初二数学-反比例函数难题拓展(学生版)

合集下载

初二数学-反比例函数难题拓展(学生版).doc

初二数学-反比例函数难题拓展(学生版).doc

反比例函数经典习题例题讲解【例1】如右图,己知Z^OA,,△匕八|八2都是等腰直角三角形,点卩! 斜边OAj 、A^2都在x 轴上.则点A 2的坐标为 ___________________ 1、如例1图,己知△l^OAv AP 2A I A 2, △P 3A 2A 3…△P n A n .1A n 都是等腰直角三角形,点P!、P 2、P 3…P n 都在 4 函数y=— (x 〉0)的图象上,斜边OA!、A02、A 2A 3…A nd A n 都在x 轴上.则点A 10的坐标为 ____________________%【例2】如右阁,已知点(1,3)在函数(x 〉0)的阁像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数y=— (k 〉0)的图象又经过A, E 两点,点E 的横坐标为m, •答下列各题 x1. 求k 的值2. 求点C 的横坐标(用m 表示)3.当ZABD=45°时,求m 的值1124 卩2都在函数y=— (x>0)的图象上, x21、已知:如图,矩形ABCD的边BC在x轴上,E是对角线AC、BD的交点,反比例函数y= —(x〉0)的图 x 象经过A, E两点,点E的纵坐标为m.(1)求点A坐标(用m表示)2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E (m, 1)是对角线BD的中点,点A、E在反比例函数的阉象上.(1)求AB的长;b k(2)当矩形ABCD是正方形时,将反比例函数—的图象沿y轴翻折,得到反比例函数y= 2的图象(如图2),求卜的值;(3)直线y=-x上有一长为^动线段MN,作MH、NP都平行y轴交在条件(2)下,第一象限A的双曲线ky=—于点H、P,问四边形MHPN能否为平行四边形(如阁3) ?若能,请求出点M的坐标;若不能,请说明 x理由.【例3】在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM, ON分别在x, y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MRNP的交点分别为E,F,AAOF^ ABOE (顶点依次对应)(1)求ZFOE;(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。

反比例函数经典拓展难题

反比例函数经典拓展难题

反比例函数难题拓展填空题1. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y= kx ,在x 轴上取一点P ,过点P作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 .2. (2011广东东莞,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 3. (2011山东滨州,18,4分)若点A(m ,-2)在反比例函数4y x=的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________. 4. (2011四川南充市,14,3分)过反比例函数y=xk(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .5. (2011宁波市,18,3分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x (x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 3在x 轴的正半轴上,则点P 3的坐标为6. (2011浙江衢州,5,4分)在直角坐标系中,有如图所示的t ,R ABO AB x ∆⊥轴于点B ,斜35=(0)ky xx=>的图像经过AO的中点C,且与AB交于的坐标为 .7. (2011浙江绍兴,13,5分) 若点12(1,),(2,)A yB y是双曲线3yx=上的点,则1y2y(填“>”,“<”“=”).8. (2011浙江丽水,16,4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOC=60°,点A在第一象限,过点A的双曲线为y=kx,在x轴上取一点P,过点P 作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.(1)当点O′与点A重合时,点P的坐标是.(2)设P(t,0)当O′B′与双曲线有交点时,t的取值范围是 .9. (2011湖南常德,5,3分)如图1所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为_______________.10.(2011江苏苏州,18,3分)如图,已知点A的坐标为(3,3),AB⊥x轴,垂足为B,(第15题)xyCDBOIy1OAx3图1连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”)11. (2011山东济宁,11,3分)反比例函数1m y x-=的图象在第一、三象限,则m 的取值范围是 .12. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线3y x k =-+都经过点P ,且7OP =,则实数k=_________.13. (2011安徽芜湖,15,5分)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为 .14. (2011广东省,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 15. (2011江苏南京,15,2分)设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________.16. (2011上海,11,4分)如果反比例函数k yx=(k是常数,k≠0)的图像经过点(-1,2),那么这个函数的解析式是__________.17. (2011湖北武汉市,16,3分)如图,□ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线y=xk上,边AD交y轴于点E,且四边形BCDE的面积是△ABE 面积的5倍,则k=_____.18. (2011湖北黄冈,4,3分)如图:点A在双曲线kyx=上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.19. (2011湖北黄石,15,3分)若一次函数y=kx+1的图象与反比例函数y=x1的图象没有公共点,则实数k的取值范围是。

中考数学专题复习《反比例函数》拓展题(含答案)

中考数学专题复习《反比例函数》拓展题(含答案)

《反比例函数》拓展题(含答案)知识点回顾由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进行考察。

这种考察方式既能考查函数、反比例函数本身的基础知识内容,又能充分体现数形结合的思想方法,考查的题型广泛,考查方法灵活,可以较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题的四种类型归纳如下:一、利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|例题讲解【例1】如右图,已知△P10A1,△P2A1A2都是等腰直角三角形,点P1、P2都在函数y=4x(x>0)的图象上,斜边OA1、A1A2都在x轴上.则点A2的坐标为 .1、如例1图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数y=4x(x>0)的图象上,斜边OA1、A1A2、A2A3…A n-1A n都在x轴上.则点A10的坐标为2、已知点A(0,2)和点B(0,-2),点P在函数y=1x的图像上,如果△PAB的面积为6,求P点的坐标。

【例2】如右图,已知点(1,3)在函数y=kx(x>0)的图像上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=kx(k>0)的图象又经过A,E两点,点E的横坐标为m,解答下列各题1.求k的值2.求点C的横坐标(用m表示)3.当∠ABD=45°时,求m的值1121、已知:如图,矩形ABCD的边BC在x轴上,E是对角线AC、BD的交点,反比例函数y=2 x(x>0)的图象经过A,E两点,点E的纵坐标为m.(1)求点A坐标(用m表示)(2)是否存在实数m,使四边形ABCD为正方形,若存在,请求出m的值;若不存在,请说明理由2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=kx的图象上.(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交在条件(2)下,第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.【例3】在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM,ON分别在x,y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MP,NP的交点分别为E,F,△AOF∽△BOE(顶点依次对应)(1)求∠FOE;(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

例 下面函数中,哪些是反比例函数? (1)3x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,xky =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式.反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数62)2(--=a xa y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题. 解 因为62)2(--=ax a y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=.反比例函数的典型例题四例 (1)若函数22)1(--=mx m y 是反比例函数,则m 的值等于( )A .±1B .1C .3D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则:A .1=SB .2=SC .3=SD .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D . (2)由双曲线x y 1=关于O 点的中心对称性,可知:O BC O BA S S ∆∆=. ∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .例 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值.解 因为1y 与x 成正比例,2y 与x 成反比例,所以)0(,212211≠==k k xk y x k y . 所以xkx k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=. 所以当1-=x 时,4821811-=--=y . 说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.反比例函数的典型例题六例 根据下列表格x 与y x …… 1 2 3 456 …y…6 3 2 1.5 1.2 1 …(1x 的取值范围. 解:(1)图像如右图所示. (2)根据图像,设)0(≠=k xky ,取6,1==y x 代入,得16k=. ∴6=k .∴函数解析式为)0(6>=x xy . 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xky =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C .例 已知函数24231-⎪⎭⎫ ⎝⎛+=mx m y 是反比例函数,且其函数图像在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m 因为此函数图像在每一象限内,y 随x 的增大而减小,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy = 说明:此题根据反比例函数的定义与性质来解反比例函数xky = )0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式. 解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=. (2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米) (4x … 0.525 1015…y … 40 10 4 2 311 …描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据S F W ⋅=,得15=S F ⋅,即SF 15=,所以F 与S 之间是反比例函数关系,故选(B ).例 一个圆台形物体的上底面积是下底面积的.32如果如下图所示放在桌上,对桌面的压强是Pa 200,翻过来放,对桌面的压强是多少?解:由物理知识可知,压力F ,压强p 与受力面积S 之间的关系是.SFp =因为是同一物体,F 的数值不变,所以p 与S 成反比例. 设下底面是0S ,则由上底面积是032S , 由SFp =,且0S S =时,200=p , 有.20020000S S pS F =⨯==因为是同一物体,所以0200S F =是定值.所以当032S S =时,).Pa (3003220000===S S SF p因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例 如图,P 是反比例函数xky =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-.又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=. 说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xk y =中的k .例 当n 取什么值时,122)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k x k y 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n n xn n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n .故当1-=n 时,122)2(-++=n nx n n y 表示反比例函数:xy 1-=. 01<-=k ,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.11。

中考数学几何图形复习专题10 反比例函数的综合探究(数形结合)(学生版)

中考数学几何图形复习专题10 反比例函数的综合探究(数形结合)(学生版)

专题10 反比例函数的综合训练(数形结合)1.如图,一次函数4y x =-+的图象与反比例函数()0k y k x=≠在第一象限内的图象交于()1,A n 和()3,B m 两点.(1)求反比例函数的表达式.(2)在第一象限内,当一次函数4y x =-+的值大于反比例函数()0k y k x=≠的值时,写出自变量x 的取值范围(3)求△AOB 面积.2.如图,反比例函数2y x=的图象与一次函数y x b =+的图象交于(1, )A m ,(2, )B n -两点,一次函数图象与y 轴交于点C ,与x 轴交于点D .(1)求一次函数的表达式;(2)观察图象,写出2kx b x>+时自变量x 的取值范围; (3)连接OA ,在第三象限的反比例函数图象上是否存在一点P ,使得2OCP OCA S S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系xOy 中,已知正比例函数y =12x 的图象与反比例函数y =k x的图象交于A (a ,﹣2),B 两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若△POC 的面积为3,求点P 的坐标.4.如图,等腰Rt ABO 的直角顶点O 与平面直角坐标系的原点重合,反比例函数()0m y x x=<的图象经过点A ,反比例函数()0n y x x =>的图象经过点B .(1)试猜想m 与n 的数量关系,并说明理由;(2)若2n =,求当点B 的纵坐标分别为1和2时,等腰Rt ABO 的面积;(3)请直接写出当2n =时,等腰Rt ABO 的面积的最小值_________.5.如图,一次函数()=+0y mx n m ≠的图象与反比例函数()0k y k x =≠的图象相交于第二、四。

2023中考数学专项: 反比例函数与几何图形综合问题(重点突围)(学生版)

2023中考数学专项: 反比例函数与几何图形综合问题(重点突围)(学生版)

专题16反比例函数与几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一反比例函数中K值的几何意义】 (1)【考向二反比例函数与三角形的综合问题】 (4)【考向三反比例函数与矩形的综合问题】 (6)【考向四反比例函数与菱形的综合问题】 (9)【考向五反比例函数与正方形的综合问题】 (11)【考向六反比例函数与圆的综合问题】 (15)【直击中考】【考向一反比例函数中K值的几何意义】【变式训练】1.(2023·安徽宿州·统考一模)如图,若反比例函数______在反比例函数3.(2022·黑龙江绥化·校考二模)如图,在过点A、C两点,点B在4.(2023秋·安徽池州·九年级统考期末)AC交y轴于点B,若点B是=【考向二反比例函数与三角形的综合问题】(1)求反比例函数的解析式;(2)过点A作AP垂直OA,交反比例函数的图象于点①求直线AC的解析式;②求点P的坐标.【变式训练】(1)求反比例函数的解析式;(2)坐标平面内有一点D,若以A(1)求反比例函数的表达式;(2)求等边△ACD的边长.【考向三反比例函数与矩形的综合问题】(1)直接写出B,C,D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点值.【变式训练】上两点,的顶点【考向四反比例函数与菱形的综合问题】(1)求k的值及AB所在直线的函数表达式;(2)将这个菱形沿x轴正方向平移,当顶点【变式训练】是菱形,点(1)求一次函数与反比例函数的解析式;(2)设点P是直线AB上一动点,且ABCD(1)求双曲线y2的函数关系式及(2)判断点B是否在双曲线上,并说明理由;(3)若BA的延长线与双曲线【考向五反比例函数与正方形的综合问题】(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形标,并判断点B′是否在该反比例函数的图象上,说明理由.【变式训练】在平面直角坐标系中,点(1)求反比例函数的解析式;(2)求四边形OAFM 的面积.2.(2022·山东济南·校考一模)如图,四边形35AE OE =.中点,以备用图4.(2022春·江苏苏州·八年级星海实验中学校考期中)如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点()6,0A -、()7,3D -,点B 、C 在第二象限内.(1)点B 的坐标_________;(2)将正方形ABCD 以每秒2个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t ,使在第一象限内点B 、D 两点的对应点B '、D ¢正好落在某反比例函数的图像上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y 轴上的点P 和反比例函数图像上的点Q ,使得以P 、Q 、B '、D ¢四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q 的坐标;若不存在,请说明理由.【考向六反比例函数与圆的综合问题】【变式训练】在反比例函数。

反比例函数压轴题经典培优好题难题(有答案)

反比例函数压轴题经典培优好题难题(有答案)

B y A C
将y x 2
3 3 代入y 得, 2 x
D x
3 A(2, ) 2 3 C (2 , 0) 2 7 C ( , 0) 2
3 7 或C (2 , 0)即C ( , 0) 2 2 3 1 或C ( 2 , 0)即C ( , 0) 2 2
4 N 3 1 M 2
(2)若该反比例函数的图象与AB交于点Q,求直线PQ的 解析式.
∵AO=4 ∴A(-4,0) ∴Q的横坐标为-4 将x=-4代入y=-6/x得,y=3/2 ∴Q(-4,3/2) 设PQ:y=ax+b 将Q(-4,3/2)P(-2,3)代入得, -4a+b=3/2 -2a+b=3 a=3/4 解得 b=9/2 ∴PQ:y=3/4x+9/2
潮实:已知:如图,在直角坐标系xoy中,矩形OABC的边 OA在x轴的负半轴上,边OC在y轴的正半轴上,对角线AC 与OB相交于P,且BC=4,AB=6. (1)求过点P的反比例函数的解析式;
(1)如图,过P作PM⊥AO于M, PN⊥CO于N (ASA证明△BCP全等于△AOP, △OCP全等于△ABP) ∴AP=PO ∴∠1=∠2,∠3=∠4 ∴M是AO的中点,N是OC的中点 又∵OC=AB=6,AO=BC=4 ∴MO=1/2×4=2 ON=1/2×6=3 ∴P(-2,3) 设y=k/x 则k=xy=-2×3=-6 所以过P点的反比例函数解析式为 y=-6/x
6
Y
4
A
2
D E
-5
O B
-2
C
5
X
f x = 3 x
-4
【4】. 已知如图:点(1,3)在反比例函数y=
的图象上长方形ABCD的边BC在X轴上,E为对角线BD的中点, 反比例函数y= k (x > 0) 的图象又经过A,E两点,若E点的 x 横坐标为m. ①求反比例函数的解析式 ;

反比例函数经典拓展难题

反比例函数经典拓展难题

1:(2007年浙江省初中数学竞赛)函数y =1x-图象的大致形状是( )A B C D3.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.4.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.5.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值;(2)当y =-2时,求x 的值;(3)当y >2时,求x 的范围.6.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围;(3)当1≤y <4时,x 的取值范围.7.作出函数xy 12=的图象,并根据图象回答下列问题: (1)当x =-2时,求y 的值;(2)当2<y <3时,求x 的取值范围; (3)当-3<x <2时,求y 的取值范围.8.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则(s= ).9.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).10.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.11.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.12.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.13.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).14.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x>0)的图象上,斜边OA
1
、A
1
A
2
、A
2
A
3
…A
n-1
A
n
都在x轴上.则点A
10
的坐标为
反比例函数经典习题
例题讲解
【例△1】如右图,已知P10A1,△P2A1A2都是等腰直角三角形,点P1、P2都在函数y=
4
x(x>0)的图象上,
斜边OA
1
、A
1
A
2
都在x轴上.则点A
2
的坐标为.
1、如例1图,已知△P
1
OA
△1
,P
2
A
1
A
△2
,P
3
A
2
A
△3
…P
n
A
n-1
A
n
都是等腰直角三角形,点P
1
、P
2
、P
3
…P
n
都在4
函数y=
x
2、已知点A(0,2)和点B(0,-2),点P在函数y=
1
x的图像上,如果△PAB的面积为6,求P点的坐标。

【例2】如右图,已知点(1,3)在函数y=
k
x(x>0)的图像上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=
k
x(k>0)的图象又经过A,E两点,点E的横坐标为m,解答下列各题
1.求k的值
2.求点C的横坐标(用m表示)
3.当∠ABD=45°时,求m的值112
1、已知:如图,矩形ABCD的边BC在x轴上,E是对角线AC、BD的交点,反比例函数y=
2
x(x>0)的图象经过A,E两点,点E的纵坐标为m.
(1)求点A坐标(用m表示)
(2)是否存在实数m,使四边形ABCD为正方形,若存在,请求出m的值;若不存在,请说明理由
2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=
k
x的图象上.
(1)求AB的长;
(2)当矩形ABCD是正方形时,将反比例函数y=
k
x
k
的图象沿y轴翻折,得到反比例函数y=1的图象(如
x
图2),求k1的值;
(3)直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交在条件(2)下,第一象限内的双曲线y=
k
x于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.
【例3】在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM,ON分别在x,y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MP,NP的交点分别为E,F,△AOF∽△BOE(顶点依次对应)
(1)求∠FOE;
(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。

b(
b
如图,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于A,B两点,点P(a,b)是反比例函数y=
1
2x 在第一象限内的任意一点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,PM,PN分别交直线AB于E,
F,有下列结论:①AF=BE;②图中的等腰直角三角形有4个;③△S
OEF
=
结论正确的序号是
1
2(a+b-1);④∠EOF=45°.其中【例4】已知:如右图,已知反比例函数y=
k
2x和一次函数y=2x-1,其中一次函数的图像经过(a,),a+1,
b+k).
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P
点坐标都求出来;若不存在,请说明理由.
已知反比例函数y=
k
2x和一次函数y=2x-1,其中一次函数的图象经过(a,),(a+k,b+k+2)
两点.
(1)求反比例函数的解析式;
(2)求反比例函数与一次函数两个交点A、B的坐标:
(3)根据函数图象,求不等式
k
2x>2x-1的解集;
(4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件
的P点坐标都求出来;若不存在,请说明理由。

x
(1)反比例函数的解析式为y=-6
一、巩固练习:解答题
1、已知反比例函数y=k
x图象过第二象限内的点A(-2,m),作AB⊥x轴于B,△R t AOB面积为3;若直
k
线y=ax+b经过点A,并且经过反比例函数y=的图象上另一点C(n,-1).
x,m=3,n=6;
(2)求直线y=ax+b的解析式;
(3)设直线y=ax+b与x轴交于M,求AM的长;
(4)根据图象写出使反比例函数y=k
x值大于一次函数y=ax+b的值的x的取值范围。

2、已知如图:矩形ABCD的边BC在x轴上,E为对角线BD的中点,点B、D的坐标分别为B(1,0),D(3,3),反比例函
数y=k
x的图象经过A点,
(1)写出点A和点E的坐标;(2)求反比例函数的解析式;
3、如右图已知反比例函数y=k
x(k<0)的图像经过点A(-3,m),过A点作AB⊥x轴于点△B且AOB
的面积为3。

123
(1)求k和m的值
(2)若一次函数y=ax+1的图像经过点A,并且与x轴相交于点M,求∠AMO和|AO|:|AM|的值
2交x轴于C,交y轴于D,点P为反比例函数y=
k
拓展训练
4、已知反比例函数y=
k
2x和一次函数y=2x-1,其中一次函数的图象经过(a,b)、(a+1,b+k)两点.
(1)求反比例函数的解析式;
(2)若两个函数图象在第一象限内的交点为A(1,m),请问:在x轴上是否存在点B,使△AOB为直角三角形?若存在,
求出所有符合条件的点B的坐标;
(3)若直线y=-x+
1
2x
线CD于E,过P作x轴的平行线交直线CD于F,求证:DE•CF为定值.
(x>0)的图象上一点,过P作y轴的平行线交直
过手练习
1、已知:如右图已知反比例函数y=
12
x的图像与一次函数y=kx-7的图像都经过P(m,2)
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a和a+2,求a的值.。

相关文档
最新文档