第9章 多路复用和多址技术
多路复用和多址技术

低 取样 量化 通 合路 编码
解码 分路 恢复
滤 波 多路信号时分复用的工作过程
17
m1(t)
m2(t)
信号m1(t)的采样
T/N
时隙1
T+T/N
2T+T/N 3T+T/N
信号m2(t)的采样
1帧
旋转开关采集到的信号
18
•假设信号取样频率为fs •则取样时间间隔 T=1/fs •帧周期等于 T=1/fs •在复用N路时,每一路时隙宽度Tc为
5
外部 时钟
定时
同
步
1码 2速 复
3 4 支路
调 整
接 合路
复接器
定时
1 分恢 2 接复 3
4 支路 分接器
数字复接系统组成原理
6
• 多址
– 目的:多个用户共享信道、动态分配网络资 源。
– 方法:频分多址、时分多址、码分多址、空 分多址、极化多址以及其他利用信号统计特 性复用的多址技术等。
7
• 多路复用和多址技术的联系与区别
15
m1(t)
m2(t)
两个基带信号时分复用原理
时分复用是利用各信号的抽样值在时间上不相互重叠来达到在同一信道中传 输多路信号的一种方法。
16
时分复用原理
m1(t)
抽样开关
LPF
同步
m1(t) LPF
… …
… …
m2(t) LPF
mN(t) LPF
传输 系统
x(t)
y(t)
m2(t) LPF
mN(t) LPF
– 相同:二者都是为了通信资源共享 – 区别:
• 多路复用中,用户对资源共享的需求是固定的, 或者至多是缓慢变化的,资源是预先分配给各用 户。
通信原理第九章多路复用和多址技术

第九章 多路复用和多址技术9. 1 频分复用(FDM )将若干路独立的信号在同一信道中传输的技术称为复用技术,最常用的是频分复用(FDM)和时分复用(TDM)。
FDM 是在频域上对信道进行分割,而TDM 则是在时域上对信道进行分割。
FDM 系统的发端用相加器将各路已调信号复接在一起,在收端则用中心频率不同的带通滤波器将各路信号进行分接处理。
频分复用原理图如下所示。
A点B点复接分接f c1f cn保护频带信道带宽信号带宽:f :F :B ∆∆fB Fn max ∆+∆=9.2 时分复用和多路数字电话系统一、 时分复用(TDM )原理时分复用基本原理是:将传输时间分割为若干个互不重叠的时隙,各个信号按照一定的顺序占用各自的时隙。
在发端,按照这一顺序将各个信号进行复接;在收端,按照这一顺序再将各个信号进行分接。
TDM 的优点如下:① 分接器和复接器都是数字电路,易于实现; ② 不会因为传输系统不理想而引起串话。
设各个信源都为模拟信源,则时分复用通信系统原理如下图所示m 1m n 1(t)n (t)...D(t)结合PCM 编译码实验来说明有关基本概念 1VF x I :音频信号 FS x :抽样信号8kHz BCLK x :发位时钟信号64kHz ~ 2048kHzx xFS x 对输入信号抽样,在BLCK x 8个脉冲作用下对抽样值进行编码,得到8位PCM 信号。
BCLK x 频率增大,每组8bit 数据占有时间减少,两组数据之间空余时间增加。
R :译码器输入PCM 信号 R :路同步信号8 kHz R :收位同步信号64kHz ~ 2048kHz R O :译码输出音频模拟信号工程上,BCLK R 和FS R 都需从接收到的PCM 码流中提取,为了得到FS R 信号,在发端必须将帧同步码与PCM 数据复接在一起。
TP3507中包含有编码器和译码器。
设帧同步码为8位,当BCLK 为128kHz 时,传输一路数字话音的PCM 信号帧结构为:3、 P CM 编译码实验方框图各编码器的时钟完全相同,故PCMA 、PCMB 的速率完全相同;复接器输入端各信号速率完全相同。
通信系统的多址和多址技术

通信系统的多址和多址技术随着科技的不断进步,通信系统在我们日常生活中扮演着越来越重要的角色。
通信系统需要解决的一个关键问题是多个用户同时访问通信资源的需求。
为了满足多个用户同时进行数据传输的需求,通信系统采用了多址技术。
本文将详细介绍通信系统的多址技术,包括多址的定义、分类和应用。
1. 多址的定义多址是指多个用户在同一时间和频率上共享通信资源,通过合理的协调和分配,实现多个用户同时进行数据传输的技术。
2. 多址的分类2.1 频分多址(Frequency Division Multiple Access,FDMA)频分多址将通信频谱分为多个不重叠的子频带,每个用户被分配一个独立的子频带进行数据传输。
常见的应用包括传统的电视和广播系统。
优点是灵活性高,适合传输大量的数据。
缺点是子频带有一定的浪费,不能充分利用频谱资源。
2.2 时分多址(Time Division Multiple Access,TDMA)时分多址将时间划分为多个时隙,每个用户在不同的时隙中进行数据传输。
每个用户在一个时隙中进行数据传输,然后轮流切换到下一个时隙。
常见的应用包括2G和3G手机通信。
优点是频谱利用率高,缺点是对时钟精度要求较高。
2.3 码分多址(Code Division Multiple Access,CDMA)码分多址是一种用于多用户的无线通信系统的技术,不同于分时多址和频率多址。
它通过使每个用户的通信数据流发生“扩展”,并使用独特的序列使其在低功率的宽带频带上以低功率同时传输,以实现多个用户的同时通信。
常见的应用包括4G和5G手机通信。
优点是频谱利用率极高,缺点是对硬件要求较高。
3. 多址技术的应用3.1 无线局域网(Wireless Local Area Network,WLAN)WLAN采用了TDMA或CDMA技术,使多个用户能够在同一网络中进行数据传输,实现高速、稳定的无线通信。
例如,Wi-Fi技术使用了TDMA技术对多个用户进行时隙划分,从而提供了高速的无线上网体验。
(信息与通信)第九章时分多址TDMA

移动通信系统中的TDMA技术
移动通信系统概述
移动通信系统是利用无线电波传输信息的通信方式,广泛应用于手机、车载电话等移动终 端。
TDMA在移动通信系统中的应用
TDMA是一种时分复用技术,它将一个信道分为多个时隙,通过时隙的分配实现对多个用 户的同时服务。在移动通信系统中,TDMA技术主要用于数字蜂窝移动通信系统,如欧洲 的GSM系统。
案例分析
以GSM系统为例,TDMA技术通过将时间轴划分为多个时隙,实现了对语音和数据业务 的复用,提高了频谱利用率和系统容量。
卫星通信系统中的TDMA技术
01
卫星通信系统概述
卫星通信系统是利用人造地球卫星作为中继站实现地球站之间通信的通
信方式。
02 03
TDMA在卫星通信系统中的应用
在卫星通信系统中,TDMA技术主要用于多址接入,允许多个地球站共 享卫星信道。通过分配不同的时隙给不同的地球站,可以实现多个地球 站同时通信。
信道分配可以根据业务需求动态调整, 以满足不同用户的数据传输需求。通 过合理的信道分配,可以提高TDMA 系统的频谱利用率和数据传输效率。
03 TDMA系统的关键技术
定时与同步
定时同步
TDMA系统中的定时同步是确保 各用户信号在时间上对齐的关键 技术,通过提取时间基准信号, 使各用户信号在时间上保持一致 。
TDMA与其他多址技术的结合
TDMA与CDMA结合
将TDMA和CDMA技术相结合,实现更灵活和 高效的多址接入。
TDMA与OFDMA结合
将TDMA和OFDMA技术相结合,实现频谱资源 的更灵活分配和高效利用。
TDMA与MIMO结合
将TDMA和MIMO技术相结合,提高信号传输的可靠性和传输速率。
多路复用技术

多路复用技术多路复用技术是计算机网络中的一种重要技术,其主要作用是在一条物理通信链路上同时传输多个数据流。
通过使用多路复用技术,可以显著提高系统的传输效率和性能,减少网络的拥塞情况,提升用户的体验。
在传统的通信方式中,一条物理链路仅能传输一个数据流。
这种方式在网络资源紧张、用户数量众多的情况下,会导致资源的浪费和系统的拥塞。
为了解决这一问题,多路复用技术应运而生。
多路复用技术的核心思想是将多个数据流同时传输在同一条物理链路上,通过在发送端将多个数据流分割成小的数据包,并添加标识信息,然后在接收端根据标识信息将数据包重新组合成完整的数据流。
这样一来,多个数据流可以通过同一条物理链路进行传输,大大提高了链路的利用率。
多路复用技术有多种实现方式,其中最常用的是分时多路复用和频分多路复用。
分时多路复用(Time-Division Multiplexing,TDM)是将不同的数据流按照时间片的方式进行传输。
发送端将不同的数据流按照预定的时间片大小进行划分,并按照顺序传输。
接收端根据时间片的标识信息,按照相同的顺序将数据包进行重新组合。
这种方式要求发送端和接收端的时钟高度同步,以确保数据的准确传输。
频分多路复用(Frequency Division Multiplexing,FDM)是将不同的数据流按照频率范围进行传输。
发送端将不同的数据流分配到不同的频率上进行传输,接收端根据频率范围将数据流进行分离和重新组合。
这种方式要求发送端和接收端的频率范围必须一致,以确保数据的正确传输。
除了分时多路复用和频分多路复用外,还有一种常见的多路复用技术是码分多路复用(Code Division Multiplexing,CDM)。
码分多路复用通过使用不同的扩频码对不同的数据流进行编码,并将编码后的数据进行传输,在接收端使用相应的扩频码对数据进行解码和还原。
码分多路复用不仅可以提高链路利用率,还具有一定的抗干扰能力。
总之,多路复用技术是一种能够提高网络传输效率和性能的重要技术。
通信原理教程多路复用和多址技术共50页文档

通信原理教程多路复用和多址技术
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
பைடு நூலகம் 谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
通信系统中的多址技术与信道复用

通信系统中的多址技术与信道复用一、引言随着通信技术的进步和发展,人们对通信质量和带宽的要求越来越高。
多址技术和信道复用技术是实现高效通信的重要手段之一。
本文将详细介绍通信系统中的多址技术与信道复用的概念、原理和应用。
二、多址技术的概述1. 多址技术是什么?多址技术是指在同一时间段内,多个用户通过共享同一个通信信道进行通信时的技术。
多址技术通过合理分配通信时间和频谱资源,实现多个用户同时使用同一个信道进行通信。
2. 多址技术的分类多址技术主要分为随机接入多址技术和确定接入多址技术。
- 随机接入多址技术是指用户以随机方式竞争信道资源。
典型的随机接入多址技术有载波监听多址(CDMA)和时分多址(TDMA)等。
- 确定接入多址技术是指用户按照一定规律分配信道资源。
典型的确定接入多址技术有频分多址(FDMA)和码分多址(CDMA)等。
三、信道复用技术的概述1. 信道复用技术是什么?信道复用技术是指通过合理分配频率、时间、码等信号资源,将多个通信信号传输在同一个物理信道上的技术。
它可以将有限的信道资源充分利用,提高通信容量和效率。
2. 信道复用技术的分类信道复用技术主要分为频分复用、时分复用和码分复用。
- 频分复用(FDM)是指将不同用户的信号分配到不同的频率带宽上进行传输,典型的应用是无线电和有线电视广播等。
- 时分复用(TDM)是指将不同用户的信号按照时间片的方式分配到同一个频率上进行传输,典型的应用是电话系统和数字传输系统等。
- 码分复用(CDM)是指将不同用户的信号编码为不同的扩频码,并在同一个频率上进行传输,典型的应用是CDMA手机通信系统等。
四、多址技术与信道复用的应用1. 多址技术的应用多址技术广泛应用于各种通信系统中,如移动通信系统、卫星通信系统和局域网等。
例如,移动通信系统中的CDMA技术通过码分多址技术实现多用户之间的通信。
2. 信道复用技术的应用信道复用技术也得到了广泛应用,例如无线电广播中的频分复用技术可以同时传输多个广播节目,电话系统中的时分复用技术可以实现多个用户之间的通话。
复用技术与多址技术的区别

复用技术与多址技术的区别
复用技术与多址技术的区别
多址技术:
1、目的是用来区分不同用户的一种技术。
2、为了让用户的地址之间互不干扰,地址之间必须满足相互正交;
3、分类:频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、空分多址(SDMA)、正交频分多址(OFDMA)等复用技术:
1、目的是让多个信息源共同使用同一个物理资源(比如一条物理通道),并且互不干扰;
2、这里的复用是指“多个共同使用”的意思;
3、分类:频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、空分复用(SDM);
多址与复用的关系:
1、通信要做的工作也很容易理解,就是让多个信息源发出的信号在同一物理or逻辑信道上不要发生冲突,和平共处,共同分享信道资源,并安全到达目的地;
2、多址的“址”在移动通信中是指用户临时占用的信道,多址就是要给用户动态分配一种地址资源——信道,当然这种分配只是临时的;
3、多址和复用的区别还在于,多址技术是要根据不同的“址”来区分用户;复用是要给用户一个很好的利用资源的方式。
一句话“复用针对资源,多址针对用户”
4、另外,多址需要用复用来实现。
eg:TDMA中,不同的用户,只有复用了不同的时域资源,才能通过不同的“时隙”来区分不同的用户,而这里的“时隙”也就是用户的“址”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01 1
1
1
3
10 1
0
1
4
01 0
0
0
5
00 1
1
1
6
10 0
1
0
7
11 0
1
0
(3)两个 m 序列都是周期序列,它们分别由码组 1110010 和 1110100 码组构成周期序
列。两个码组中对应码元相同的个数 A=5,不同的个数 D=2,则互相关系数为:
可见,两个 m 序列不是正交的。
ρ = A−D = 3 ≠0 A+D 7
【例 9-1】 6 路独立信源的最高频率分别为 1 kHz、1 kHz、2 kHz、2 kHz、3 kHz、3 kHz,
若采用时分复用方式进行传输,每路信号均采用 8 位对数 PCM 编码。
(1)设计该系统的帧结构和总时隙数,求每个时隙占有的时间宽度及码元宽度;
(2)求信道最小传输带宽。
解:方法一:(每路信号占用相同时隙)
解:(1)特征方程 f1(x) = 1 + x2 + x3 和 f2 (x) = 1 + x + x3 所对应的 m 序列发生器分别如图
9-3(a)和(b)所示。
⊕
⊕
a2
a1
a0
输出
a2
a1
a0
输出
(a)
(b)
图 9-3 例 9-2 图
(2)设初始状态为 110,图 9-3(a)所示的状态变换时序表如表 9-1 所示,输出的 m 序列为 1110010;图 9-3(b)所示的状态变换时序表如表 9-2 所示,输出的 m 序列为 1110100。
每个时隙占有的时间宽度τ = 1 = 27.8 ×10−6 s =27.8 μs 6000 × 6
码元宽度为τ / 8 ≈ 3.5 μs
(2)码元速率为:
Rb =(6000帧 / 秒)×(6时隙 / 帧)×(8bit /时隙)= 288 (kbit/s) 信道最小传输带宽为:
方法二:
Bc = Rb / 2 = 144 (kHz)
码元宽度为τ / 8 ≈ 5.2 μs
(2)码元速率为:
Rb =(2000帧 / 秒)×(12时隙 / 帧)×(8bit /时隙)= 192 (kbit/s) 信道最小传输带宽为:
Bc = Rb / 2 = 96 (kHz)
500μs TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11
表 9-1 状态变换时序表
状态 a2 a1 a0 a1 ⊕a0 输出
初始值 1 1 0 1
0
11Biblioteka 1 012011 0
1
3
001 1
1
4
100 0
0
5
010 1
0
6
101 1
1
7
110 1
0
表 9-2 状态变换时序表
状态 a2 a1 a0 初始值 1 1 0
a2 ⊕a0 1
输出 0
1
11 1
0
1
2
41.7μs
8b 1b = 5.2μs 图 9-2 例 9-1 图 2
【例 9-2】已知特征方程为 f1(x) = 1+ x2 + x3 , f2 (x) = 1 + x + x3 ,
(1)构造二个 m 序列发生器;
(2)求这二个 m 序列发生器产生的 m 序列;
(3)验证这二个 m 序列的正交性。
(1)6 路信号的最高频率为 3 kHz,根据抽样定理的要求,可选择抽样频率为 6 kHz。
不考虑帧同步码和信令,每帧可采用 6 个时隙,每路信号占用一个时隙,帧结构如图 9-1 所
示。
166.7μs
TS0 TS1 TS2 TS3 TS4 TS5
27.8μs
8b 1b = 3.5μs
图 9-1 例 9-1 图
根据抽样定理,这 6 路信号的最低抽样频率可以分别取为 2 kHz、2 kHz、4 kHz、4 kHz、
6 kHz、6 kHz。并根据每路信号的速率分配不同时隙。这 6 路信号占有的时隙数分别为 1、
1、2、2、3、3,此时每帧可采用 12 时隙来传输这 6 路信号,帧结构如图 9-12 所示。
每个时隙占有的时间宽度τ = 1 = 41.7 ×10−6 s =41.7 μs 2000 ×12