九年级数学反比例函数8

合集下载

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

O
x
B
SAOB SOMB SOAM 2 4 6.
(2)解法二:
y x 2,当x 0时, y 2, N(0,2).
ON 2.
1
1
SONB

ON 2
x B

2 4 4, 2
y A
N
SONA

1 ON 2
xA

1 2 2 2. 2
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y y = —kx
y=-x
y=x
0
12
x
.如图,在y 1 (x 0)的图像上有三点A,B,C, x
经过三点分别向x轴引垂线,交x轴于A ,B ,C 三点, 111
边结OA,OB,OC,记OAA , OBB , OCC 的
(2)根据图象写出反比y例函数的值大于一次函数的值 的x的取值范围。
M(2,m)
-1 0 2
x
N(-1,-4)
(1)求反比例函数和一次函数的解析式;
解(1)∵点N(-1,-4)在反比例函数图象上
4
∴k=4,
∴y= x
y
又∵点M(2,m)在反比例函数图象上
∴m=2 ∴M(2,2)
∵点M、N都y=ax+b的图象上 M(2,m)
(1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标;
(3)利用图象直接写出当x在什 么范围内取何值时,y1>y2.
5、如图,已知反比例函数 y 12 的图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标

初中数学《反比例函数》单元教学设计以及思维导图

初中数学《反比例函数》单元教学设计以及思维导图
函数关系你能做出相应的图象吗?
所需教学环境和教学资源
信息化资源 常规资源
电脑、ppt 软件、几何画板软件、电子白板、 实物投影仪 问题实例、课本、笔、直尺
学习活动设计
活动一 创设情境 某校科技小组进行野外考察,途中遇到一片烂泥湿地,为了安全迅速 通过,它们沿着前进的路线铺垫了若干块木板, 构筑成一条临时的通道,从而完成了任务你能解释他们这样做的道理 吗?引出新课 活动二 新课讲授 分小组讨论完成问题 1、在野外时遇到烂泥湿地,为了安全通过,为什么要在上面铺上若 干块木板哪?你能做出相应的图象吗? 2、蓄电池的电压为定值,使用此电源时,电流与电阻之间的函数关 系你能做出相应的图象吗?(课本图 5-8) 活动三 巩固练习 1、某储水池的排水管每小时排水 8m3,6h 可将满池水全部排空。 (1) 蓄水池的容积是多少? (2) 如果增加排水管,使每小时排水量达到 Q(m3),那么将满 池水排空所需的时间 t(h)将如何变化? 活动四 小结
整,有收
无感想和收
尽,记录了 记录了收获
获和感想
获的记录
收获
优秀
良好
合格
不及格
专题二 反比例函数图象和性质 所需课时 1 课时 专题学习目标 1、 进一步熟悉作函数图象的步骤,会画反比例函数的图象。 2、 体会函数的三种表示方法的相互转化,对函数进行认识上的整合。 3、 逐步提高从函数图象上获取信息的能力,探索并掌握反比例函数 的主要性质。
性质。 专题三:经历分析实际问题中变量之间的关系、建立反比例函数模型, 进而解决问题的过程。体会数学与现实生活的紧密联系,增强应用意 识,提高运用代数方法解决问题的能力。 这三个专题都源于课本,立足于新课程标准,而又不拘泥于教材,适 当进行了拓展和延伸,提高了学生对学习的兴趣。 主题单元规划思维导图

新人教版九年级下册数学 第二课时 反比例函数的图象和性质的应用课件

新人教版九年级下册数学 第二课时 反比例函数的图象和性质的应用课件

【针对训练二】
3. 如图是反比例函数的图象的一个分支,对于给出的下列说法:
①②常另数一k个的分取支值在范第围是三象限k>;;0
y
③在函数图象上取点

时,
;A

a1, b1
B

a2 , b2
④在函a1数图a象2 的某b一1 个b分2 支上取点
和O
x
,当
时,

Aa1,b1 Ba2,b2
其的中序正号确)的a.1是_a_2_____b①_1_②__b④_2____(在横线上填出正确
)x、1, y1
( x2 , y)2 ,且 x1 ,x2则下式关系成立的是( ) D
A.y1 y2 B.y1 y2 C.y1 y2 D.不能确定
4.反比例函数 y = k的图象与一次函数y=2x+1的图象的 x
一个交点是(1,k),则反比例函数的解析式是____.y
3 x
第十四页,共十五页。
达标检测 反思目标
合作探究 达成目标
小组讨论2:根据反比例函数的部分图象,如何确定 其完整图象的位置以及比例系数的取值范围?
【反思小结】由于双曲线的两个分支在两个不同的 象限内,因此函数y随x的增减性就不能连续地看, 一定要强调“在每一象限内”,否则,笼统说k<0 时y随x的增大而增大,从而出现错误.
第九页,共十五页。
图象与性质,并能灵活运用函数图象和性质解决一 些较综合的问题.
2.2. 思想方法小结──深刻领会函数解析式与函数图象 之间的联系,体会数形结合及转化的思想方法.
第十二页,共十五页。
达标检测 反思目标
1.已知反比例函数y=k 的图象过点(1,-2),
则k的值为(D

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

初中数学《反比例函数》单元教学设计以及思维导图

初中数学《反比例函数》单元教学设计以及思维导图

初中数学《反比例函数》单元教学设计以及思维导图适用年级九年级所需时间共5课时,其中课内共用4课时(每周5课时),课外1课时。

主题单元学习概述反比例函数是北师大版九年级上册第五章的内容,它是学生在八年级学习了一次函数后以及将要在九年级下学期学习三角函数和二次函数之前安排的,具有承上启下的地位和作用。

本单元包括四部分内容,分别是反比例函数的意义、性质和应用以及课题学习。

本单元的学习重点是:反比例函数的意义,反比例函数的图像及增减性和对称性,利用反比例函数解决实际问题。

本单元的学习难点是:反比例函数解析式的确定,反比例函数增减性的理解及运用,如何把一个实际问题抽象成数学问题并加以解决,课题学习--猜想、证明与拓广。

本单元的教材划分还是很科学的,先理解反比例函数的意义,然后综合运用函数的三种研究方法(解析法、表格法、图像法)探索反比例函数的性质,最后学以致用,运用函数知识解决现实生活中的实际问题,特别的是课题学习更是体现了数学来源于生活又服务于生活的特点。

主要学习方式:自主、合作、探究预期学习成果:学生能够理解反比例函数的意义和性质并能利用相关知识解决现实生活中的实际问题。

主题单元规划思维导图主题单元学习目标知识与技能:能正确区分正比例函数、一次函数和反比例函数;求反比例函数解析式;会用描点法画出反比例函数的图象,提高画图能力;逐步提高从函数图象中获取信息的能力;能灵活运用正比例函数、一次函数和反比例函数知识剖析实际问题,体会函数模型的重要性过程与方法:经历抽象反比例函数的过程,体会反比例函数的意义;经历比较与探索能发现反比例函数的性质并能应用性质解决相关问题提高探索能力和解决问题能力;经历分析实际问题中变量之间的关系,建立反比例函数模型,从而明白解决问题的过程。

情感态度与价值观:从具体情境和已有经验出发讨论两个变量之间的依存关系,加深对函数意义的理解;提高处理较复杂问题的耐心和能力;进一步体会方程与函数的关系,能充分利用函数的图象和性质进行观察、比较、计算、归纳,从而解决有关的函数问题。

第二十六章 反比例函数(复习课件)-2022-2023学年九年级数学下册同步备课系列(人教版)

第二十六章 反比例函数(复习课件)-2022-2023学年九年级数学下册同步备课系列(人教版)

则1 , 2 , 3 的大小关系是( )
A.1 < 2 < 3
B. 2 < 3 < 1
C. 1 < 3 < 2
8
【详解】将三点坐标分别代入函数解析式 = ,得:
8
2 = ,解得1 = 4;
1
8
−1 = ,解得2 = −8;
2
8
4 = ,解得3 = 2;
8
k
x
M的直线l∥y轴,且直线l分别与反比例函数y = 和y = 的图象交于P、Q两点.若S△POQ=15,
x
则k的值为(
A.38

B.22
C.﹣7
D.﹣22


【详解】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=− ,
两者矛盾,故D选项错误;
故选:B.
中考真题

4.(2022·江苏无锡·中考真题)一次函数y=mx+n的图像与反比例函数y= 的图像交于点A、
1
B,其中点A、B的坐标为A(- ,-2m)、B(m,1),则△OAB的面积( )

A.3
B.
13
4
7
2
C.
D.
15
4

1
1
【详解】解:∵A(-,-2m)在反比例函数y= 的图像上,∴m=(-) • ( -2m)=2,
2)反比例函数也写成y=kx-1或k=xy的形式。
基础巩固(反比例函数的图象与性质)


当k>0时,反比例函数y = 的图象:
(1)函数图象分别位于第一、三象限;
(2)在每一个象限内,y随x的增大而减小。

人教版九年级数学下册第二十六章《反比例函数的图象和性质(第1课时)》课件 (2)

(1)求 m,n 的值; (2)求直线 AC 的解析式.
解:(1)∵直线 y=mx 与双曲线 y=nx相交于 A(-1,a),B 两点,∴B 点横坐 标为 1,即 C(1,0),∵△AOC 的面积为 1,∴A(-1,2),将 A(-1,2)代入 y =mx,y=nx可得 m=-2,n=-2;
(2)设直线 AC 的解析式为 y=kx+b,∵y=kx+b 经过点 A(-1,2),C(1,0),
A.两个分支分布在第二、四象限 B.两个分支关于 x 轴成轴对称
C.图象经过点(1,1)
D.当 x<0 时,y 随 x 的增大而减小
4.(4 分)(2014·兰州)若反比例函数 y=k-x 1的图象位于第二、四象限,则 k 的取值可以
是( A ) A.0
B.1
C.2 D.以上都不是
5.(4 分)(2014·海南)已知 k1>0>k2,则函数 y=k1x 和 y=kx2的图象在同一平面直角坐标
解:(1)k=3 (2)k>1
(3)∵k=13,∴反比例函数解析式为 y=1x2,当 x=3 时,y=132=4,∴点 B 在函数 y=
1x2的图象上;当 x=2 时,y=6≠5,∴点 C 不在函数 y=1x2的图象上.
一、选择题(每小题 5 分,共 15 分) 10.已知点(-1,y1),(2,y2),(3,y3)在反比例函数 y=-kx2-1的图象上,下列结论中 正确的是( B ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1
解:(1)在 Rt△BOA 和 Rt△ACD 中,AABO==DCAD,∴△AOB≌△DCA(HL)
(2)在 Rt△AOB 中,由勾股定理可得 OB= AB2-OA2= 5-4=1,∴OB=AC=1, ∴C(3,0),E(3,1),∴k=3×1=3

北师大版九年级数学上册 反比例函数

(4)根据付款次数×每次付款数=12000-4000 解答即可.
【详解】(1)∵hS=450,∴ h
450
S
,∴比例系数为 450.
W
(2)∵Fs=W,∴ F s ,∴比例系数为W .
(3)∵xy=1000,∴ y
1000
x
,∴比例系数为 1000.
(4)∵xy=12000-4000,∴ y
3
【答案】B
【分析】根据反比例函数的定义确定 m 的值即可.
【详解】解:∵函数 y (m 1)x 是反比例函数,
m2 2
m2 2 1
∴ m 1 0 ,
解得: m 1 ;
故选:B

6.若函数 y m 1 x
m2 m1
是反比例函数,则 m 的值为 _____.
当 y=35 时,即 35
解得: x
20
700
x
700
x



∵20-7=13,
∴水温从 100 ℃降到 35 ℃所用的时间是 13 min,
故选:C.
4.已知经过闭合电路的电流 I(单位:A )与电路的电阻 R(单位: )是反比例函数关系.

据下表判断 a 和 b 的大小关系为(
I /A
R/
(2)功是常数W 时,力 F 与物体在力的方向上通过的距离 s 的函数关系式;
(3)某实验中学八(2)班同学为校运动会制作小红花 1000 朵,完成的天数 y 与该班同
学每天制作的数量 x 之间的函数关系式;
(4)某商场推出分期付款购买电脑的活动,一台电脑售价 1.2 万元,首期付款 4 千元后,
分 x 次付清,每次付款相同. 每次的付款数 y (元)与付款次数 x 的函数关系式.

2020年九年级数学中考复习课件:12 反比例函数的图像与性质 (共58张PPT)


2.如图 1.12-13,已知动点 A 在反比例函数 y =6x(x>0)的图像上,直线 PQ 与 x 轴、y 轴分别交于 P,Q 两点,过点 A 作 CD∥x 轴,交 y 轴于点 C, 交直线 PQ 于点 D,过点 A 作 EB∥y 轴交 x 轴于点 B,交直线 PQ 于点 E,若 CE∥BD 且 CA∶AE=1∶ 2,QE∶DP=1∶9,则阴影部分的面积为__1__0____.
∴OC=33-aa,同理可得 OD=33-bb, ∴S△COD=12·OC·DO=12·(3-a)9a(b 3-b)= 12·9-3a9-ab3b+ab=12·-129aabb+ab=9.
(3)△AOB 的面积是否存在最大值?若存在,求 出最大面积;若不存在,请说明理由.
解:设 OA=a,OB=b,则 AM=AH=3-a, BN=BH=3-b,
D.5
图 1.12-11
跟踪训练
1.如图 1.12-12,函数 y=1x(x>0)和 y=3x (x>
0)的图像分别是 l1 和 l2.设点 P 在 l2 上,PA∥y 轴交
l1 于点 A,PB∥x 轴,交 l1 于点 B,△PAB 的面积为
(B )
A.12
B.23
C.13
D.34
图 1.12-12
D.-2<x<0 或 x>4
图1.122
重难点3 反比例函数与几何的综合
【例 3】 (2019·重庆 A)如图 1.12-3,在平面直
角坐标系中,矩形 ABCD 的顶点 A,D 分别在 x 轴、
y 轴上,对角线 BD∥x 轴,反比例函数 y=kx(k>0,
x>0)的图像经过矩形对角线的交点 E.若点 A(2,0),
B.不变
C.减小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档