反比例函数面积问题模型(八年级数学)
反比例函数三角形面积问题

反比例函数三角形面积问题1. 引言嘿,大家好!今天咱们要聊聊一个有趣的话题——反比例函数和三角形面积的结合。
乍一听,可能会觉得有点晦涩,但别担心,我们一步一步来,肯定能搞清楚!想象一下,三角形的面积和反比例函数就像是一对好朋友,他们相互影响,相互作用,带来不少趣味。
2. 反比例函数的基础知识2.1 什么是反比例函数?先从最基础的开始说起。
反比例函数其实很简单,它就是形如 (y = frac{k}{x}) 的函数,其中 (k) 是常数,(x) 和 (y) 是变量。
简而言之,当 (x) 增大时,(y) 会减小,反之亦然。
你可以把它想象成一个永远相反的游戏:一个上升,另一个就得下降。
2.2 反比例函数的图像说到图像,这个函数的图像是双曲线。
它的两个分支分别位于坐标轴的两侧,永远不会触碰坐标轴。
感觉像是两条永远不会交汇的路。
3. 三角形的面积3.1 基础公式提到三角形的面积,最简单的公式就是 (text{面积} = frac{1}{2} times text{底} times text{高})。
就这么简单,底和高就是构成三角形的两条直线,像是两个好朋友,缺一不可。
3.2 结合反比例函数现在,我们把反比例函数和三角形的面积结合起来。
假设有一个三角形,它的底边和高分别是 (x) 和 (y),且这两者之间满足 (y = frac{k}{x})。
那三角形的面积就是(frac{1}{2} times x times y)。
代入反比例函数的关系,面积公式就变成了 (frac{1}{2} times x times frac{k}{x}),结果是 (frac{k}{2}),也就是说,三角形的面积只和常数 (k) 有关,而和底边 (x) 或高度 (y) 无关。
4. 例子解析4.1 具体例子举个例子来说明。
假设我们有一个三角形,底边 (x) 和高 (y) 满足 (y = frac{6}{x})。
我们把这些值带入面积公式中,计算过程如下:[。
由面积求反比例函数比例系数的4种常见压轴题型全攻略—2024学年八年级数学上册(沪教版)(解析版)

由面积求反比例函数比例系数的4种常见压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一由三角形面积求反比例的比例系数】 (1)【考点二由四边形面积求反比例的比例系数】 (2)【考点三由其它面积问题求反比例函数解析式】 (2)【考点四反比例函数中求面积问题的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一根据三角形面积求反比例的比例系数】,AMOA.2B.2−C.4D.4−【答案】D【分析】根据反比例函数系数【详解】解:设点A的坐标为,AMO的面积为若POM的面积等于A.6B.5C.5−D.6−【答案】CS=POMS=POM轴上,若ABC面积为A.4−B.1C.2D.4【答案】DAB y ⊥轴, 【点睛】本题考查反比例函数的图象和性质,理解反比例函数相等,是解决问题的前提.4.如图,点A 是反比例函数y 点.若点C 为x 轴上任意一点,且ABC 的面积为 A .12−B .8−C .6−D .6【答案】A 【分析】过点A 作AE x ⊥轴于E ,设,AD a AE b ==,由此可得出点A 的坐标,进而可得k ab =−,然后再根据ABC 的面积可求出12ab =,即可求解.【详解】解:过点A 作AE x ⊥轴于E ,如图,ABCS=A.4B.4−C.8D.8−【答案】D【分析】设点P坐标为⎛ ⎝A .6B .3C .9D .12【答案】A 【分析】过点A 作AE CD ⊥于点E ,然后平行四边形的性质可知AED BOC ≌,进而可得矩形ABOE 的面积与平行四边形ABCD 的面积相等,最后根据反比例函数k 的几何意义可求解.【详解】解:过点A 作AE CD ⊥于点E ,如图所示:∴90∠=∠=︒,AED BOC四边形ABCD是平行四边形,∴,=∥,BC AD BC AD∴ADE BCO∠=∠,∴≌(AAS),AED BOC平行四边形S=ABCDA.8B.11C.15D.16【答案】C12AOE BOF S S k ==AOC AOE COE S S S =+和 由反比例函数的性质可知1|2AOE BOF S S ==△△AOC AOE COE S S S =+△△△, ∴1211515()2222AC OE OE OE k k ⋅=⨯⨯==−①,BOD DOF BOF S S S =+△△△, ∴1113()3(8)222BD OF EF OE OE ⋅=⨯⨯−=⨯⨯−由①②两式得:351222OE OE −=,ABCD 为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值( )A .3B .6C .12D .24四边形ABCD 是菱形,AC BD ∴⊥,OA OC =,6ABCD S =菱形,∴11BD x ∥轴,AE x 轴,BD (1)若2AC BC =,ABE 的面积为(2)在(1)的条件下,若四边形12 3y x=− 5BDE S =AE 2AC BC =ACBDABE的面积为1)解:四边形S=14BDE−=a b12b=【答案】a b,依题意得【分析】首先设点B的坐标为(,)a______,b=______;(1)=(2)求反比例函数表达式;【答案】(1)−【分析】(1)由非负计算式相加等于(2)由点A和点B坐标,及中点E得到点坐标关系,最后代入解析式计算即可;)又1a+≥)点ABCD,【考点四反比例函数中求面积问题的拓展提高】−【答案】 2.4=,依题意得点【分析】首先设OC m表示出线段AB的长,然后依据若【详解】解:设点A横坐标为点点SS 6OAB =S ABC = 【答案】2【分析】过点A ,B 作AE ,都在曲线上,设出A 、B 坐标,由图形的面积公式求出【详解】解:过点A ,B 作 ∵点B 横坐标为点A 横坐标的两倍,且点∴设,k A m m ⎛⎫−− ⎪⎝⎭,则∵S S S S 6ABO AEO BDO ABDE =+−=梯形,S ABC =【点睛】本题考查反比例函数系数k的几何意义,三角形的面积公式等,关键是对反比例函数性质的掌握.【过关检测】一、单选题,则ABC的面积为(A.34B.98【答案】A【分析】设1,A aa(),则1,B aa(4ABCS=2.如图,平行于x 轴的直线与函数点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为 A .4B .4−C .2D .2−【答案】C 【分析】本题考查了反比例函数图象上点的坐标特征,三角形的面积计算,设12ABC S =Rt BOC 的一条直角边过BOC 的斜边.若BOD 的面积是A .6−B .4−C .4D .6OAE OBC S S=OAE S =OBC S =OBC S =OAEOBC SS =OAE S=42OBC OAE SS k ==.OBC OCD BOD S S S ∠=+ 【点睛】本题考查相似三角形的判定和性质,反比例函数的性质;理解反比例函数解析式解题的关键.A .4B .8C .8−D .10−【答案】C 【分析】通过证明(AAS COD BED ≌和BED 中,∴(AAS COD BED ≌【点睛】本题主要考查了三角形全等的判定和性质,反比例函数k 值的几何意义,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,以及反比例函数k 值的几何意义.二、填空题 ,若ABO 的面积为【答案】4【分析】本题考查反比例函数的图象与性质,反比例函数图象上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积是12AOB S k ==,计算出来即可. AOB S =PAO 的面积为 【答案】10−又0k<,.若ABC的面积【答案】4 yx =【分析】本题主要考查了反比例函数和正比例函数的综合问题,理解反比例函数和正比例函数的两个交点关于原点对称可知==2ACO BCOS S,再根据ACOS===2ACO BCOS S,ACOS=,若AOC 的面积为 【答案】5【分析】本题考查反比例函数【详解】解:∵AOC AOB BOC SS S =−,∴1 222k −=, x ①若4k =−,则CD 的长度为【答案】20【分析】此题主要考查了反比例函数图象上的点,三角形的面积等,正确地作出辅助线构造三角形的中位线是解决问题的关键.CACD的中位线,则△同高,又∵AOB和COB=,∴AB BC∵CD x⊥轴,为ACD的中位线,2,OB OD=点DAC△S=AOD,AOP 的面积为【答案】12,又因为AOP 的面积为设OA a =,因为:1:2OA AB =,所以2AB a =,因为AP BP =,PH x ⊥轴因为AOP 的面积为1【答案】6【分析】连接,,,OA OC OB OD ,222OAE OBF OCE ODF m m S S S S ======−11,22OAE OCE AOC OBF ODF BOD S S S AC OE S S S BD OF +==+==,3AC =,2BD =,,222OAE OBF OCE ODF m n m S S S S ======− ∵11,22OAE OCE AOC OBF ODF BOD S S S AC OE S S S BD OF +==+==,3AC =,2BD =,∴11113,2222m n OE m −=⨯−∴3,2m n OE m n OF −=−=【答案】46OAB ABD SS ==.由11223AOC AOB S k S ===,则 ∵AB x ⊥轴,∴OD AB ∥.6OAB ABD S S ==.11223AOC AOB S k S ===,,EOF 的面积为AOM S =42EOF AOM S S ==− AOM S =1·422EOF AOM S OE OF S k ===−, EOF S,EOF S =,若AOB 的面积为积公式,即可求出AOC 的面积;过点52OBD ODE OBE SS S =+=,AOC ODE S S S =+四边形OBE S =AOB S =AOC S = OBD S=52OBD ODE OBE S S S =+=,AOC ODE S S S =+四边形OBE S=AOB OBE ABE ABE DCAE BDCA S S S S S S =+=+=四边形梯形∵点(2,4)A,∴84ADm=−,三、解答题若ODC的面积为,求ABO的面积.再利用分割法求出ABO的面积;,ODC的面积为∴2361m n m n +=⎧⎨−+=−⎩,解得:2m n ⎧=⎪⎨⎪=⎩∴直线AB 解析式为122y x =+,∴点()0,2F ,12ABO OFB AOF S S S =+=⨯12ABD ABC BCD S S S =+=⨯的面积等于ODE的面积,求点MBO S =ODE S =的面积等于ODE 的面积时,。
例谈反比例函数中的面积问题

例谈反比例函数中的面积问题———— 一道习题的延伸山东省莱阳市穴坊镇中心中学 王良良在鲁教版初中数学课本八年级下册P106页提出了这样一个问题:在一个反比例函数图象上任取两点P 、Q ,过点P 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 1,过点Q 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 2,那么S 1与S 2有什么关系?为什么?对于上面的问题,应结合反比例函数中的几何意义来解决。
如图1所示,若P(x,y)是双曲线y =xk (k ≠0)上任意一点,过P 作PB ⊥x 轴于B ,PC ⊥y 轴于C ,则OB=|x|,OC=|y|,所以S 矩形PBOC =OB ·OC=|xy|,又因xy=k ,即S 矩形PBOC =|k|,将其继续推广,可得S △POB =S △POC =2||k ,由此可以很容易解决课本中的问题。
将反比例函数和正比例函数的图像结合,也会有意想不到的结论。
如图2所示,反比例函数y =xk 与正比例函数y=mx 相交于两点A 、B ,过其中任意一点向某一坐标轴作垂线,由交点与垂足所构成的三角形的面积S △ABC =|k|。
若借助于这些基本图形,学生在解决反比例函数面积类的问题时,就不会觉得困难了。
下面结合几个例题分析此类问题的解法,供参考。
例1 如图3,一次函数的图象y=21x-2分别交x 轴、y 轴于A 、B ,P 为AB 上一点,且PC 为△AOB 的中位线,PC 的延长线交反比例函数y =x k (k ≠0)的图象于点Q ,S △OCQ =23,求k 的值和点Q 的坐标。
解析:因为S △OCQ =23,所以k=2×23=3,易求得点A(4,0),点C 的横坐标为2,代入y=x 3,得y=23,所以点Q 的坐标为(2,3)。
例2 两个反比例函数y =x k (k ≠0)和y=x1在第一象限内的图象如图4所示,点P 在y =x k 的图象上,PC ⊥x 轴于点C,交y=x1的图象于点A ,PD ⊥y 轴于点D ,交y=x 1的图象于点B ,当点P 在y =xk 的图象上运动时,以下结论:①△ODB 与 △OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当A 是PC 中点时,点B 一定是PD 的中点。
苏科版八年级数学下册11.2《反比例函数的图像与性质-面积问题》课件

变式1:如图,过反比例函数 y 2 (x 0)图象上任意两 点A、B分别作x轴的垂线,垂足分x别为C、D,连结OA
、OB,设AC与OB的交点为E,ΔAOE与梯形ECDB的
面积分别为 S1 、S2,比较它们的大小,可得 (B )
A.S1>S2
B.S1=S2
C.S1< S2 D.S1和S2的大小关系不确定
11.2 反比例函数的图像与性质 ——面积相关问题
回顾
如图,点P(m,n)是反比例函数 y k
x
图象上的一点,过点P分别向x轴、y轴作垂线,
垂足分别是点A、B,则S矩形OAPB=____k____.
结论1:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
B P(m,n)
积为——8—— 。
F E
练习3 利用点求图形的面积或函数解析式
如图,已知双曲线 y k (x>0)经过矩形OABC
x
边AB的中点F,交BC于点E,且四边形OEBF
的面积为2,则k=__2___.
练习3利用坐标求图形的面积或函数解析式
变式1:如图,双曲线 y k (k 0)经过矩形OABC的
B P(m,n)
y轴)的垂线,所得直角三角
OA
x
形的面积S为定值,即S= 1 |k| .
2
回顾
图中这些三角形的 y 面积相等吗?
yk x
O
x
知识点
y k (k 0) x
y PB
y P
x A0
0Q
x
S矩形 k
k S三角形
2
例1 已知解析式 求图形的面积
反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”
反比例函数中的面积问题

反比例函数与面积问题
反比例函数内容丰富、涉及的数学知识较多,是函数的重要内容之一。
下面讨论几个反比例函数与图象的面积问题,供同学们学习时参考。
一. 求函数解析式
例 1. 如图1,P 是反比例函数图象在第二象限上的一点,且矩形
PEOF 的面积为3。
求这个反函数的解析式。
分析:利用反比例函数
x k y =的特点及矩形PEOF 的面积为3,求k 的值。
二. 求面积
例2. 图2中正比例函数和反比例函数的图象相交于A 、B 两点,分别
以A 、B 两点为圆心,画与y 轴相切的两个圆,若点A 的坐标为(1,2),
求图中两个阴影面积的和。
分析:利用反比例函数和圆的对称性求解。
三. 特殊点组成图形的面积
例3. 如图3,反比例函数
x 8y -=与一次函数2x y +-=的图象相交于
A 、
B 两点。
(1)求A 、B 两点的坐标;
(2)求AOB ∆的面积。
分析:将AOB ∆的面积转化为AOD ∆与BOD ∆面积和求解。
四. 探讨面积的变化
例4. 如图4,x y =和)0m (mx y >=的图象与
)0k (x k y >=的图象分别交于第一象限内的两点A ,C ,过A ,C 分别向x 轴作垂线,垂
足分别为B ,D ,若直角三角形AOB 与直角三角形COD 的面积分
别为21、S S ,则1S 与2S 的关系为( )
A. 21S S >
B. 21S S =
C. 21S S <
D. 与k ,m 的值无关 分析:利用函数)0k (x k y >=的解析式与面积的关系求解。
反比例函数的面积问题的解题技巧

反比例函数的面积问题的解题技巧
反比例函数是数学中比较重要的一种函数类型,在解题过程中也存在许多面积问题。
下面介绍一些解题技巧,帮助大家更好地理解和应用反比例函数的面积问题。
1. 理解反比例函数的定义
反比例函数是指当一个变量的值增加时,另一个变量的值会相应地减小,其函数式表示为
y=k/x(k≠0)。
如果在x的取值范围内对y进行积分,可以得到反比例函数的面积。
在解题时,需要先理解反比例函数的数学定义和性质。
2. 熟练掌握积分运算法则
反比例函数的面积问题需要用到积分运算法则,因此需要熟练掌握积分运算的基本法则和计算方法。
同时也需要掌握一些积分公式,例如x的倒数的积分公式为ln(x)+C。
3. 熟练掌握反比例函数变形技巧
在解题时,有时需要对反比例函数进行变形,例如将y=k/x转化为y=kx^(-1)。
掌握反比例函数的变形技巧有助于更好地解决面积问题。
4. 利用几何图形思维解决问题
反比例函数的面积问题通常涉及到图形的面积计算,因此需要掌握几何图形的基本概念和计算方法。
在解题时,可以利用几何图形思维来解决问题,例如通过画图和分割图形的方法求解。
5. 熟练运用数学知识解决实际问题
反比例函数的面积问题通常涉及到实际问题的解决,因此需要熟练掌握数学知识与实际问题的应用。
在解题时,应该将数学知识与实际情况相结合,运用数学方法求解实际问题。
总之,反比例函数的面积问题需要掌握一定的数学知识和解题技巧。
只有在熟练掌握这些知识和技巧的基础上,才能更好地解决反比例函数的面积问题。
- 1 -。
反比例函数中的面积问题

解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵