复用与多址技术
5GNR基础原理及关键技术

5GNR基础原理及关键技术5G NR(New Radio)是第五代移动通信技术中的一种关键技术,它采用了一系列新的技术和理念来提供更快速、更可靠和更低延迟的通信服务。
本文将介绍5G NR的基础原理以及其关键技术。
5GNR的基础原理主要是基于OFDM(正交频分复用)和多址技术。
OFDM通过将高速数据流分解成一系列较低速率的子载波,以提高频谱效率和抵抗多径效应。
多址技术则通过在时间、频率或码片上对不同用户的数据进行编码,使多个用户可以同时在同样的频率上进行通信。
在5GNR中,采用了新的频段和载波宽度,以实现更高的数据传输速率。
同时,引入了更先进的调制和编码技术,如高阶调制、极化编码和低密度奇偶校验编码等,以提高传输效率和信道容量。
在5GNR中,还引入了MIMO(多输入多输出)技术,以进一步提高系统容量和覆盖范围。
MIMO技术通过在发送和接收端引入多个天线,利用多个传输路径来传输和接收数据,从而提高信号的传输速率和可靠性。
另外,5GNR还引入了更灵活的波形设计,如过滤多载波(FBMC)和资源块直接序列扩频(RBDS)等,以应对不同业务和应用场景的需求。
这些新的波形设计可以更好地适应不同的信号特性和信道环境,提高系统性能和带宽利用率。
此外,5GNR还采用了更智能的调度和接入技术,如动态频谱共享、波束赋形和载频动态分配等,以提高系统的吞吐量和资源利用率。
这些技术可以根据不同用户的需求和网络条件,实时地对资源进行优化配置,从而提供更好的用户体验和网络性能。
除了技术创新,5GNR还依赖于更先进的网络架构和接入方式来支持更广泛的用户和应用需求。
其中包括网络切片、边缘计算和虚拟化网络等。
这些新的网络架构和接入方式可以根据不同的业务需求和网络条件,灵活地为用户提供定制化的服务和资源。
总之,5GNR是一种基于OFDM和多址技术的新一代移动通信技术,它采用了一系列新的技术和理念,如高阶调制、MIMO、智能调度和波形设计等,来提供更快速、更可靠和更低延迟的通信服务。
OFDM原理与应用_第八章

第八章 OFDM 多址接入技术
由于扩频后的信号带宽被限制在一个子带之内,因此它适用于上行 通信链路。
Cu (t )
Cu (t )
Cu (t )
图 8-7 MC/DS-CDMA 示意图
第八章 OFDM 多址接入技术
MT-CDMA 也利用给定扩频序列在时域内扩展经串/并转换后的数据流。 但是与一般的 DS-CDMA 相比,MT-CDMA 采用与载频数成比例的长扩频 序列。 在这种方案中,每个子载波的频谱不再满足正交状态。 2. 频域扩频 MC-CDMA 系统采用频域扩频的方式。 其基本过程是: 每个信息符号由一 个特定的扩频码片进行扩频,然后将扩频以后的每个符号调制到一个子 载波上; 因此,若扩频码的长度为 N ,那么对应这 N 个子载波传输的是相同 的信息数据。
第八章 OFDM 多址接入技术
8.1 OFDM 的多种接入方式 四种多用户通信系统 第一类多用户通信系统采用多址通信技术,即大量用户通过使用一 个公用通信信道向相同的接收机发送信息, 典型案例:移动蜂窝通信系统——某一个小区中的若干用户能够 向该小区的公共基站发送信息。 第二类多用户通信系统是一个广播网络; 在这类系统中,一个单独的发射机向多个接收机发送信息。 典型案例:公共无线电和电视广播系统。 第三类多用户通信系统是存储-转发网络;
第八章 OFDM 多址接入技术
四种主要的多址接入技术 频分多址(FDMA) 时分多址(TDMA) 码分多址(CDMA) 空分多址(SDMA) OFDM 和多址技术的结合能够允许多个用户同时共享有限的无线频谱, 从而获得较高的系统容量。 OFDM-FDMA(OFDMA) ; 跳频 OFDMA。 OFDM-TDMA; 多载波 CDMA;
通信原理_第6章信道复用和多址技术.

特点:简单,信道利用率低,不稳定。最大吞吐量仅为容 量的18.4%。
各种ALOHA方案网络吞吐量 S与提供负载 G的关系如图。
具有捕获效应的S-ALOHA 0.54
归一化信道吞吐量(S)
0.45 0.36 0.27 0.18 0.09 0.00 0.00 0.5
(a) 工作示意图。4个地球站,其中一个为基准站。
基准站任务:为其他各站发射定时信号。基准站也可由某一地球站兼 任。帧周期(帧):所有地球站在卫星内占有的整个时间间隔。 分帧(子帧):每个地球站占有的时隙帧。 (b) 帧结构。帧周期为125μs)或其整倍数。 帧:由所有分帧和一个基准站分帧组成。分帧的长度可以一样也可以 不一样。由前置码和数据两部分组成。
在FDMA中,是指各地球站占用转发器的频段;
在TDMA中,是指各站占用的时隙;
在CDMA中,是指各站使用的正交码组。
20/48
6.3.1 频分多址
FDMA按频率划分,把各站发射的信号配置在卫星频带内 的指定位置上,各中心频率留有保护频带。 示意图。
保护频带
转发器频带分配
f A fB
3/48
6.1.1 频分复用
低通滤波器 调制器 MOD 带通滤波器 BPF 带通滤波器 BPF 解调器 DEM 低通滤波器 LPF
f1 (t )
LPF
f1 (t )
01
f 2 (t )
消息输入 LPF MOD BPF
f S (t )
主调制器 MOD 信道 主解调器 DEM BPF
波分复用的两波道间隔为10 ~ 100nm。当间隔为1 ~ 10nm, 甚至1nm以下时,称为密集波分复用(DWDM)。
通信系统中的多址技术与信道复用

通信系统中的多址技术与信道复用一、引言随着通信技术的进步和发展,人们对通信质量和带宽的要求越来越高。
多址技术和信道复用技术是实现高效通信的重要手段之一。
本文将详细介绍通信系统中的多址技术与信道复用的概念、原理和应用。
二、多址技术的概述1. 多址技术是什么?多址技术是指在同一时间段内,多个用户通过共享同一个通信信道进行通信时的技术。
多址技术通过合理分配通信时间和频谱资源,实现多个用户同时使用同一个信道进行通信。
2. 多址技术的分类多址技术主要分为随机接入多址技术和确定接入多址技术。
- 随机接入多址技术是指用户以随机方式竞争信道资源。
典型的随机接入多址技术有载波监听多址(CDMA)和时分多址(TDMA)等。
- 确定接入多址技术是指用户按照一定规律分配信道资源。
典型的确定接入多址技术有频分多址(FDMA)和码分多址(CDMA)等。
三、信道复用技术的概述1. 信道复用技术是什么?信道复用技术是指通过合理分配频率、时间、码等信号资源,将多个通信信号传输在同一个物理信道上的技术。
它可以将有限的信道资源充分利用,提高通信容量和效率。
2. 信道复用技术的分类信道复用技术主要分为频分复用、时分复用和码分复用。
- 频分复用(FDM)是指将不同用户的信号分配到不同的频率带宽上进行传输,典型的应用是无线电和有线电视广播等。
- 时分复用(TDM)是指将不同用户的信号按照时间片的方式分配到同一个频率上进行传输,典型的应用是电话系统和数字传输系统等。
- 码分复用(CDM)是指将不同用户的信号编码为不同的扩频码,并在同一个频率上进行传输,典型的应用是CDMA手机通信系统等。
四、多址技术与信道复用的应用1. 多址技术的应用多址技术广泛应用于各种通信系统中,如移动通信系统、卫星通信系统和局域网等。
例如,移动通信系统中的CDMA技术通过码分多址技术实现多用户之间的通信。
2. 信道复用技术的应用信道复用技术也得到了广泛应用,例如无线电广播中的频分复用技术可以同时传输多个广播节目,电话系统中的时分复用技术可以实现多个用户之间的通话。
通信原理有关的技术

通信原理有关的技术以下是与通信原理相关的一些技术:1. 调制解调技术(Modulation and Demodulation):将数字信号转换为模拟信号进行传输,然后再将模拟信号转换回数字信号。
2. 多路复用技术(Multiplexing):将多个信号通过不同的方式在同一传输介质上传输,以提高信道利用率。
3. 频分多址技术(Frequency Division Multiple Access):将可用频带划分为不同的频道,每个用户在不同的频道上传输数据。
4. 时分多址技术(Time Division Multiple Access):将时间划分为不同的时隙,不同用户在不同的时隙上传输数据。
5. 码分多址技术(Code Division Multiple Access):通过在发送端使用不同的扩频码,将多个信号叠加在同一频带上传输。
6. OFDM技术(Orthogonal Frequency Division Multiplexing):将高速数据流分为多个低速子载波,并在不同的子载波上传输数据。
7. 奈奎斯特采样定理(Nyquist Sampling Theorem):根据信号的带宽进行恰当的采样,以有效还原原始信号。
8. 射频识别技术(Radio Frequency Identification):使用射频通信进行身份识别、物品追踪等应用。
9. 卫星通信技术(Satellite Communication):利用地球轨道卫星来传输长距离通信信号。
10. 光纤通信技术(Fiber Optic Communication):使用光纤作为传输介质,通过光信号传输数据。
11. 无线通信技术(Wireless Communication):使用无线电波进行数据传输,如蜂窝通信、Wi-Fi、蓝牙等。
12. 码型技术(Modulation Coding):将数字比特流转化为符号序列,通过对不同编码方式的选择来提高传输效率和可靠性。
第七章 多路复用和多址技术

=256bit,因此,传码率为 2568000 2.048M 波特,信息速率
为 2.048Mbit/s。
PCM 30/32路系统的一帧
❖ 前面讨论的7P.C3M.530P/3C2路M和高P次CM群24系路时统分多路系统,
称为数字基群(即一次群)。为了能使宽带信号(如电 视信号)通过PCM系统传输,就要求有较高的传码率 。因此提出了采用数字复接技术把较低群次的数字流汇 合成更高速率的数字流,以形成PCM高次群系统。 CCITT推荐了两种一次、二次、三次和四次群的数字等 级系列,如表7.3-1所示。 ❖ 表7.3-1所示的复接系列具有如下优点: ❖ 易于构成通信网,便于分支与插入。 ❖ 复用倍数适中,具有较高效率。 ❖ 可视电话、电视信号以及频分制载波信号能与某一高次 群相适应。
图7-8 基于PCM30/32路系列的数字复接体制
7.3.6 SDH的提出
对传输的新要求,必须从技术体制上对传输系统进行根本的改革,为此,CCITT 制订了TDM制的150Mb/s以上的同步数字系列(SDH)标准。它不仅适用于光纤 传输,亦适用于微波及卫星等其它传输手段。它可以有效地按动态需求方式改变 传输网拓扑, 充分发挥网络构成的灵活性与安全性, 而且在网路管理功能方面大 大增强。数字复接系列(同步数字系列)如表7.3-2所示。
[例7.3.1]
❖ 对10路最高频率为3400Hz的话音信号进行TDM-PCM传 输,抽样频率为8000Hz。抽样合路后对每个抽样值按照 8级量化,并编为自然二进码,码元波形是宽度为的矩形 脉冲,且占空比为0.5。计算TDM-PCM基带信号的第一 零点带宽。
[例7.3.2]
[例7.3.3]
无线通信中的多址和频率重用技术

无线通信中的多址和频率重用技术导言:无线通信技术的广泛应用,使得人们可以方便地进行语音通话、短信传送、网络浏览等活动。
而在无线通信中,多址和频率重用技术是实现高效传输的重要手段。
本文将详细介绍多址和频率重用技术的原理、步骤和优势。
一、多址技术1.1 原理多址技术是指在同一个频率带宽内,将多个用户的信号进行编码与调制,通过特定的解码方式,将它们分离还原成原始信号。
常见的多址技术有频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)等。
1.2 步骤a. 频分多址(FDMA):将频率带宽按照一定规则划分成多个子频带,每个用户被分配一个子频带进行传输。
b. 时分多址(TDMA):将时间按照一定规则进行划分,每个用户在不同时间段进行传输。
c. 码分多址(CDMA):通过为每个用户分配不同的扩频码(码片),并通过乘法运算和相关运算来实现多路复用。
二、频率重用技术2.1 原理频率重用技术是指在不同区域或不同信道中,使用相同的频率进行通信,通过合理的资源分配和干扰控制,使得不同的用户之间不会产生干扰。
a. 蜂窝小区划分:将通信区域划分为多个蜂窝小区,每个小区有一个基站负责信号传输。
b. 频率规划:根据每个小区的通信需求和资源情况,为每个小区分配合适的频率资源。
c. 频率复用:通过合理的频率复用方案,将相同的频率资源分配给不同的小区,使得它们之间能够同时传输信号而不会相互干扰。
三、多址和频率重用技术的优势3.1 空间资源充分利用:通过多址技术,多个用户可以在同一频率带宽内进行传输,充分利用了空间资源。
通过频率重用技术,不同小区可以使用相同频率进行通信,提高了频率资源的利用效率。
3.2 提高系统容量:多址技术允许多个用户同时进行通信,提高了系统的容量。
频率重用技术使得不同小区之间可以同时使用相同频率进行通信,进一步提高了系统的容量。
3.3 减少干扰:多址技术通过编码和解码的方式,将不同用户的信号进行分离,减少了用户之间的干扰。
§6.9 码分复用、码分多址(CDMA)通信

a (t) k
只有发送信号地址码与接收机本地地址码ci(t-τi1)完全 一致(码型相同和码位对准) 一致(码型相同和码位对准)时才可获得足够强度的 解调信号。考虑接收信号与发射信号之间要产生延时, 解调信号。考虑接收信号与发射信号之间要产生延时, 因而在本地地址码中引入了τi1。
设计CDMA系统的关键问题之一就是要选好一组 设计CDMA系统的关键问题之一就是要选好一组 相互正交的地址码, 相互正交的地址码,它们的自相关函数在零点具有尖 锐的峰值,而互相关函数取值最小。 锐的峰值,而互相关函数取值最小。 返回
1 0
2
0
0
1 1 o ω (ω = g (t)[1+c s(2 0t)] + g2(t) sin 2 0t) 1 2 2 低通滤波器后滤除2 附近的高频信号, 低通滤波器后滤除2ω0附近的高频信号,
只留下g 信号。 只留下g1(t)信号。
说明
码分复用的同步解调过程从本质上讲是利用了相 关运算,求相关函数的运算包含相乘和积分, 关运算,求相关函数的运算包含相乘和积分,而低通相 当于实现积分功能,完全不同于频分复用或时分复用。 当于实现积分功能,完全不同于频分复用或时分复用。 相互正交, 由于cos( 由于cos(ω0t)和sin(ω0t)相互正交,经上述框图运算 后在输出端相互抑制,从而区分出各路信号。 后在输出端相互抑制,从而区分出各路信号。 上述应用实例是:彩色电视机中的色差信号的合 上述应用实例是: 成与分离。 成与分离。 目前,码分复用技术的典型应用实例是移动通信 目前,码分复用技术的典型应用实例是移动通信 系统中点对点信号传输,通常称为CDMA通信系统 通信系统。 系统中点对点信号传输,通常称为CDMA通信系统。 其核心部分是:利用正交码组序列进行相关运算。 其核心部分是:利用正交码组序列进行相关运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时分复用技术(TDM)
时分复用技术(time-division multiplexing, TDM, TDMA)是将不同的信号相互交织在不同的 时间段内,沿着同一个信道传输;在接收端再用某 种方法,将各个时间段内的信号提取出来还原成原 始信号的通信技术。这种技术可以在同一个信道上 传输多路信号。 为了提高通信系统信道的利用率,话音信号的传输 往往采用多路复用通信的方式。这里所谓的多路复 用通信方式通常是指:在一个信道上同时传输多个 话音信号的技术,有时也将这种技术简称为复用技 术。复用技术有多种工作方式,例如频分复用、时 分复用以及码分复用等。
码分多址(CDMA)
在码分多址中,不同地址的用户均占用信道的全部 带宽和时间,但是每个用户都被分配给一个唯一的、 互不相关的“码序列”。发送时使用该“码序列” 对基带信号进行调制,接收机采用相关检测器将具 有特定码型的用户信号解调出来,而其他不相关的 信号相当于“背景噪声”。 码分多址以扩频通信技术为基础,可容纳比时分多 址系统还要多的用户,且具有低功率、软切换、抗 干扰能力强等优点。
(又称同步检测)时,接收端必须获得一个与发端载 波同频同相的载波; 位同步:又称码元同步,使码元判决时钟的周期和相 位都准确的与发端一致,否则误码率会大大增加; 帧同步:把应用于多路复用传输中,发端和收端的帧 起止位要一致,检测并获得起止标志的过程称为~; 字同步、句同步:字和句的起止标志的获取; 网同步:多点之间的数字通信网中可靠通信和数据交 换的同步。
多址技术
多址技术广泛应用于无线通信,它是指把处于不同 地址(如手机号码)的多个用户接入一个公共传输 媒质,使多对用户同时进行通信的技术。 多址通信的目的,是为了实现多用户系统中的指定 连接。 目前已应用的多址技术,主要有频分多址 (FDMA)、时分多址(TDMA)和码分多址 (CDMA)等。
频分复用技术(FDM)
频分复用的优缺点
优点 有效减少多径及频率选择性信道造成接收端误码率 上升的影响 接收端可利用简单一阶均衡器补偿信道传输的失真 频谱效率上升 缺点 传送与接收端需要精确的同步 对于多普勒效应频率漂移敏感 峰均比高 循环前缀(Cyclic Pref多址技术是利用空间分割构成不同的信道。 【例】 在一颗卫星上使用多个天线,各个天线的波束射 向地球表面的不同区域。地面上不同地区的地球站, 它们在同一时间、即使使用相同的频率进行工作, 之间也不会形成干扰。
同步系统
同步:发送端和接收端要有统一的时间标准,
使“步调一致”或“节拍一致”,是数字通信的 前提; 同步系统包括有载波同步、码元(时钟)同步、 群同步(帧同步)、网同步、句同步、码组同步 等; 载波同步:在数字调制系统中,当采用相干解调
复用与多址技术
孙黎昂
复用与多址技术
多路复用技术和多址技术都是现代通信技术中最重 要和最基本的概念之一。它们的基本原理相近,而 应用目的不同。 多路复用技术用于多路信号的集中传输,多址技术 则用于多路信号在一个网络系统中的选址通信。
复用
复用的基本原理
复用的分类
常用的复用方式有:频分多路复用(FDM) 时分多路复用(TDM) 码分多路复用(CDM)
频分多址(FDMA)
在频分多址中,不同地址的用户占用不同的频率 (即采用不同的载波频率),通过滤波器选取信号 并抑制无用干扰,各信道可同时使用。 频分多址技术比较成熟,早期的模拟移动电话系统 均使用这种方式。因为各个用户使用不同频率的信 道,所以用户容量有限。
时分多址(TDMA)
在时分多址中,不同地址的用户占用同一频带的同 一载波,但占用的时间不同。各用户只在规定的时 隙内(一个时隙称为一帧)以突发的形式发射它的 已调信号,各用户信号在时间上是严格依次排列、 互不重叠的。 时分多址通信系统是一种数字传输系统,现在的移 动通信系统多数都采用这种多址技术。显然,在可 用频段数相同的情况下,采用时分多址技术比频分 多址技术能容纳更多的用户。但时分多址通信系统 需要精确定时和同步,以保证各用户发送的信号不 会发生重叠。