而平行四边形不具有的性质是( ) A .对角线互相垂直 B .两组对角分别相等C .对角线互相平分D .两组对边分别平行【解答】解:A 、正确.对角线互相垂直是菱形具有而平行四边形不具有的性质;B 、错误.两组对角分别相等,是菱形和平行四边形都具有的性质;C 、错误.对角线互相平分,是菱形和平行四边形都具有的性质;D 、错误.两组对边分别平行,是菱形和平行四边形都具有的性质;故选:A .7.(3分)不等式组3020x x +>⎧⎨-⎩的解集是( )A .2x <B .3x -C .32x -<D .2x【解答】解:3020x x +>⎧⎨-⎩①解不等式①得:3x >-, 解不等式②得:2x , ∴不等式组的解集是32x -<,故选:C .8.(3分)如图,ABC ∆的顶点都是正方形网格中的格点,则tan (ABC ∠= )A .12B .2C .55D .255【解答】解:在Rt ABD ∆中,2AD =,4BD =, 则21tan 42AD ABC BD ∠===, 故选:A .9.(3分)已知α,β是一元二次方程2520x x --=的两个实数根,则22ααββ++的值为( ) A .1-B .9C .23D .27【解答】解:α,β是方程2520x x --=的两个实数根,5αβ∴+=,2αβ=-,又222()ααββαββα++=+-,2225227ααββ∴++=+=;故选:D .10.(3分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)【解答】解:(方法一)作点D 关于x 轴的对称点D ',连接CD '交x 轴于点P ,此时PC PD +值最小,如图所示.令243y x =+中0x =,则4y =, ∴点B 的坐标为(0,4);令243y x =+中0y =,则2403x +=,解得:6x =-, ∴点A 的坐标为(6,0)-.点C 、D 分别为线段AB 、OB 的中点,∴点(3,2)C -,点(0,2)D .点D '和点D 关于x 轴对称,∴点D '的坐标为(0,2)-.设直线CD '的解析式为y kx b =+,直线CD '过点(3,2)C -,(0,2)D '-,∴有232k b b =-+⎧⎨-=⎩,解得:432k b ⎧=-⎪⎨⎪=-⎩, ∴直线CD '的解析式为423y x =--. 令423y x =--中0y =,则4023x =--,解得:32x =-, ∴点P 的坐标为3(2-,0). 故选C .(方法二)连接CD ,作点D 关于x 轴的对称点D ',连接CD '交x 轴于点P ,此时PC PD+值最小,如图所示. 令243y x =+中0x =,则4y =, ∴点B 的坐标为(0,4); 令243y x =+中0y =,则2403x +=,解得:6x =-, ∴点A 的坐标为(6,0)-.点C 、D 分别为线段AB 、OB 的中点,∴点(3,2)C -,点(0,2)D ,//CD x 轴,点D '和点D 关于x 轴对称,∴点D '的坐标为(0,2)-,点O 为线段DD '的中点.又//OP CD ,∴点P 为线段CD '的中点,∴点P 的坐标为3(2-,0).故选:C .二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为 56.9610⨯ .【解答】解:696 5000 6.9610=⨯.12.(3分)若1a <2(1)1a -= a - .【解答】解:1a <,10a ∴-<, ∴2(1)1|1|1a a -=--(1)1a =---11a =-+-a =-.故答案为:a -.13.(3分)分式方程211x =+的解是 1x = . 【解答】解:方程的两边同乘(1)x +,得21x =+,解得1x =.检验:把1x =代入(1)20x +=≠.∴原方程的解为:1x =.14.(3分)如图,是用一把直尺、含60︒角的直角三角板和光盘摆放而成,点A 为60︒角与直尺交点,点B 为光盘与直尺唯一交点,若3AB =,则光盘的直径是 3 .【解答】解:如图,点C 为光盘与直角三角板唯一的交点,连接OB ,OB AB ∴⊥,OA 平分BAC ∠,18060120BAC ∠=︒-︒=︒,60OAB ∴∠=︒,在Rt OAB ∆中,333OB AB ==,∴光盘的直径为63.故答案为63.15.(3分)如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 60π 2cm .【解答】解:底面半径为6cm ,高为8cm ,则底面周长12π=,由勾股定理得,母线长10=,那么侧面面积211210602cm ππ=⨯⨯=. 16.(3分)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC和CD 上,下列结论:①BE DF EF +=;②CE CF =;③75AEB ∠=︒;④23ABCD S =+正方形其中正确的序号是 ②③④ .【解答】解:四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒,AEF ∆为等边三角形,AE AF ∴=,在Rt ABE ∆和ADF ∆中,AE AF AB AD =⎧⎨=⎩, Rt ABE ADF ∴∆≅∆,BE DF ∴=,BAE DAF ∠=∠,而60EAF ∠=︒,15BAE DAF ∴∠=∠=︒,75AEB ∴∠=︒,所以③正确,CB CD =,CB BE CD DF ∴-=-,即CE CF =,所以②正确;CEF ∴∆为等腰直角三角形,22CE CF ∴=== 设正方形的边长为x ,则AB x =,2BE x =,在Rt ABE ∆中,222AB BE AE +=,222(2)2x x ∴+-=, 整理得2210x x -=,解得126x +=226x -=, 262(2)2(2)622BE DF x +∴+==-=≠,所以①错误; 2226()23ABCD S x +∴===+正方形,所以④正确. 故答案为②③④.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)17.(9分)计算034cos 458(3)(1)π︒-+-+-.【解答】解:原式24221122221102=⨯-+-=-+-=. 18.(9分)如图,在ABCD 中,对角线AC 、BD 交于点O ,M 为AD 中点,连接OM 、CM ,且CM 交BD 于点N ,1ND =.(1)证明:~MNO CND ∆∆;(2)求BD 的长.【解答】(1)证明:四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,∴点O 是AC 的中点.M 为AD 中点,OM ∴是ACD ∆的中位线,//OM CD ∴,OMN NCD ∴∠=∠.又MNO CND ∠=∠,~MNO CND ∴∆∆;(2)OM 是ACD ∆的中位线,12OM CD ∴=. 由(1)知,~MNO CND ∆∆,1ND =,∴12OM ON CD DN ==, 12ON ∴=, 32OD ON ND ∴=+=, 23BD OD ∴==.19.(10分)先化简,再求值:22x y x y x y -++,其中23,23x y =+=-. 【解答】解:原式22()()x y x y x y x y x y x y-+-===-++, 当23x =+,23y =-时,原式232323=+-+=.20.(10分)当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为1A ,2A ,3A ,4A ,现对1A ,2A ,3A ,4A 统计后, 制成如图所示的统计图 .(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;(2) 将条形统计图补充完整, 并求出1A 所在扇形的圆心角的度数;(3) 现从1A ,2A 中各选出一人进行座谈, 若1A 中有一名女生,2A 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .【解答】解: (1) 总数人数为:640%15÷=人(2)2A 的人数为152643---=(人)补全图形, 如图所示1A 所在圆心角度数为:23604815⨯︒=︒ (3) 画出树状图如下:故所求概率为:3162P == 21.(12分)如图,一次函数y ax b =+与反比例函数k y x=的图象交于A 、B 两点,点A 坐标为(6,2),点B 坐标为(4,)n -,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积.【解答】解:(1)反比例函数k y x=的图象过(6,2)A , 26k ∴=, 解得12k =,故反比例函数的解析式为12y x=, (4,)B n -在12y x=的图象上, 124n ∴=-, 解得3n =-,(4,3)B ∴--,一次函数y ax b =+过A 、B 点,则6243a b a b +=⎧⎨-+=-⎩, 解得121a b ⎧=⎪⎨⎪=-⎩, 故一次函数解析式为112y x =-; (2)当0x =时,1y =-,(0,1)C ∴-,当1y =-时,121x-=,12x =-, (12,1)D ∴--,OCBD ODC BDC s S S ∆∆=+11|12||1||12||2|22=⨯-⨯-+⨯-⨯- 612=+18=.22.(12分)某超市预测某饮料有发展前途, 用 1600 元购进一批饮料, 面市后果然供不应求, 又用 6000 元购进这批饮料, 第二批饮料的数量是第一批的 3 倍, 但单价比第一批贵 2 元 .(1) 第一批饮料进货单价多少元?(2) 若二次购进饮料按同一价格销售, 两批全部售完后, 获利不少于 1200 元,那么销售单价至少为多少元?【解答】解: (1) 设第一批饮料进货单价为x 元, 则第二批饮料进货单价为(2)x +元, 根据题意得:1600600032x x =+, 解得:8x =, 经检验,8x =是分式方程的解 .答: 第一批饮料进货单价为 8 元 .(2)设销售单价为m元,根据题意得:200(8)600(10)1200m m-+-,解得:11m.答:销售单价至少为11 元.23.(12分)如图,在ABC∆中,90ACB∠=︒,点O是BC上一点.(1)尺规作图:作O,使O与AC、AB都相切.(不写作法与证明,保留作图痕迹)(2)若O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:2DB BC BE=.【解答】解:(1)如图,O即为所求.(2)连结OD.AB是O的切线,OD AB∴⊥,90ODB∴∠=︒,即1290∠+∠=︒,CE是直径,3290∴∠+∠=︒,13∴∠=∠,OC OD=,43∴∠=∠,14∴∠=∠,又B B∠=∠,CDB DEB∴∆∆∽,∴DB BC BE DB=,2DB BC BE∴=.24.(14分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】解:(1)将(0,3)-代入y x m =+, 可得:3m =-;(2)将0y =代入3y x =-得:3x =, 所以点B 的坐标为(3,0),将(0,3)-、(3,0)代入2y ax b =+中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩, 所以二次函数的解析式为:2133y x =-; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则451560ODC ∠=︒+︒=︒, tan303OD OC ∴=︒=设DC 为3y kx =-,代入(30),可得:3k = 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:1212033,36x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以1(33M 6);②若M 在B 下方,设MC 交x 轴于点E ,则451530OEC ∠=︒-︒=︒, 60OCE ∴∠=︒,tan 6033OE OC ∴=︒=设EC 为3y kx =-,代入(330)可得:3k , 联立两个方程可得:233133y y x ⎧-⎪⎪⎨⎪=-⎪⎩, 解得:121203,32x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩ 所以2(3M 2)-,综上所述M 的坐标为(33,6)或(32)-.25.(14分)如图①,在四边形ABCD 中,AC BD ⊥于点E ,AB AC BD ==,点M 为BC 中点,N 为线段AM 上的点,且MB MN =(1)求证:BN平分ABE∠;(2)若1BD=,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:MFN BDC∠=∠.【解答】(1)证明:如图①,AB AC=,ABC ACB∴∠=∠,M是BC的中点,AM BC∴⊥,在Rt ABM∆中,90MAB ABC∠+∠=︒,在Rt CBE∆中,90EBC ACB∠+∠=︒,MAB EBC∴∠=∠,MB MN=,MBN∴∆是等腰直角三角形,45MNB MBN∴∠=∠=︒,45EBC NBE MAB ABN MNB∠+∠=∠+∠=∠=︒,NBE ABN∴∠=∠,即BN平分ABE∠;(2)解:设BM CM MN a===,四边形DNBC是平行四边形,2DN BC a∴==,在ABN∆和DBN∆中,AB DBNBE ABNBN BN=⎧⎪∠=∠⎨⎪=⎩,()ABN DBN SAS∴∆≅∆,2AN DN a∴==,在Rt ABM ∆中,由222AM MB AB +=,可得:22(2)1a a a ++=,解得:a =(负值舍去),2BC a ∴==; (3)解:F 是AB 的中点, ∴在Rt MAB ∆中,MF AF BF ==, MAB FMN ∴∠=∠, MAB CBD ∠=∠,FMN CBD ∴∠=∠,12MF MN AB BC ==,即MFMNBD BC =,MFN BDC ∴∆∆∽, MFN BDC ∴∠=∠.。
2019-2020学年广东省广州市海珠区中考数学一模试卷((有标准答案))

广东省广州市海珠区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( )A .﹣2B .±5C .5D .﹣52.下列计算正确的是( )A .x 2•x 3=x 6B .(x 2)3=x 5C .3﹣=2D .x 5﹣x 2=x 3 3.一元一次不等式组的解集在数轴上表示正确的是( ) A .B .C .D .4.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是( )A .35°B .25°C .65°D .50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6.某车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8人数 3 6 5 4 2 这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D . x (x ﹣1)=2108.某测量队在山脚A 处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D 处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为( )(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sin∠FCD=()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.12.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B=4.的纵坐标为﹣1,AB⊥x轴,且S△OAB(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y 轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.广东省广州市海珠区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式合并同类二次根式得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.【点评】此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.【点评】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】过点D作DE⊥AC,可得到△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.可以设EC=x,在直角△BDF中,根据勾股定理,可以用x表示出BF,根据AC=BC就可以得到关于x的方程,就可以求出x,得到BC,求出山高.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.【点评】本题的难度较大,建立数学模型是关键.根据勾股定理,把问题转化为方程问题.9.【分析】过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8﹣R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.【点评】本题需仔细分析题意及图形,利用勾股定理来解决问题.10.【分析】由四边形ABCD为正方形,得到四个内角为直角,四条边相等,可得出AD与BC都与半圆相切,利用切线长定理得到FA=FE,CB=CE,设正方形的边长为4a,FA=FE=x,由FE+FC表示出EC,由AD ﹣AF表示出FD,在直角三角形FDC中,利用勾股定理列出关系式,用a表示出x,进而用a表示出FD 与FC,利用锐角三角函数定义即可求出sin∠FCD的值.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.【点评】此题考查了正方形的性质,切线的判定,切线长定理,勾股定理,以及锐角三角函数定义,利用了转化及等量代换的思想,灵活运用切线长定理是解本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据负数的绝对值是它的相反数,乘积是1的两数互为倒数可得答案.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握绝对值的性质和倒数定义.12.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.【分析】由方程的解的定义得出a2﹣3a+1=0,即a2﹣3a=﹣1、a2+1=3a,整体代入计算可得.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.【点评】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的定义及整体代入思想的运用.15.【分析】首先作AB、CD的垂线EF,然后根据垂径定理求得CE=DE=10cm,AF=BF=24cm;再在直角三角形OED和直角三角形OBF中,利用勾股定理求得OE、OF的长度;最后根据图示的两种情况计算EF 的长度即可.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.【点评】本题考查了勾股定理、垂径定理的综合运用.解答此题时,要分类讨论,以防漏解.16.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.【点评】本题考查了平行四边形的性质以及一次函数图形,此题画可行域、利用数形结合的数学思想方法得出是解题关键.三.解答题(共9小题,满分102分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】求出∠AED=∠EDC,∠DFE=∠C,证△DFE≌△DCE,即可得出答案.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.【点评】本题考查了矩形性质和全等三角形的性质和判定的应用,主要考查了学生的推理能力.19.【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.【点评】本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.【分析】(1)想办法求出点A坐标即可解决问题;(2)设P(m,﹣),则Q(﹣m,﹣),想办法构建方程即可解决问题;【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时, +=﹣,当m=2,n=﹣5时, +=﹣,故+=﹣.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上的点的坐标等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t =0,△=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y =﹣2x +t ,t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
广东省广州市2020年中考数学一模试卷解析版
远地点高度约 368000 千米的地月转移轨道.数字 368000 用科学记数法表示为(
)
A. 36.8×104
B. 3.68×106
C. 3.68×105
D. 0.368×106
4. 已知 a,b 满足方程组
A. -4
B. 4
,则 a+b 的值为( )
C. -2
D. 2
5. 如图,四边形 ABCD 是⊙O 的内接正方形,点 P 是 上不同
于点 C 的任意一点,则∠BPC 的大小是( )
A. 22.5° B. 45° C. 30° D. 50°
6. 在平面直角坐标系中,将点 A(-1,2)向右平移 3 个单位长度得到点 B,则点 B 关 于 x 轴的对称点 C 的坐标是( )
A. (-4,-2)
B. (2,2)
C. (-2,F 翻折,得到四边形 EFC′D′,ED′交 BC 于点 G,则△GEF 的周长为( )
A. 6
B. 12
C. 6
二、填空题(本大题共 6 小题,共 18.0 分)
11. 计算:
=______.
12. 分解因式:b2-6b+9=______.
13. 如图,将一块三角板的直角顶点放在直尺的一边上,当
①∠CDF=60°;②△EDB∽△FDC;③BC= ;④S△ADB=
S△EDB. 其中所有正确结论的序号为______. 三、计算题(本大题共 1 小题,共 12.0 分) 17. 已知:关于 x 的一元二次方程 tx2-(3t+2)x+2t+2=0(t>0) (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2(其中 x1<x2),若 y 是关于 t 的函数,且 y=x2-2x1,求这个函数的解析式,并画出函数图象; (3)观察(2)中的函数图象,当 y≥2t 时,写出自变量 t 的取值范围.
2020海珠区九下数学一模考
2020年广州市海珠区数学一模试题附答案本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟,可以使用计算器.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、座位号、考号;再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算=-3)1(( )A. 1B. -1C. 3D. -3 2.下列图形中,不是中心对称图形的是( )A. B. C. D.3.4的平方根是( )A .2B .-2C .±2D .164.如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是( )A .25°B .65°C .115°D .不能确定5.下列运算正确的是( )A .236·a a a = B .34x x x =÷ C .532)(x x = 第4题图21A .B .C .D .7.在某市初中学业水平考试体育学科的800米耐力测试中,某考点同时起跑的甲和乙所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD .则下列说法正确的是( )A. 在起跑后 180 秒时,甲乙两人相遇B. 甲的速度随时间的增加而增大C. 起跑后400米内,甲始终在乙的前面D. 甲比乙先到终点8.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道 自己是否能进入前8名,除了知道自己的成绩以外,还需要知道全 部成绩的( ) A .平均数B .众数C .中位数D .方差9.若二次函数的解析式为3422+-=x x y ,则其函数图象与x 轴交点的情况是( ) A .没有交点B .有一个交点C .有两个交点D .无法确定10.如图所示,已知在三角形纸片ABC 中,∠BCA =90°,∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D重合,则DE 的长度为( )A .6B .3C .32D .3第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.分解因式=+-2422x x . 12.函数11-=x y 中x 的取值范围是 .13.如图,AB 为⊙O 的直径,点C 在⊙O 上,若︒=∠20C ,则=∠BOC °.第6题图第13题图BOCAED BCA第14题图AB C DE第10题图15.方程组⎩⎨⎧=-=+112312y x y x 的解是 .16.定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2012a = .17.(1(218.(11)B -,,将直角梯形 (1(2)求点 第18题图19.(本小题满分10分)“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B .劝说进吸烟室;C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)求这次抽样的公众有多少人?(2)请将统计图①补充完整;(3)在统计图②中,求“无所谓”部分所对应的圆心角是多少度?(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有多少万人?(5)小华在城区中心地带随机对路人进行调查,请你根据以上信息,求赞成“餐厅老板出面制止”的概率是多少?20.(本小题满分10分)如图,在□ABCD的对角线AC 上取两点E和F,若AE=CF.求证:∠AFD=∠CEB.第20题图21.(本小题满分10分)甲、乙两船同时从港口A出发,甲船以60海里/时的速度沿北偏东30°方向航行,乙船沿北偏西45°方向航行,1小时后甲船到达B点,乙船正好到达甲船正西方向的C点,问甲、乙船之间的距离是多少海里?(结果精确到0.1米)C B45°A第21题图22.(本小题满分12分)已知:如图,在平面直角坐标系xoy中,Rt△OCD的一边OC在x轴上,∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.第22题图23.(本小题满分12分)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,且其单价和为130元.(1)求篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有哪几种购买方案?24.方向平移得到的,连接(1(2)如图2作BDQR⊥交BD于R②以点段BP25.(本小题满分14分)如图,在直角坐标系xoy 中,已知点)3,2(P ,过P 作轴y PA ⊥交y 轴于点A ,以点P 为圆心PA 为半径作⊙P ,交x 轴于点C B ,,抛物线c bx ax y ++=2经过A ,B ,C 三点. (1)求点A ,B ,C 的坐标; (2)求出该抛物线的解析式;(3)抛物线上是否存在点Q ,使得四边形ABCP 的面积是BPQ ∆面积的2倍?若存在,请求出所有满足条件的点;若不存在,请说明理由.第25题图2012年广州市海珠区数学一模试题附答案一、选择题(每题3分,共30分)1-10:BBCDB CDCAC二、填空题(每题3分,共18分)11.2)1(2-x 12.1>x 13.40° 14.6 15.⎩⎨⎧-==13y x 16.4317.(1(218.(1A (2)l 19.(1) (2) (3)︒=︒⨯1836020010………………………………………………………2分 (4)62006020=⨯(万) ……………………………………………………2分 (5)%30%10020060=⨯=P …………………………………………………2分∴BCE DAF ∠=∠ …………………………………………………2分 ∵CF AE =∴EF CF EF AE +=+即CE AF = …………………………………………………………2分 在DAF ∆和BCE ∆中⎪⎩⎪⎨⎧=∠=∠=CE AF BCE DAF BC AD21.解:过∵∴∵∴∵∴∵∴22.解:(1∴AE ∥CD∵点A 是线段OD 的中点 ∴242121=⨯==CD AE ………………………………………1分 5.132121=⨯==OC OE ………………………………………1分设该反比例函数解析式为x k y 1=,则5.121k=…………………1分 ∴31=k ……………………………………………………………1分 故所求反比例函数解析式为xy 3=……………………………………1分 (2)当3=x 时,反比例函数xy 3=的函数值是133==y ,故)1,3(B ……………………………………………………………1分23.解:(11分 (22分⎩⎨⎧当当14=y 时,10580,564=-=y y ………………………………………1分故有以下两种购买方案:篮球13个,羽毛球拍52副,乒乓球拍15副;篮球14个,羽毛球拍56副,乒乓球拍10副. ………………………………………1分 24.(1)证明:∵ABC ∆沿BC 方向平移得到ECD ∆∴BC AE AB EC ==, ………………………………………2分 ∵BC AB =(2)①四边形PQED 的面积是定值 ………………………………………1分过E 作BD EF ⊥交BD 于F ,则︒=∠90EFB ………………………1分 ∵四边形ABCE 是菱形∴AE ∥BC ,OE OB =,OC OA =,OB OC ⊥∵6=AC∴3=OC∵5=BC∴∴∴∵∴在⎪⎩⎪⎨⎧∴∆∴∴S EF BC ⨯=245245=⨯=………………………………………1分②PQR ∆与CBO ∆可能相似…………………………………………………1分 ∵︒=∠=∠90COB PRQ ,CBO QPR ∠>∠∴当BCO QPR ∠=∠时PQR ∆∽CBO ∆…………………………………1分 此时有3==OC OP过O 作BC OG ⊥交BC 于G则△OGC ∽△BOC∴CG :CO =CO :BC即CG :3=3:5,∴CG =95………………………………………………………1分∴PB =BC -PC =BC -2CG =5-2×95=75…………………………………1分25.解:(1)过P 作BC PD ⊥交BC 于D ,由题意得:2===PC PB PA ,3==OA PD∴1==CD BD ,∴1=OB ∴)3,0(A ,)0,1(B ,)0,3(C ………………………………………3分(2(3解方程组⎪⎩⎪⎨⎧--=+=)3)(1(3333x x y x y 得⎩⎨⎧==⎩⎨⎧==38730y xy x 或也可设经过点C 且与BP 平行的直线解析式为:23b x y += 且有2330b +=解之得332-=b 即333-=x y解方程组⎪⎩⎪⎨⎧--=-=)3)(1(33333x x y x y 得⎩⎨⎧==⎩⎨⎧==3403y x y x 或 ∴)3,4(),0,3(),38,7(),3,0(Q …………………………………4分。
2020年广东省广州市中考数学一模试卷及解析
2020年广省广州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分) 1. -2020的相反数是( )A. -2020B. 2020C.20201- D.20201- 2. 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C. D.3. 如图几何体的俯视图是( )A. B. C. D.4. 下列运算正确的是( )A. a 6÷a 3=a 2B. a 4−a =a 3C. 2a ⋅3a =6aD. (−2x 2y)3=−8x 6y 35. 使分式x2x−4有意义的x 的取值范围是( )A. x =2B. x ≠2C. x =−2D. x ≠06. 下列说法正确的是( )A. 一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数和中位数都是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小7. 在二次函数y =−x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <−1 D. x >−18. 已知x 1、x 2是关于x 的方程x 2−ax −2=0的两根,下列结论一定正确的是( )A. x 1≠x 2B. x 1+x 2>0C. x 1⋅x 2>0D. x 1<0,x 2<09. 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是( )A. 24√2πB. 24πC. 16πD. 12π10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y(cm 2),已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =−25t +27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18分)11.因式分解:a2−2ab+b2=______.12.分式方程1x−2=3x的解是______.13.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.15.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为______.16.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=12AB,连接OE.下列结论:①S▱ABCD= AD⋅BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的结论是______.三、计算题(本大题共2小题,共22分)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ax)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+1x(x>0)的图象和性质.x (1)413121234…y……③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+1x(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.四、解答题(本大题共7小题,共80分)19.解不等式组{−2x≤03x−1<520.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=3,求线段AB的长.4(k>0)21.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=kx与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.22.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.AB,应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.24.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG 交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.25.抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(−1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=−x−4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;(3)Q为直线y=−x−4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】C【解析】解:从上面看得到图形为,故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.4.【答案】D【解析】解:(A)原式=a3,故A错误;(B)原式=a4−a,故B错误;(C)原式=6a2,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】B有意义,【解析】解:∵分式x2x−4∴2x−4≠0,即x≠2.故选:B.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.6.【答案】C【解析】解:A、一个游戏中奖的概率是1,做10次这样的游戏也不一定会中奖,故此10选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故此选项错误;故选:C.根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.7.【答案】A【解析】解:∵a=−1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=−x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=−b,在对称轴左边,y随x的增大而增大.2a8.【答案】A【解析】解:A.∵△=(−a)2−4×1×(−2)=a2+8>0,∴x1≠x2,结论A正确;B.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1⋅x2=−2,结论C错误;D.∵x1⋅x2=−2,∴x1、x2异号,结论D错误.故选:A.A.根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B.根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C.根据根与系数的关系可得出x1⋅x2=−2,结论C错误;D.由x1⋅x2=−2,可得出x1、x2异号,结论D错误.综上即可得出结论.本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.【答案】D【解析】解:∵sinθ=1,母线长为6,3×6=2,∴圆锥的底面半径=13∴该圆锥的侧面积=12×6×2π⋅2=12π.故选:D .先根据正弦的定义计算出圆锥的半径=2,然后根据扇形的面积公式求圆锥的侧面积. 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 10.【答案】B【解析】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4, ∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =ABBE =45, ∴PF =PBsin∠PBF =45t ,∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11, 故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34, ∴PQBQ =34,即11−t 5=34,解得:t =294.(故④正确);综上可得①②④正确,共3个.故选:B .据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.【答案】(a−b)2【解析】解:原式=(a−b)2故答案为:(a−b)2根据完全平方公式即可求出答案.本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.12.【答案】3【解析】解:去分母得:x=3(x−2),去括号得:x=3x−6,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【答案】频数分布【解析】解:频数分布是反映一组数据中,某一范围内的数据的出现的次数,通过次数计算出所占的比,而平均数则反映一组数据集中变化趋势,故答案为:频数分布.平均数是反映一组数据集中变化趋势,而频数分布则反映某一范围内的数出现的次数,即频数,因此选择频数分布.考查频数分布的意义、平均数的意义及求法,理解各个统计量的意义和反映数据的特征,才是解决问题的关键.14.【答案】3√6【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BEAB,∴BE=AB⋅sin∠BAC=6×√32=3√3,由题意得,∠C=45°,∴BC=BEsinC =3√3÷√22=3√6(千米),故答案为:3√6.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】30°或110°【解析】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC−∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.分两种情形,利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】①②【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=1AB,2∴E是AB的中点,∴DE=BE,∴∠BDE=1∠AED=30°,2∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,AD,∴OE//AD,OE=12∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故答案为:①②.求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE= 30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即AD,进而得可得到AO>DE;依据OE是△ABD的中位线,即可得到OE//AD,OE=12到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.17.【答案】(1)200;(2)补全图形,如图所示:甲 乙 丙 丁 甲 --- (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) --- (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) --- (丁,丙) 丁(甲,丁)(乙,丁)(丙,丁)---所有等可能的结果为种,其中符合要求的只有种, 则P =212=16.【解析】解:(1)根据题意得:20÷36360=200(人),则这次被调查的学生共有200人;故答案为:200; (2)见答案; (3)见答案. 【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A ,B 及D 的人数求出喜欢C 的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.【答案】解:(1)①故答案为:174,103,52,2,52,103,174.函数y =x +1x 的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x =1时,函数y =x +1x(x >0)的最小值是2.③y =x +1x =x 2+1x=x 2−2x+1x+2=(x−1)2x+2,∵x >0,所以(x−1)2x≥0,所以当x =1时,(x−1)2x的最小值为0,∴函数y=x+1x(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为√a时,它的周长最小,最小值是4√a.【解析】(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[(√x−√ax)2+2√a],即可求出答案.本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.19.【答案】解:{−2x≤0 ①3x−1<5 ②解不等式①得:x≥0解不等式②得:x<2∴不等式组的解集为0≤x<2.【解析】别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.20.【答案】解:∵四边形ABCD为菱形∴BO=OD,∠AOB=90°∵BD=8∴BO=4∵tan∠ABD=AOBO,∴34=AO4∴AO=3在Rt△ABC中,AO=3,OB=4则AB=√AD2+OB2=√32+42=5【解析】由菱形的性质可得BO=OD=4,∠AOB=90°,由锐角三角函数可求AO=3,由勾股定理可求AB的长.本题考查了菱形的性质,锐角三角函数,勾股定理,熟练运用菱形的性质是本题的关键.21.【答案】解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=kx,可得k=4,即反比例函数解析式为:y=4x,∵点F的横坐标为4,∴点F的纵坐标=44=1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE =DE ,BF =DF ,∠B =∠EDF =90°, ∵∠CDF +∠EDG =90°,∠GED +∠EDG =90°, ∴∠CDF =∠GED ,又∵∠EGD =∠DCF =90°, ∴△EGD∽△DCF ,结合图形可设点E 坐标为(k2,2),点F 坐标为(4,k4),则CF =k4,BF =DF =2−k4,ED =BE =AB −AE =4−k2,在Rt △CDF 中,CD =√DF 2−CF 2=√(2−k 4)2−(k4)2=√4−k ,∵CD GE=DFED ,即√4−k2=2−k44−k 2,∴√4−k =1, 解得:k =3.【解析】(1)根据点E 是AB 中点,可求出点E 的坐标,将点E 的坐标代入反比例函数解析式可求出k 的值,再由点F 的横坐标为4,可求出点F 的纵坐标,继而得出答案; (2)证明∠GED =∠CDF ,然后利用两角法可判断△EGD∽△DCF ,设点E 坐标为(k2,2),点F 坐标为(4,k4),即可得CF =k4,BF =DF =2−k4,在Rt △CDF 中表示出CD ,利用对应边成比例可求出k 的值.本题考查了反比例函数的综合,解答本题的关键是利用点E 的纵坐标,点F 的横坐标,用含k 的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.22.【答案】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元; 根据题意得:{2x +3y =90x +2y =55,解得:{x =15y =20;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克, 根据题意得:12−t ≥2t , ∴t ≤4,∵W =15t +20(12−t)=−5t +240, k =−5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220(元),此时12−4=8; 答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克,根据题意得出12−t ≥2t ,得出t ≤4,由题意得出W =−5t +240,由一次函数的性质得出W 随t 的增大而减小,得出当t =4时,W 的最小值=220(元),求出12−4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23.【答案】应用:解:①若PB =PC ,连接PB ,则∠PCB =∠PBC , ∵CD 为等边三角形的高, ∴AD =BD ,∠PCB =30°, ∴∠PBD =∠PBC =30°, ∴PD =√33DB =√36AB , 与已知PD =12AB 矛盾,∴PB ≠PC ,②若PA =PC ,连接PA ,同理可得PA ≠PC , ③若PA =PB ,由PD =12AB ,得PD =BD , ∴∠APD =45°, 故∠APB =90°;探究:解:∵BC =5,AB =3, ∴AC =√BC 2−AB 2=√52−32=4, ①若PB =PC ,设PA =x ,则x 2+32=(4−x)2,∴x =78,即PA =78,②若PA =PC ,则PA =2,③若PA =PB ,由图知,在Rt △PAB 中,不可能. 故PA =2或78.【解析】应用:连接PA 、PB ,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB =45°,然后即可求出∠APB 的度数; 探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论. 24.【答案】(1)证明:如图1,∵PE =BE , ∴∠EBP =∠EPB .又∵∠EPH =∠EBC =90°,∴∠EPH −∠EPB =∠EBC −∠EBP . 即∠PBC =∠BPH . 又∵AD//BC , ∴∠APB =∠PBC . ∴∠APB =∠BPH .(2)△PHD 的周长不变为定值8.证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB =∠BPH ,在△ABP和△QBP中{∠APB=∠BPH ∠A=∠BQPBP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4−BE)2+x2=BE2.解得,BE=2+x28.∴CF=BE−EM=2+x28−x.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴S=12(BE+CF)BC=12(4+x24−x)×4.即:S=12x2−2x+8.配方得,S=12(x−2)2+6,∴当x=2时,S有最小值6.【解析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH= AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4−BE)2+x2=BE2,利用二次函数的最值求出即可.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.25.【答案】解:(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=−2,∵点A坐标为(−1,0),∴点B坐标为(−3,0),∵OB=OC,∴C点坐标为(0,−3).将A(−1,0)、C(0,−3)分别代入解析式得,{a +c =04a +c =−3,解得,{a =−1c =1,则函数解析式为y =−x 2−4x −3.(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m , 由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0, ∵平移后的抛物线总有不动点, ∴△≥0,∴4m 2+4m +1−4(m 2−2m −4)≥0, 解得m ≥−1712.(3)如图,设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,切点为D ,直线y =−x −4交抛物线的对称轴于E ,则E(−2,−2)∴PE =m +2,PD =√22PE ,∵PA =PD , ∴(m+2)22=1+m 2,解得m =2±√6,故P(−2,2+√6)或(−2,2−√6).【解析】(1)根据函数的解析式可以得到函数的对称轴是x =−2,则B 点的坐标可以求得,求得OB 的长,则C 的坐标可以求得,把A 、C 的坐标代入函数解析式即可求得;(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m ,由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0,平移后的抛物线总有不动点,推出△≥0,由此构建不等式即可解决问题;(3)设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,根据切线的性质即可求解. 本题考查二次函数综合题、待定系数法求函数的解析式、一次函数的应用,以及直线与圆相切的判定等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
广东省广州市海珠区中考数学一模试卷
有一个交点;④当 1<x<4 时,y1<y2.其中结论正确的个数是( )
A.4 个
B.3 个
C.2 个
D.1 个
二、填空题(本题共 6 个小题,每小题 3 分,共 18 分.)
11.(3 分)若梯形的中位线长为 8,高为 4,则梯形的面积为
.
12.(3 分)分解因式:ax2+2ax+a=
.
13.(3 分)半径等于 12 的圆中,垂直平分半径的弦长为
24.(14 分)如图,AB 是⊙O 的直径,直线 l 与⊙O 相切于点 C,AE⊥l 交直线 l 于点 E、交⊙O 于点 F,BD⊥l 交直线 l 于点 D.
(1)求证:△AEC∽△CDB; (2)求证:AE+EF=AB; (3)若 AC=8cm,BC=6cm,点 P 从点 A 出发沿线段 AB 向点 B 以 2cm/s 的速
22.(12 分)实验数据显示:一般成人喝半斤低度白酒后,1.5 小时内(包括 1.5
小时)其血液中酒精含量 y(毫克/百毫升)与时间 x(时)的关系可近似地用
二次函数 y=﹣200x2+400x 表示;1.5 小时后(包括 1.5 小时)y 与 x 可近似地
用反比例函数 y= (k>0)表示(如图所示).
B.
a
C.(x5)2=x10
D.a10÷a2=a5
5.(3 分)如图,将△ABC 绕着点 C 顺时针旋转 60°后得到△A′B′C,若∠A
=40°,∠B=110°,则∠BCA′的度数是( )
A.100°
B.90°
C.70°
D.110°
6.(3 分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确
(1)求此抛物线的解析式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海珠区2019学年第二学期九年级综合练习
数 学 试 卷
1.下列各数中是无理数的是( ) A.3
1 B. 6 C.•3.0 D.13 2.下列图形中是中心对称图形的是( )
A. B . C . D .
3.下列计算正确的是( )
A .523)(a a =
B .853a a a =⋅
C .725a a a =+
D .
326a a a =÷ 4. 以下列各组线段为边,能组成三角形的是( )
A.2cm ,3cm ,5cm
B.3cm ,3cm ,6cm
C.5cm ,8cm ,2cm
D.4cm ,5cm ,6cm
5.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:
A .15,14
B .15,15
C .16,14
D .16,15
6 对于函数 y =−3x +1,下列结论正确的是 ( )
A. 它的图象必经过点 (1,3)
B. 它的图象经过第一、二、四象限
C. 当 x >0 时,y <0
D. y 的值随 x 值的增大而增大
7. 如图所示,△ABC 的顶点坐标分别为 A (4,6) 、 B (5,2) 、 C (2,1),如果将
△ABC 绕点 C 按逆时针方向旋转 90∘,得到 △A ʹB ʹC ,那么点 A 的对应点 A ʹ 的坐标是 ( )
A . (−3,3)
B . (3,−3) C. (−2,4) D. (1,4)
8. 在同一平面直角坐标系中,函数bx ax y +=2与a bx y +=的图象可能是( )
A .
B .
C .
D .
9. 如图,在平行四边形 ABCD 中,点 E 在 DA 的延长线上,且 AE =13AD ,连接 CE 交 BD 于点 F ,交AB 于G.则BGC s ∆ :ADCG 四边形s 的值是( ) A.
53 B.35 C.75 D.43
10.对于三个数字c b a ,,,用{}c b a ,,max 表示这三个数中最大数,例如:}{00,1,2max =−−,
}{⎩
⎨⎧−<−−≥=−−))1(11(,1,2max a a a a .如果}{352,28,3max =−−x x ,则x 的取值范围( ) A.2932≤≤x B. 425≤≤x C. 2932<<x D. 42
5<<x
二、填空题(共3小题;共15分)
11.若x -2在实数范围内有意义,则x 的取值范围是 .
12. 如图,点 A ,B ,C 在 ⊙O 上,∠AOB =72∘,则 ∠ACB 等于 .
13.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数 x (单位:分)及方差 s 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 .
14.抛物线y =x 2+bx +c 经过点A (﹣2,0)、B (1,0)两点,则该抛物线的顶点坐标是________
15.如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于E ,F 两点,若点E 的坐标是(﹣3,﹣1),则点F 的坐标是 .
16. 如图在△ABC 中∠A =60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM =PN ;②AM AN AB NC
=③△PMN 为等边三角形;④当∠ABC =45°时,当BN =
2BC ,其中正确的是______(填序号)
三.解答题(本题共9小题,共102分。
解答要求写出文字说明,证明过程或计算步骤)
17.(本题满分10分)
(1)
计算:02sin 45-2020︒+(π) (2) 解分式方程:
214223=−−−x x x
18.(本题满分10分)
已知:如图,E ,F 分别是平行四边形ABCD 的边AD ,BC 的中点.
求证:AF =CE .
19.(本题满分10分)
如下图,甲袋子中有3张除数字外完全相同的卡片,乙袋子中有2张除数字外完全相同的卡片,若先从甲袋子中抽出一张数字为a 的卡片,再从乙袋子中抽出一张数字为b 的卡片,两张卡片中的数字,记为),(b a 。
(1)请用树形图或列表法列出),(b a 的所有可能的结果;
(2)求在),(b a 中,使关于x 的方程012=++bx ax 没有实数根的概率.
20.(本题满分10分) 先化简,再代入a 求值:2241222a a a a a
⎛⎫−⨯ ⎪−−+⎝⎭,其中0652=++x x a 满足方程.
21.(本题满分10分) 如图:在4
3tan ,10=∠==∆ABC BC AB ABC 中, (1)求边AC 的长; (2)设边BC 的垂直平分线EF 与边AB 、BC 的交点分别为点E ,F ,求AE BE
的值
.
22.(本题满分12分)
矩形ABCD 中,点E 是DC 上一点,连接AE
(1) 在BC 上取一点F,使︒=∠90AFE ,且BF<FC.(用尺规作图,找出点F,
保留作图痕迹);
(2) 连接AF,EF.延长EF 与AB 的延长线交于点G,求证: 22BF BG AG BG =⋅−
23. (本题满分12分)
在平面直角坐标系 xOy 中,直线 l:y =x +b 与 x 轴交于点 A (−2,0),与 y 轴交于点 B .双曲线)0(≠=k x
k y 与直线 l 交于 P ,Q 两点,其中点 P 的纵坐标大于点 Q 的纵坐标. (1)求点 B 的坐标;
(2)当点 P 的横坐标为 2 时,求 k 的值和点Q 的坐标;
(3)若k >0, 连接 PO ,记 △POB 的面积为 S .若 12<S <1,求出 k 的取值范围.
24. (本题满分14分)
已知二次函数21:65l y x x k =++和22:65l y kx kx k =++,其中0k ≠.且1k ≠
(1)分别直接写出关于二次函数12l l 和的对称轴及与y 轴的交点坐标;
(2)若两条抛物线12l l 和相交于点,E F ,当k 的值发生变化时,判断线段EF 的长度是否发生变化,并说明理由;
(3)在(2)中,若二次函数1l 的顶点为M ,二次函数2l 的顶点为N .
○
1当k 为何值时,点M 与点N 关于直线EF 对称? ○
2是否存在实数k ,使得2MN EF =?若存在,求出实数k 的值,若不存在,请说明理由.
25. (本题满分14分)
圆内接四边形ABCD , 点A 是BD 的中点,120ADC ∠=
(1)求ABC ∠的度数, 并求证:AB DC BC +=;
(2)连接,AC BD 相交于点H ,如图2,若3,5AD BC == ,试判断HD AC 的值,并说明理由;
(3)在(2)的条件下,点E 是四边形ABCD 内一动点,
点P 在线段BC 上,且1,3PE PC ==, 以点D 为旋转中
心,将DE 逆时针旋转120,并缩短得到线段DF ,使得
23
DF DE = ,如图3,连接PF ,试探索PF 的长是否有最小值,若有请求出该值;若没有,请说明理由.。