高考椭圆大题专题分类

合集下载

(完整版)高考椭圆题型总结

(完整版)高考椭圆题型总结

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。

充分不必要条件 B.必要不充分条件 C 。

充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。

椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。

5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。

(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。

必要不充分条件 C 。

充要条件 D 。

既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。

4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。

高考真题与模拟训练 专题21 椭圆(试题版)

高考真题与模拟训练 专题21 椭圆(试题版)

专题24 椭圆第一部分 真题分类21.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( ) A .2,12⎡⎫⎪⎢⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .20,2⎛⎤ ⎥⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即202e <≤; 当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C . 【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.22.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y += C .22143x y += D .22154x y += 【答案】B 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得32n =,从而可求解. 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.98.(2021·浙江高考真题)已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________. 【答案】25555【分析】不妨假设2c =,根据图形可知,122sin 3PF F ∠=,再根据同角三角函数基本关系即可求出122tan 55k PF F =∠=;再根据椭圆的定义求出a ,即可求得离心率. 【解析】如图所示:不妨假设2c =,设切点为B ,12112sin sin 3AB PF F BF A F A∠=∠==,122222tan 5532PF F ∠==- 所以255k =, 由21212,24PF k F F c F F ===,所以2855PF =,21121125=sin 5PF PF PF F ⨯=∠,于是12452PF a PF +==,即25a =,所以25525c e a ===. 故答案为:255;55.63.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>的离心率为63.(1)证明:3a b ;(2)若点93,1010M ⎛⎫- ⎪ ⎪⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(2)①330x y --=;②2213x y +=.【分析】 (1)由21be a=-可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程; ②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程.【解析】(1)222222613c c a b b e a a a a -⎛⎫====-= ⎪⎝⎭,33b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当93,1015⎛⎫- ⎪ ⎪⎝⎭在椭圆C 的内部时,22293331010b ⎛⎫⎛⎫+⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭,可得3310b >. 设点()11,P x y 、()22,Q x y ,则121292103210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,121239y y x x +=-+, 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212193333y y x x x x y y -+⎛⎫=-=-⨯-= ⎪-+⎝⎭, 所以,直线l 方程为3931010y x ⎛⎫⎛⎫--=- ⎪ ⎪ ⎪⎝⎭⎝⎭,即33y x =-. 所以,直线l 的方程为330x y --=;②联立()2223331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,()()()1212121212123131433OP OQ x x y y x x x x x x x x ∴⋅=+=+-⋅-=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==, 因此,椭圆C 的方程为2213x y +=.64.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,离心率为255,且5BF =. (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)60x y -+=.【分析】(1)求出a 的值,结合c 的值可得出b 的值,进而可得出椭圆的方程; (2)设点()00,M x y ,分析出直线l 的方程为0015x xy y +=,求出点P 的坐标,根据//MP BF 可得出MP BF k k =,求出0x 、0y 的值,即可得出直线l 的方程.【解析】(1)易知点(),0F c 、()0,B b ,故225BF c b a =+==, 因为椭圆的离心率为255c e a ==,故2c =,221b a c =-=, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215x y +=上一点,先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+, 在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MP BFk k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故066y =,0566x =-, 所以,直线l 的方程为66166x y -+=,即60x y -+=. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,再应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切. 65.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F ,且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN =.【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得3a =,进而可得2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证3MN =; 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公式可得222241313k k k+⋅=+,进而可得1k =±,即可得解. 【解析】(1)由题意,椭圆半焦距2c =且63c e a ==,所以3a =, 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F 三点共线,可设直线():2MN y k x =-即20kx y k --=, 由直线MN 与曲线221(0)x y x +=>相切可得2211k k =+,解得1k =±,联立()22213y x x y ⎧=±-⎪⎨⎪+=⎩可得246230x x -+=,所以12122,3243x x x x +=⋅=,所以()212121143MN x x x x =+⋅+-⋅=,所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>相切可得211b k =+,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++, 所以()2222212122263314141313kb b MN k x x x x kk k -⎛⎫=+⋅+-⋅=+--⋅ ⎪++⎝⎭22224113k k k =+⋅+3=, 化简得()22310k -=,所以1k =±,所以12k b =⎧⎪⎨=-⎪⎩或12k b =-⎧⎪⎨=⎪⎩,所以直线:2MN y x =-或2y x =-+,所以直线MN 过点(2,0)F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||3MN =. 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重. 66.(2021·北京高考真题)已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为45.(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围. 【答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求. 【解析】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =,故椭圆的标准方程为:22154x y +=. (2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.67.(2020·山东高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值. 【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【解析】(1)由题意可得:2222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=. (2) 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k 4260x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=, 因为2,1A ()不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP 的斜边, 故12223DQ AP ==, 若D 与P 重合,则12DQ AP =, 故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得 ·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题.68.(2020·全国高考真题(文))已知椭圆222:1(05)25x y C m m +=<<的离心率为154,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52.【分析】(1)因为222:1(05)25x y C m m+=<<,可得 5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =, BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【解析】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率22154115c b m e a a ⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且 ||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为 N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或 (3,1)-,①当P 点为(3,1)时, 故532MB =-=, PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:()22831114055185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=,∴APQ 面积为: 15518522185⨯⨯=, 综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于难题.69.(2020·全国高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =. 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值; (2)由(1)可得出1C 的方程为2222143x yc c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【解析】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点, 则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x cy cx =⎧⎨=⎩,解得2x cy c=⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12; (2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c +=, 联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=, 解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=, 曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.70.(2020·全国高考真题(文))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y +=,2C : 28y x =. 【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【解析】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中22c a b =-.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±, 所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,3b c =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,(0,3)c ,(0,3)c -,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y+=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.71.(2019·北京高考真题(文))已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析. 【分析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点.【解析】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225; 因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=. (Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-; 同理可得221x ON y -=-. 因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0t =,所以直线方程为y kx =,所以直线l 恒过定点(0,0).【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.72.(2019·江苏高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标. 【答案】(1)22143x y +=; (2)3(1,)2E --.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2. 由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.73.(2019·天津高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=. 【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c+=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【解析】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c+=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.第二部分 模拟训练一、单选题1.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为( )A .55B .33C .22D .32【答案】A【解析】由题设知,()0,B b ,()2,0F c ,∴直线2BF 的方程为1x y c b +=,联立131x c x y c b⎧=⎪⎪⎨⎪+=⎪⎩得,12,33A c b ⎛⎫ ⎪⎝⎭,设直线13x c =与x 轴交于点M ,则143F M c =,23MA b =, ∵124AF F π∠=,∴14233F M MA c b =⇒=,即2b c =, ∴2224a c c -=,即225a c =, ∴21555e e =⇒=, 故选:A2.已知点(),A m n 在椭圆22142x y +=上,则22m n +的最大值是( )A .5B .4C .3D .2【答案】B【解析】由题意可得22142m n +=,则2242m n =-,故2224m n n +=-.因为22n -≤≤,所以202n ≤≤,所以2244n ≤-≤,即2224m n ≤≤+.因此,22m n +的最大值4. 故选:B.3.已知直线:210l kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆222:(2)(1)1C x y -+-=交于C 、D 两点.若存在[2,1]k ∈--,使得AC DB =,则椭圆1C 的离心率的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .20,2⎛⎤ ⎥⎝⎦D .2,12⎡⎫⎪⎢⎪⎣⎭【答案】C【解析】直线:210l kx y k --+=,即为(2)10k x y -+-=,可得直线恒过定点(2,1), 圆222:(2)(1)1C x y -+-=的圆心为(2,1),半径为1,且C ,D 为直径的端点, 由AC DB =,可得AB 的中点为(2,1), 设1(A x ,1)y ,2(B x ,2)y ,则2211221x y a b +=,2222221x y a b+=, 两式相减可得1212121222()()()()0x x x x y y y y a b +-+-+=,由124x x +=.122y y +=, 可得2122122y y b k x x a-==--,由21k --,即有22112b a, 则椭圆的离心率221(0c b e a a==-∈,2]2. 故选:C4.椭圆22145x y +=上的点到长轴两个端点的距离之和最大值为( ) A .2 B .4C .25D .6【答案】D【解析】椭圆上到长轴两个端点的距离之和最大的点是短轴端点,所以最大值为2226a b +=. 故选:D5.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为( ) A .11e e +-r +21e e-R B .11e e +-r +1ee-R C .11e e +-r +21ee+R D .11e e -+r +1ee+R 【答案】A【解析】由题意,椭圆的离心率(0,1)ce a=∈,(c 为半焦距;a 为长半轴) 地球半径为R ,卫星近地点离地面的距离为r ,可得a c R r -=+ 联立方程组1r R a e +=-,1r Rc e e+=-, 如图所示,设卫星近地点的距离为m ,远地点的距离为n , 所以远地点离地面的距离为11r R r R n a c R e R e e ++=+-=+-=--11ee +-r +21e e- 故选:A .6.已知椭圆2222:142x y C m m +=++的离心率为23,则实数m =( ) A .2± B .5±C .7±D .3±【答案】B【解析】解:椭圆2222:142x y C m m +=++的离心率为23, 可得2222422()43m m m +--=+,解得5m =±. 故选:B .二、填空题7.已知椭圆221164x y +=上的一点P 到椭圆一个焦点的距离为6,则点P 到另一个焦点的距离为__________. 【答案】2【解析】利用椭圆定义122PF PF a +=,4a =,可知268PF +=,即22PF = 故答案为:28.能说明“若()20m n +≠,则方程2212x ym n +=+表示的曲线为椭圆或双曲线”是错误的一组,m n 的值是_____.【答案】4,2m n ==(答案不唯一).【解析】若方程222x y m n +=+1表示的曲线为椭圆或双曲线是错误的,则20m n =+>,或者0,20m n <+<,则可取4,2m n ==(答案不唯一).故答案为:4,2m n ==(答案不唯一).9.设1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点.若在C 上存在一点P ,使12PF PF ⊥,且1245PF F ∠=︒,则C 的离心率为__.【答案】22. 【解析】由已知可得三角形12PF F 是等腰直角三角形,且1290F PF ∠=︒,12||||PF PF =, 由椭圆的定义可得12||||2PF PF a +=,12PF PF a ∴==,又12||2F F c =,∴在△12PF F 中,由勾股定理可得:221122||PF F F =,即2224a c =,22c e a ∴==, 故答案为:22. 三、解答题10.已知椭圆()2222:10x y C a b a b+=>>经过点13,2P ⎛⎫ ⎪⎝⎭,且离心率32e =. (1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点43,03Q ⎛⎫ ⎪ ⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【解析】(1)因为椭圆()2222:10x y C a b a b+=>>的离心率32e =.所以2222312b e a ⎛⎫=-= ⎪ ⎪⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点13,2P ⎛⎫ ⎪⎝⎭,代入椭圆方程可得223114a b+=, 联立方程组可得222231144a ba b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+,122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,121212120343434343333AQ BQ y y kx m kx mk k x x x x +++=+=+=----, 即()()1221434333kx m x kx m x ⎛⎫⎛⎫+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()121243832033kx x m k x x m ⎛⎫=+-+-= ⎪ ⎪⎝⎭得()()224383244814033k m km m k m k ⎛⎫----+= ⎪ ⎪⎝⎭, 化简得3m k =-,直线l 的方程为()3y k x =-, 所以,直线l 恒过定点)3,0.11.已知点F 是椭圆2222:1(0)x y E a b a b+=>>的右焦点,P 是椭圆E 的上顶点,O 为坐标原点且3tan 3PFO ∠=. (1)求椭圆的离心率e ;(2)已知()1,0M ,()4,3N ,过点M 作任意直线l 与椭圆E 交于A ,B 两点.设直线AN ,BN 的斜率分别为1k ,2k ,若122k k +=,求椭圆E 的方程.【答案】(1)32;(2)2214x y +=.【解析】(1)由题可得OF c =,OP b =,3tan 3OP b PFO OF c ∴∠===,即3=c b , 22+2a b c b ∴==,3322c b e a b ∴===; (2)由(1)可得椭圆方程为222214x y b b+=,当直线l 的斜率存在时,设l :()1y k x =-,设()()1122,,,A x y B x y ,联立直线与椭圆()2222114y k x x y b b⎧=-⎪⎨+=⎪⎩,得()22222148440k x k x k b +-+-=, 则()()422264414440k kkb ∆=-+->,即222240k b k b -+>,则2122814k x x k +=+,221224414k b x x k-=+, ()()12121212121313334444k x k x y y k k x x x x ------+=+=+-∴---()()()121212122538242416kx x k x x k x x x x -++++==-++,()2222222222448253824141424484161414k b k k k k k k k b k k k -⋅-+⋅++++∴=--⋅+++, 即()()2110b k --=对任意k 成立,即21b =,则椭圆方程为2214x y +=,当直线斜率不存在时,则直线方程为1x =,则()()121,,1,A y B y ,且120y y += 此时12121233662141433y y y y k k --+--+=+===----,满足题意, 综上,椭圆方程为2214x y +=.。

高考数学中涉及椭圆的问题考什么

高考数学中涉及椭圆的问题考什么

可 以 求 椭 圆上 的 点 与 焦 点 的 有 关 距 离 。 2 . 求 椭 圆 的 准 线
俩 I ,
” ‘

一 一、 、



m2 — 1一
” / ,


求 椭 圆 的 标 准 方 程

点 P到其 左焦 点 的距 离为 3 , 到 右焦 点 的距
) 。 5
二 .考点 题 型糯讲
1 . 考 查 椭 圆 的 定 义
侧 , 如图 1 , 椭
一 丢 , 一 2 { P F l = = = 2 , 故 选B 。
点评 : 解本题 的关键是 椭 圆的 两个定义
圆 + 等 地 点 M
划 N为M E: 。 二 \ \ 、 巧0 / / 的 中 点 , 则 \\ /

一 :: :

常 考 查 椭 圆 的定 义 、 椭 圆 的标 准 方程 、 椭 圆 的几 何 性 质 及 其 应 用 , 以 及 椭 圆 与 直 线 的 有 关 知识 , 还 会 涉 及 求 解 椭 圆 中 有 关 元 素 的 最值、 有关 长度 和 面积等 问题 。

由椭 圆第 二 定 义 得 :
, . 。
故 一√ 2。, 解
义, 即 l
l l + l F2 = = = 2
量 等 式 得 “ 一
点评 : 解 本题 的 关键 是挖 吐 : 图 形 中 的 隐 含 关 系, 圆 的 半 径 是 椭 圆 的 长 半 轴 长 , 所 以 容 易得 出基 本 量 之 间 的 关 系 , 求 出 离心 率 。
C . 8
D . _ 兰 _
且 互相 垂直 , 则 离心 率 e 一 分析 : 本题 先作 出 图形

新高考数学一轮复习考点知识专题讲解与练习 41 椭圆

新高考数学一轮复习考点知识专题讲解与练习 41 椭圆

新高考数学一轮复习考点知识专题讲解与练习考点知识总结41 椭圆高考 概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度 考纲 研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率) 2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ) A.x 23+y 24=1 B .x 24+y 23=1C.x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1.故选C.2.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A.12 B .2 C.4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,得m =14.故选D.3.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线 C.圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D.4.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则|PF 2||PF 1|的值为( )A.514 B .513 C.49 D .59 答案 B解析 由题意知a =3,b = 5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c 时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513.故选B.5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A.圆B.椭圆 C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|P A|=|PN|,又AM是圆的半径,所以|PM|+|PN|=|PM|+|P A|=|AM|=6>|MN|,由椭圆定义知,动点P的轨迹是椭圆.故选B.6.(多选)已知P是椭圆C:x26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为5B.C的离心率为30 6C.圆D在C的内部D.|PQ|的最小值为25 5答案BC解析∵x26+y2=1,∴a=6,b=1,∴c=a2-b2=6-1=5,则C的焦距为25,离心率e=ca=56=306.设P(x,y)()-6≤x≤6,则|PD|2=(x+1)2+y2=(x+1)2+1-x26=56⎝⎛⎭⎪⎫x+652+45≥45>15,∴圆D在C的内部,且|PQ|的最小值为45-15=55.故选BC.7.(多选)椭圆C:x24+y2=1的左、右焦点分别为F1,F2,O为坐标原点,以下说法正确的是()A .过点F 2的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为8 B .椭圆C 上存在点P ,使得PF 1→·PF 2→=0 C .椭圆C 的离心率为12D .P 为椭圆x 24+y 2=1上一点,Q 为圆x 2+y 2=1上一点,则点P ,Q 间的最大距离为3答案 ABD解析 对于A ,因为F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,过点F 2的直线与椭圆C 交于A ,B 两点,由椭圆定义可得,|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =4,因此△ABF 1的周长为|AF 1|+|BF 1|+|AB |=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =8,故A 正确;对于B ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,则点P 坐标满足x 24+y 2=1,且-2≤x ≤2,又F 1(-3,0),F 2(3,0),所以PF 1→=(-3-x ,-y ),PF 2→=(3-x ,-y ),因此PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2-3+1-x 24=3x 24-2,由PF 1→·PF 2→=3x 24-2=0,可得x =±263∈[-2,2],故B 正确;对于C ,因为a 2=4,b 2=1,所以c 2=4-1=3,即c =3,所以离心率为e =c a =32,故C 错误;对于D ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,由题意可得,点P (x ,y )到圆x 2+y 2=1的圆心的距离为|PO |=x 2+y 2=4-4y 2+y 2=4-3y 2,因为-1≤y ≤1,所以|PQ |max =|PO |max +1=4-0+1=3,故D 正确.故选ABD.8.已知A (3,0),B (-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA |+|MB |的最大值为________,最小值为________.答案 10+2 10-2解析 由题意知A 为椭圆的右焦点,设左焦点为F 1,由椭圆的定义知|MF 1|+|MA |=10,所以|MA |+|MB |=10+|MB |-|MF 1|.又||MB |-|MF 1||≤|BF 1|,所以-|BF 1|≤|MB |-|MF 1|≤|BF 1|,如图,设直线BF 1交椭圆于M 1,M 2两点.当M 为点M 1时,|MB |-|MF 1|最小,当M 为点M 2时,|MB |-|MF 1|最大.所以|MA |+|MB |的最大值为10+2,最小值为10- 2.二、高考小题9.(2022·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12 C.9 D .6 答案C 解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=⎝ ⎛⎭⎪⎫622=9,当且仅当 |MF 1|=|MF 2|=3时等号成立.故选C.10.(2022·全国乙卷)设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|PB |≤2b ,则C 的离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫22,1 B .⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎦⎥⎤0,22 D .⎝ ⎛⎦⎥⎤0,12答案 C解析 依题意,B (0,b ),设椭圆上一点P (x 0,y 0),则|y 0|≤b ,x 20a 2+y 20b 2=1,可得x 20=a 2-a 2b 2y 20,则|PB |2=x 20+(y 0-b )2=x 20+y 20-2by 0+b 2=-c 2b 2y 20-2by 0+a 2+b 2≤4b 2.因为当y 0=-b 时,|PB |2=4b 2,所以-b 3c 2≤-b ,得2c 2≤a 2,所以离心率e =c a ∈⎝⎛⎦⎥⎤0,22.故选C.11.(2022·全国Ⅰ卷)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B .x 23+y 22=1 C.x 24+y 23=1 D .x 25+y 24=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,|AF 2|=2|F 2B |,∴|AB |=|BF 1|=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 1|=|AF 2|=a ,∴点A 是椭圆的短轴端点,如图.不妨设A (0,-b ),由F 2(1,0),AF 2→=2F 2B →,得B ⎝ ⎛⎭⎪⎫32,b 2.由点B 在椭圆上,得94a 2+b 24b 2=1,得a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.12.(2022·浙江高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c,0),F 2(c,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆在第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.答案25555解析 设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c ,所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b 2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,解得e =55(负值舍去).13.(2022·全国甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.答案 8解析 解法一:由|PQ |=|F 1F 2|,得|OP |=12|F 1F 2|(O 为坐标原点),所以PF 1⊥PF 2,又由椭圆的对称性,知四边形PF 1QF 2为平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|·|PF 2|=m (8-m )=8.解法二:由椭圆C :x 216+y 24=1可知|F 1F 2|=4 3.由P ,Q 为C 上关于坐标原点对称的两个点,且|PQ |=|F 1F 2|,得|PO |=|QO |=23(O 为坐标原点),所以P ,Q 既在椭圆x 216+y 24=1上,又在圆x 2+y 2=12上.不妨设点P 在第一象限,则由⎩⎪⎨⎪⎧x 216+y 24=1,x 2+y 2=12,可得P ⎝ ⎛⎭⎪⎫463,233,所以由对称性,可得四边形PF 1QF 2的面积S 四边形PF 1QF 2=2S △PF 1F 2=2×12×|F 1F 2|×y P =2×12×43×233=8.解法三:由椭圆方程知,a =4,b =2,则c =a 2-b 2=2 3.由点P 在椭圆上,得|PF 1|+|PF 2|=8,所以|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64 ①.由椭圆的对称性及|PQ |=|F 1F 2|知,四边形PF 1QF 2是矩形,在Rt △PF 1F 2中,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2,所以|PF 1|2+|PF 2|2=48 ②.由①-②得|PF 1|·|PF 2|=8,所以S 四边形PF 1QF 2=|PF 1|·|PF 2|=8.14.(2022·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,则|MF 1|>|MF 2|,|F 1F 2|=2c =236-20=8,因为△MF 1F 2为等腰三角形,|MF 1|>|MF 2|,且|MF 1|+|MF 2|=2a =12,所以|MF 1|>6,|MF 2|<6,所以|MF 1|=|F 1F 2|=8,设M (x ,y ),x >0,y >0,则⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =15.所以点M 的坐标为(3,15).15.(2022·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此|OM |=2.在△FF ′P 中,OM 綊12PF ′,所以|PF ′|=4.根据椭圆的定义,得|PF |+|PF ′|=6,所以|PF |=2.所以|MF |=1.又因为|FF ′|=4,所以在Rt △MFF ′中,tan ∠PFF ′=|MF ′||MF |=|FF ′|2-|MF |2|MF |=15,即直线PF 的斜率是15.三、模拟小题16.(2022·广东珠海高三摸底)已知点A (1,1),且F 是椭圆x 24+y 23=1的左焦点,P 是椭圆上任意一点,则|PF |+|P A |的最小值是( )A.6 B.5 C.4 D.3答案D解析a=2,c=a2-b2=1,设椭圆的右焦点为F1(1,0),|AF1|=1,|PF|+|P A|=2a -|PF1|+|P A|=4+|P A|-|PF1|≥4-|AF1|=4-1=3,当P在F1的正上方时,等号成立.故选D.17.(2022·新高考八省联考)椭圆x2m2+1+y2m2=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=π3,则m=()A.1 B. 2 C.3D.2 答案C解析在椭圆x2m2+1+y2m2=1(m>0)中,a=m2+1,b=m,c=a2-b2=1,如图所示,因为椭圆x2m2+1+y2m2=1(m>0)的上顶点为点A,焦点为F1,F2,所以|AF1|=|AF2|=a,因为∠F1AF2=π3,所以△F1AF2为等边三角形,则|AF1|=|F1F2|,即m2+1=a=2c=2,因此,m= 3.故选C.18.(2022·湖南长沙长郡中学高三上开学考试)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F ,点P 在椭圆C 上,点Q 在圆E :(x +3)2+(y -4)2=4上,且圆E 上的所有点均在椭圆C 外,若|PQ |-|PF |的最小值为25-6,且椭圆C 的长轴长恰与圆E 的直径长相等,则椭圆C 的标准方程为( )A.x 22+y 2=1 B .x 24+y 2=1 C.x 24+y 23=1 D .x 24+y 22=1 答案 C解析 因为圆E :(x +3)2+(y -4)2=4的半径为2,所以a =2,设椭圆的左焦点为F 1(-c,0),由椭圆的定义可得|PF 1|+|PF |=2a =4,所以|PF |=4-|PF 1|,所以|PQ |-|PF |=|PQ |+|PF 1|-4≥|QF 1|-4=|QF 1|+|EQ |-6≥|EF 1|-6,当且仅当P ,Q 位于线段EF 1上时,等号成立,又|PQ |-|PF |的最小值为25-6,所以|EF 1|-6=25-6,即|EF 1|=25,所以(-3+c )2+(4-0)2=25,解得c =1或c =5>a =2(舍).所以b 2=a 2-c 2=4-1=3,所以椭圆C 的标准方程为x 24+y 23=1.故选C.19.(多选)(2022·广东韶关第一次综合测试)设P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆的左、右焦点,焦距为2c (c >0),若∠F 1PF 2是直角,则( )A .|OP |=c (O 为原点)B .S △F 1PF 2=b 2C .△F 1PF 2的内切圆半径r =a -cD .|PF 1|max =a +c 答案 ABC解析 在Rt △F 1PF 2中,O 为斜边F 1F 2的中点,所以|OP |=12|F 1F 2|=c ,故A 正确;设|PF 1|=m ,|PF 2|=n ,则有m 2+n 2=(2c )2,m +n =2a ,所以mn =12[(m +n )2-(m 2+n 2)]=2b 2,所以S △F 1PF 2=12mn =b 2,故B 正确;因为S △F 1PF 2=12(m +n +2c )·r =b 2,所以r =2S △F 1PF 2m +n +2c =2b 22a +2c =2(a 2-c 2)2(a +c )=a -c ,故C 正确;|PF 1|=a +c ,当且仅当P 为椭圆右顶点,此时P ,F 1,F 2不构成三角形,故D 错误.20.(多选)(2022·山东潍坊6月模拟)已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆的内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12 D .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17 答案 ACD解析 因为|F 1F 2|=2,所以F 2(1,0),|PF 2|=1,所以|QF 1|+|QP |=2a -|QF 2|+|QP |≥2a -|PF 2|=2a -1,当Q ,F 2,P 三点共线且点Q 在第一象限时,取等号,故A 正确;若椭圆C 的短轴长为2,则b =1,a =2,所以椭圆C 的方程为x 22+y 21=1,又12+11>1,则点P 在椭圆外,故B 错误;因为点P (1,1)在椭圆内部,所以1a +1b <1,又a -b =1,所以b =a -1,所以1a +1a -1<1,即a 2-3a +1>0,解得a >3+52=6+254=(1+5)24,所以a >1+52,所以e =1a <5-12,所以椭圆C 的离心率的取值范围为⎝⎛⎭⎪⎫0,5-12,故C 正确;若PF 1→=F 1Q →,则F 1为线段PQ 的中点,所以Q (-3,-1),所以2a =|QF 1|+|QF 2|=5+17,故D 正确.故选ACD.21.(2022·广东广州荔湾区高三上调研考试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过点F 且倾斜角为45°的直线l 与椭圆交于A ,B 两点(点B 在x 轴上方),且FB →=2AF →,则椭圆的离心率为________.答案23解析 设F (-c,0),c >0,由题意知,l 的斜率为tan45°=1,则直线方程为y =x +c ,设A (x 1,y 1),B (x 2,y 2)联立直线和椭圆的方程得⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,整理得(a 2+b 2)y 2-2cb 2y +c 2b 2-a 2b 2=0,则y 1+y 2=2cb 2a 2+b 2,y 1y 2=c 2b 2-a 2b 2a 2+b 2,且F 1B →=2AF 1→,可得y 2=-2y 1,则-y 1=2cb 2a 2+b 2,-2y 21=c 2b 2-a 2b 2a 2+b 2,所以-2⎝ ⎛⎭⎪⎫2cb 2a 2+b 22=c 2b 2-a 2b 2a 2+b 2,可得9c 2=2a 2,所以e =c a =23.22.(2022·湖北恩施州高三上第一次教学质量监测)设点P 是椭圆x 29+y 25=1上的点,F 1,F 2是该椭圆的两个焦点,若△PF 1F 2的面积为52,则sin ∠F 1PF 2________.答案 45解析 在椭圆x 29+y 25=1中,长半轴长a =3,半焦距c =2,由椭圆定义得|PF 1|+|PF 2|=2a =6,在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即(2c )2=(2a )2-2|PF 1|·|PF 2|·(1+cos ∠F 1PF 2),则|PF 1|·|PF 2|·(1+cos ∠F 1PF 2)=10,又△PF 1F 2的面积为52,则12|PF 1|·|PF 2|sin ∠F 1PF 2=52,即|PF 1|·|PF 2|sin ∠F 1PF 2=5,于是得2sin ∠F 1PF 2=1+cos ∠F 1PF 2,两边平方得(1+cos ∠F 1PF 2)2=4sin 2∠F 1PF 2=4(1-cos ∠F 1PF 2)(1+cos ∠F 1PF 2),解得cos ∠F 1PF 2=35,则sin ∠F 1PF 2=45,所以sin ∠F 1PF 2=45.一、高考大题1.(2022·北京高考)已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4 5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC 分别交直线y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.解(1)因为椭圆过A(0,-2),所以b=2,因为四个顶点围成的四边形的面积为45,所以12×2a×2b=45,即a=5,故椭圆E的标准方程为x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,所以x1x2≠0,故直线AB的方程为y=y1+2x1x-2,令y=-3,则x M=-x1y1+2,同理x N=-x2y2+2.设直线BC 的方程为y =kx -3, 由⎩⎨⎧y =kx -3,4x 2+5y 2=20, 可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1. 又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0, 所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2 =⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1=⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k 4+5k 2-30k 4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,k 的取值范围是[-3,-1)∪(1,3].2.(2022·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为255,且|BF |= 5.(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.解 (1)易知点F (c,0),B (0,b ), 故|BF |=c 2+b 2=a =5, 因为椭圆的离心率为e =c a =255, 故c =2,b =a 2-c 2=1, 因此,椭圆的方程为x 25+y 2=1.(2)设点M (x 0,y 0)(y 0>0)为椭圆x 25+y 2=1上一点, 先证明直线MN 的方程为x 0x5+y 0y =1, 联立⎩⎪⎨⎪⎧x 0x 5+y 0y =1,x 25+y 2=1,消去y 并整理得x 2-2x 0x +x 20=0,Δ=4x 20-4x 20=0,因此,椭圆x 25+y 2=1在点M (x 0,y 0)处的切线方程为x 0x5+y 0y =1.在直线MN 的方程中,令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝ ⎛⎭⎪⎫0,1y 0, 直线BF 的斜率为k BF =-b c =-12, 所以直线PN 的方程为y =2x +1y 0,在直线PN 的方程中,令y =0,可得x =-12y 0,即点P ⎝ ⎛⎭⎪⎫-12y 0,0,因为MP ∥BF ,所以k MP =k BF , 即y 0x 0+12y=2y 202x 0y 0+1=-12, 整理可得(x 0+5y 0)2=0,所以x 0=-5y 0,所以x 205+y 20=6y 20=1, 又y 0>0,故y 0=66,x 0=-566,所以直线l 的方程为-66x +66y =1,即x -y +6=0.3.(2022·新高考Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.解 (1)由题意,知椭圆的半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆C 的方程为x 23+y 2=1.(2)证明:由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时, 设M (x 1,y 1),N (x 2,y 2). 必要性:若M ,N ,F 三点共线, 可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|-2k |k 2+1=1,解得k =±1,联立⎩⎨⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1x 2=3,所以必要性成立; 充分性:设直线MN :y =kx +m (km <0),即kx -y +m =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|m |k 2+1=1,所以m 2=k 2+1,联立⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,可得(1+3k 2)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km1+3k 2,x 1x 2=3m 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-4·3m 2-31+3k 2=1+k 2·24k 21+3k 2=3,化简得3(k 2-1)2=0,所以k =±1, 所以⎩⎨⎧ k =1,m =-2或⎩⎨⎧k =-1,m =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),即M ,N ,F 三点共线,充分性成立. 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 二、模拟大题4.(2022·广东高三综合能力测试)已知椭圆C 的中心为坐标原点,焦点在x 轴上,焦距为2,椭圆C 上的点到焦点的距离的最大值为3.(1)求椭圆C 的标准方程;(2)设点A ,F 分别为椭圆C 的左顶点、右焦点,过点F 的直线交椭圆C 于P ,Q 两点,直线AP ,AQ 分别与直线l :x =3交于点M ,N ,求证:直线FM 和直线FN 的斜率之积为定值.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,依题意,可得⎩⎨⎧ 2c =2,a +c =3,解得a =2,c =1, 又a 2=b 2+c 2,则b =3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1)得A (-2,0),F (1,0),设直线PQ :x =my +1,P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧ x =my +1,x 24+y 23=1,消去x ,整理,得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 依题意,可设M (3,y M ),N (3,y N ),则由y M 3+2=y 1x 1+2,可得y M =5y 1x 1+2=5y 1my 1+3, 同理,可得y N =5y 2my 2+3, 所以直线FM 和直线FN 的斜率之积k FM ·k FN =y M -03-1·y N -03-1=14·25y 1y 2(my 1+3)(my 2+3)=14·25y 1y 2m 2y 1y 2+3m (y 1+y 2)+9=14·25⎝ ⎛⎭⎪⎫-93m 2+4m 2⎝ ⎛⎭⎪⎫-93m 2+4+3m ⎝ ⎛⎭⎪⎫-6m 3m 2+4+9 =14·-25×9-9m 2-18m 2+27m 2+36=-25×94×36=-2516.所以直线FM 和直线FN 的斜率之积为定值-2516.5.(2022·长春四校联考)已知平面上一动点P 到定点F (3,0)的距离与它到直线x =433的距离之比为32,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 面积的最大值.解 (1)设P (x ,y ),则(x -3)2+y 2⎪⎪⎪⎪⎪⎪x -433=32, 化简,得x 24+y 2=1.即曲线C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)·(4m 2-4)>0, 化简,得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54,②|MN |=1+k 2|x 1-x 2| =1+k 2·64k 2m 2(4k 2+1)2-4·4m 2-44k 2+1=1+k 2·-16m 2+64k 2+16(4k 2+1)2 =1+k 2·4(20k 2-1)(4k 2+1)2,∵原点O 到直线l 的距离d =|m |1+k 2, ∴S △MON =12|MN |·d =12(5-4k 2)(20k 2-1)(4k 2+1)2. 设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12(6-t )(5t -6)t 2 =12-36+36t -5t 2t 2 =3 -⎝ ⎛⎭⎪⎫1t -122+19, ∴当1t =12,即k =±12时,△MON 的面积取得最大值,为1.6.(2022·江苏省南通市高三月考)已知椭圆O :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若△P AB 面积的最大值为23,椭圆O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :x 2+(y -2)2=r 2(0<r <2)的两条切线,分别与椭圆O 交于C ,D 两点(异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解 (1)由题可知当点P 在椭圆O 的上顶点(或下顶点)时,S △P AB 最大,此时S △P AB=12×2ab =ab =23,∴⎩⎪⎨⎪⎧ ab =23,c a =12,a 2-b 2=c 2,∴⎩⎪⎨⎪⎧ a =2,b =3,c =1,∴椭圆O 的标准方程为x 24+y 23=1.(2)设过点B (2,0)与圆E 相切的直线方程为y =k (x -2),即kx -y -2k =0, ∵直线与圆E :x 2+(y -2)2=r 2相切,∴d =|-2-2k |k 2+1=r ,即(4-r 2)k 2+8k +4-r 2=0.设两切线的斜率分别为k 1,k 2(k 1≠k 2), 则k 1k 2=1,设C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ y =k 1(x -2),x 24+y 23=1⇒(3+4k 21)x 2-16k 21x +16k 21-12=0, ∴2x 1=16k 21-123+4k 21,即x 1=8k 21-63+4k 21, ∴y 1=-12k 13+4k 21; 同理,x 2=8k 22-63+4k 22=8-6k 214+3k 21,y 2=-12k 23+4k 22=-12k 14+3k 21;∴k CD =y 2-y 1x 2-x 1=-12k 14+3k 21--12k 13+4k 218-6k 214+3k 21-8k 21-63+4k 21=k 14(k 21+1). ∴直线CD 的方程为y +12k 13+4k 21=k 14(k 21+1)⎝ ⎛⎭⎪⎫x -8k 21-63+4k 21, 整理得y =k 14(k 21+1)x -7k 12(k 21+1)=k 14(k 21+1)·(x -14). ∴直线CD 恒过定点(14,0).。

专题19 椭圆(客观题)(新高考地区专用)(解析版)

专题19 椭圆(客观题)(新高考地区专用)(解析版)

专题19 椭 圆(客观题)一、单选题1.如图,椭圆22221(0)x y a b a b+=>>的右焦点为,,F A B 分别为椭圆的上、下顶点,P 是椭圆上一点,//,||||AP BF AF PB =,记椭圆的离心率为e ,则2e =A .2BC .12D 【试题来源】2021年1月浙江省普通高中学业水平考试 【答案】B【解析】()()0,,,0B b F c -,则BF b k c=,所以直线:bAP y x b c =+,与椭圆方程联立()222220a c x a cx ++=,所以点P 的横坐标是2222a c x a c =-+,322b y a c=-+,即2322222,a c b P a c a c ⎛⎫-- ⎪++⎝⎭,222322222222a c b PB a b a a c a c ⎛⎫⎛⎫=⇒+-+= ⎪ ⎪++⎝⎭⎝⎭, 整理为6244264321c a c a c a --+=,两边同时除以6a 得64243210e e e --+=,()()2421410ee e -+-=,210e -≠,所以42410e e +-=,得2e =或2e =(舍).故选B . 2.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切与椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为A .12B .13C .2D .3【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试 【答案】D【解析】不妨设()00,M x y 在第一象限,以M 为圆心的圆与x 轴相切于椭圆右焦点,则0x c =,又M 在椭圆上,则20b y a =,∴圆M 的半径2br a =,MPQ 为正三角形,c r ∴==2220ac +=220e +=,解得3e =.故选D . 【名师点睛】本题考查椭圆离心率的求解问题,求解离心率的关键是能够通过图形中的长度关系构造出关于,a c 的齐次方程,利用齐次方程配凑出离心率e ,解方程求得结果.3.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是A .,12⎤⎢⎥⎣⎦B .12⎤⎥⎣⎦C .,22⎣⎦D .33⎣⎦【试题来源】河北省衡水中学2021届高三上学期期中(理) 【答案】B【解析】设椭圆()222210x y a b a b+=>>的左焦点为1F ,因为AF BF ⊥,所以四边形为1AF BF 为矩形,所以12AB FF c == 因为ABF α∠=,所以2sin ,2cos ,AF c BF c αα==由椭圆的定义得22sin 2cos a c c αα=+,所以11sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, 因为,64ππα⎡⎤∈⎢⎥⎣⎦,所以5,4122πππα⎡⎤+∈⎢⎥⎣⎦,所以sin 4πα⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,4πα⎛⎫+∈ ⎪⎝⎭⎣,所以1e ⎤∈⎥⎣⎦,故选B. 【名师点睛】椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.4.已知F 是椭圆22221(0)x y a b a b+=>>的一个焦点,若直线y kx =与椭圆相交于A ,B 两点,且120AFB ∠=︒,则椭圆离心率的取值范围是A.⎫⎪⎪⎣⎭B.⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦【试题来源】湖北省黄冈市部分普通高中2020-2021学年高三上学期12月联考 【答案】C【解析】连接A ,B 与左右焦点F ,F '的连线,由120AFB ∠=︒,由椭圆及直线的对称性可得四边形AFBF '为平行四边形,60FAF '∠=︒,在三角形AFF '中,()22222cos 3FF AF AF AF AF FAF AF AF AF AF ''''=+-⋅∠=+-⋅,所以()222332AF AF AF AF FF AF AF '+⎛⎫''+-=⋅≤ ⎪⎝⎭,即()2214AF AF FF ''+≤即221444a c ⋅≤,可得1 2c e a =≥,所以椭圆的离心率1,12e ⎡⎫∈⎪⎢⎣⎭,故选C . 【名师点睛】该题考查的是有关椭圆离心率的取值范围的求解问题,解题方法如下: (1)根据题意,结合椭圆的对称性,连接相应点,得到平行四边形; (2)根据平行四边形的性质,得到角的大小;(3)根据余弦定理,列出相应等式,结合椭圆定义以及基本不等式求得结果.5.已知P 是椭圆22221x y a b+=(0a b >>)上一点,过原点的直线交椭圆于A ,B 两点,且34PA PB k k ⋅=-,则椭圆的离心率为 A .12B .13C .14D.2【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(文) 【答案】A【解析】由题可设(),P x y ,()11,A x y ,11,B x y ,则2211122111PA PBy y y y y y k k x x x x x x -+-⋅=⋅=-+-,22221x y a b +=,2211221x y a b+=,两式相减可得222211220x x y y a b --+=,即22212221y y b x x a -=--,2234b a ∴-=-,22234a c a -∴=,12c a ∴=,故选A.【名师点睛】(1)该题来自椭圆的一个小结论:若椭圆方程为()222210x y a b a b+=>>,,A B是该椭圆上关于原点对称的两点,P 为椭圆上异于,A B 的任意一点,则PA PB k k ⋅为定值,为22b a-.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.已知椭圆22:195x y E +=的左、右焦点分别为1F ,2F ,P 为椭圆上一个动点,Q 为圆22:108400M x y x y +--+=上一个动点,则1PF PQ +的最大值为 A .12 B 1+ C .11D .18【试题来源】江苏省苏州市常熟市2020-2021学年高三上学期阶段性抽测二 【答案】A【解析】由题意得12(2,0),(2,0)F F -,根据椭圆的定义可得1226PF PF a +==,所以126PF PF =-,又圆22:108400M x y x y +--+=,变形可得22(5)(4)1x y -+-=,即圆心(5,4)M ,半径1r =,所求1PF PQ +的最大值,即求1PF PM r ++的最大值,126PF PM PF PM +=-+,如图所示:当2,,P F M 共线时,2PM PF -有最大值,且为25F M ==, 所以126PF PM PF PM +=-+的最大值为5611+=,所以1PF PQ +的最大值,即1PF PM r ++的最大值为11+1=12,故选A7.已知A 、B 分别为椭圆C :2214x y +=的左、右顶点,P 为椭圆C 上一动点,PA ,PB与直线3x =交于M ,N 两点,PMN 与PAB △的外接圆的周长分别为1L ,2L ,则12L L 的最小值为 ABCD .14【试题来源】湖南省长郡中学、湖南师大附中、长沙市一中联合体2020-2021学年高三上学期12月联考【答案】A【解析】由已知得(2,0)A -、(2,0)B ,设椭圆C 上动点(,)P x y , 则利用两点连线的斜率公式可知02-=+PA y k x ,02-=-PA y k x , ()()22222100142222444---∴⋅=⋅====-+-+---PA PBx y y y y k k x x x x x x 设直线PA 方程为()2y k x =+,则直线PB 方程为()124y x k=--,根据对称性设0k >, 令3x =得5M y k =,14N y k =-,即()3,5M k ,13,4-⎛⎫ ⎪⎝⎭k N ,则154MN k k =+ 设PMN 与PAB △的外接圆的半径分别为1r ,2r , 由正弦定理得1sin 2N P r M M N =∠,22sin ABr APB=∠,又180∠+∠=︒MPN APB ,sin sin ∴∠=∠MPN APB111222152424+∴====≥=k L r r MNk L r r ABππ,当且仅当154=k k ,即=k 等号成立,即12L LA 8.若点M 到两定点()10,1-F ,()20,1F 的距离之和为2,则点M 的轨迹是 A .椭圆B .直线C .线段D .线段的中垂线.【试题来源】四川省绵阳市绵阳南山中学2020-2021学年高三上学期11月月考(文) 【答案】C【分析】根据M 到12,F F 的距离之和正好等于12F F ,可得M 的轨迹.【解析】()10,1-F ,()20,1F ,122F F ∴=,因为点M 到两定点()10,1-F ,()20,1F 的距离之和为2,M ∴的轨迹是线段12F F ,故选C .9.已知椭圆C 经过点()()5004A B -,,,,则椭圆C 的标准方程为 A .22154x y +=B .2212516x y +=C .2211625x y +=D .221259x y +=【试题来源】西藏日喀则市拉孜县中学2021届高三上学期第二次月考(理) 【答案】B【分析】由所给的椭圆上的点为顶点,即可求出椭圆的方程.【解析】因为椭圆C 经过点()()5004A B -,,,,所以5,4a b ==,且焦点在x 轴上, 所以椭圆的方程为2212516x y +=,故选B. 10.关于x ,y 的方程()22211ax a y +-=表示的曲线为椭圆的一个充分不必要条件为A .12a >B .1a >C .12a >且1a ≠D .12a >或0a < 【试题来源】百师联盟2021届一轮复习(二) 全国卷III 理数试题 【答案】B【分析】根据椭圆的方程可得021021a a a a >⎧⎪->⎨⎪≠-⎩,求出a 的取值,再根据充分条件、必要条件的定义即可求解.【解析】若方程()22211ax a y +-=表示的曲线为椭圆,则有021021a a a a >⎧⎪->⎨⎪≠-⎩,所以12a >且1a ≠,故选项A 和D 非充分条件,选项C 为充要条件,选项B 为充分不必要条件,故选B .11.已知实数1,,9m 成等比数列,则椭圆221x y m+=的离心率为AB .2 C或2D.2【试题来源】宁夏石嘴山市2020届高三适应性测试(理) 【答案】A【分析】由1,m ,9构成一个等比数列,得到m=±3.当m=3时,圆锥曲线是椭圆;当m=﹣3时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【解析】因为1,m ,9构成一个等比数列,所以m 2=1×9,则m=±3.当m=3时,圆锥曲线2xm +y 2=13;当m=﹣3时,圆锥曲线2x m +y 2=1是双曲线,故舍去,则离心率为3.故选A . 12.椭圆()2222101x y m m m+=>+的焦点为1F 、2F ,上顶点为A ,若123F AF π∠=,则m =A .1 BCD .2【试题来源】2021年普通高等学校招生全国统一考试模拟演练数学 【答案】C【解析】在椭圆()2222101x y m m m+=>+中,a ,b m =,1c ==,如下图所示:因为椭圆()2222101x y m m m +=>+的上顶点为点A ,焦点为1F 、2F ,所以12AF AF a ==,123F AF π∠=,12F AF ∴△为等边三角形,则112AF F F =22a c ===,因此,m .故选C .13.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为ABC.2D.2【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题 【答案】A【解析】由题设知,()0,B b ,()2,0F c ,所以直线2BF 的方程为1x y c b +=,联立131x c x y c b⎧=⎪⎪⎨⎪+=⎪⎩得,12,33A c b ⎛⎫ ⎪⎝⎭,设直线13x c =与x 轴交于点M ,则143F M c =,23MA b =, 因为124AF F π∠=,所以14233F M MA c b =⇒=,即2b c =, 所以2224a c c -=,即225a c =,所以2155e e =⇒=,故选A. 14.已知ABCDEF 为正六边形,若A 、D 为椭圆W 的焦点,且B 、C 、E 、F 都在椭圆W 上,则椭圆W 的离心率为 A1B1 C.12D.12【试题来源】湖南省株洲市2020-2021学年高三上学期第一次教学质量统一检测 【答案】A【分析】设正六边形ABCDEF 的边长为1,则1c OA ==,由21AF FD a +==可得a ,从而可得椭圆的离心率.【解析】设正六边形ABCDEF 的边长为1,如图由A 、D 为椭圆W 的焦点,则在椭圆中,1c OA ==,由B 、C 、E 、F 都在椭圆W 上,则在直角三角形ADF中,DF ===由椭圆的定义可得21AF FD a +==+a =,所以12c e a ===,故选A.15.椭圆22221(0)y x a b a b +=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为 A.2B.12CD【试题来源】2021届高三湘豫名校联考(2020年11月)(文) 【答案】D【分析】根据12 F F N 为正三角形得到点N 必在x 轴上,即可求出ON ,再根据12MN F F =,即可求出M 点的坐标,代入椭圆方程,根据离心率的公式即可求出离心率.【解析】12F F N 为正三角形,∴点N 必在x 轴上,且1260NF F ∠=︒,1tan60ON OF ∴=︒⋅=,又12MN F F =,),2Mc ∴,又点M在椭圆上,)2222(2)1c ab ∴+=,化简得424810e e -+=,解得2e ==,又01e <<,e ∴=.故选D . 16.已知曲线Γ:22123x y λλ+=-,则以下判断错误的是A .0λ<或3λ>时,曲线Γ一定表示双曲线B .03λ<<时,曲线Γ一定表示椭圆C .当3λ=-时,曲线Γ表示等轴双曲线D .曲线Γ不能表示抛物线【试题来源】云南省西南名校联盟2021届高三12月高考适应性月考卷(理) 【答案】B【解析】对Γ:22123x y λλ+=-,当2(3)0λλ-<,即0λ<或3λ>时,曲线Γ表示双曲线,当3λ=-时,Γ:22166y x -=表示等轴双曲线,因为无论λ取何值,曲线方程均只含2x ,2y 项与常数项,因此A ,C ,D 正确;当1λ=时,Γ:222x y +=表示圆,B 错误.选B .17.已知点P 是椭圆C :22110064x y +=上一点,M ,N 分别是圆()2261x y -+=和圆()2261x y ++=上的点,那么PM PN +的最小值为A .15B .16C .17D .18【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(理) 【答案】D【解析】如图,椭圆C :22110064x y +=的108a b ==,,所以6c =,故圆()2261x y -+=和圆()2261x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,PM PN +最小, 值为12122218PF PF MF MF a +--=-=,故选D .18.椭圆C :2221(0)3x y a a +=>的焦点在x 轴上,其离心率为12,则A .椭圆CB .椭圆C 的长轴长为4 C .椭圆C 的焦距为4D .4a =【试题来源】辽宁省葫芦岛市协作校2020-2021学年高三12月联考 【答案】B【分析】由离心率可求出2a =,结合椭圆的性质可求出椭圆的短轴长,长轴长,焦距.【解析】由椭圆的性质可知,椭圆C 的短轴长为12e ==,则24a =,即2a =,2231c a =-=,所以椭圆C 的长轴长24a =,椭圆C 的焦距22c =,故选B .19.已知1F ,2F 是椭圆2212516x y +=的左、右焦点,P 是椭圆上任意一点,过1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为 A .1 B .2 C .4D .5【试题来源】河南省洛阳市2021届高三上学期第一次统一考试(文) 【答案】A【分析】根据角平分线的性质和椭圆的定义可得OQ 是12F F M △的中位线, ||5OQ a ==,可得Q 点的轨迹是以O 为圆心,以5为半径的圆,由此可得选项.【解析】因为P 是焦点为1F ,2F 的椭圆2212516x y +=上的一点,PQ 为12F PF ∠的外角平分线,1QF PQ ⊥,设1F Q 的延长线交2F P 的延长线于点M ,所以1||||PM PF =,12212210,PF PF a MF PF PF +==∴=+,所以由题意得OQ 是12F F M △的中位线,所以||5OQ a ==,所以Q 点的轨迹是以O 为圆心,以5为半径的圆,所以当点Q 与y 轴重合时, Q 与短轴端点取最近距离54 1.d =-=故选A .20.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A ,B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABCBCF S S=,则椭圆的离心率为A BC .3D .10【试题来源】云南省昆明市第一中学2021届高三第三次双基检测(理) 【答案】A【解析】设椭圆的左、右焦点分别为()1,0F c -,()2,0F c ,由x c =-,代入椭圆方程得2by a =±,设2,b A c a ⎛⎫- ⎪⎝⎭,(),C x y ,由23ABCBCF SS=,可得222AF F C =,即22,2(,)b c x c y a ⎛⎫-=- ⎪⎝⎭,即222c x c =-,22b y a -=,所以2x c =,22b y a =-,代入椭圆得,2222414c b a a+=,由222b a c =-得2153e =,解得e =,由01e <<,所以e =.故选A .21.已知抛物线()220y px p =>的准线与椭圆22194x y +=相交的弦长为p =A .1B .2C .3D .4【试题来源】云南师大附中2020届高三(下)月考(理)(七) 【答案】C【解析】抛物线的准线方程为2px =-,设其与椭圆相交于A ,B两点,AB = 不妨设0A y >,根据对称知A y =32A x =-或32A x =(舍去),3p =,故选C .22.椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C于A ,B 两点,若1AF B △为等边三角形,则椭圆C 的离心率为 A .12B.2C .13D.3【试题来源】天津市第一中学2020-2021学年高三上学期第二次月考 【答案】D【分析】利用椭圆方程,求出焦点坐标,通过三角形是等边三角形求解椭圆的离心率即可.【解析】椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C 于A ,B 两点,若1AF B △为等边三角形,可得222b c a=,所以:)222ac a c =-,即220e +=, 因为()01e ∈,,解得3e =,故选D . 23.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥ A.10,2⎛⎤ ⎥⎝⎦B.2]C.12⎛⎤ ⎥⎝⎦D.1]【试题来源】江苏省镇江市丹阳市吕叔湘中学2020-2021学年高三上学期11月教学调研 【答案】C【分析】根据2||2PQ OF =,可得四边形12PF QF 为矩形,设12,PF n PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【解析】设12,PF n PF m ==,由210,0x y >>,知m n <, 因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QFPF;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-解得12e <≤,故选C. 24.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点A 是椭圆短轴的一个顶点,且123cos 4F AF ∠=,则椭圆的离心率e = A .12B.2 C .14D.4【试题来源】江苏省泰州市姜堰中学、南通市如东中学、宿迁市沭阳如东中学2020-2021学年高三上学期联考 【答案】D【分析】依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得22142a c =,再根据离心率公式计算即可.【解析】设椭圆22221(0)x y a b a b+=>>的焦距为2(0)c c >,则椭圆22221(0)x y a b a b+=>>的左焦点1F 的坐标为()0c -,,右焦点2F 的坐标为()0c ,, 依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得 22212121212||||2cos F F AF AF AF AF F AF ∠=+-⋅⋅,123cos 4F AF ∠=,22223142242c a a a ∴=-⨯=,22218c e a ∴==,解得4e =.故选D . 25.已知A 、B 为椭圆的左、右顶点,F 为左焦点,点P 为椭圆上一点,且PF ⊥x 轴,过点A 的直线与线段PF 交于M 点,与y 轴交于E 点,若直线BM 经过OE 中点,则椭圆的离心率为A .12BC .13D 【试题来源】黑龙江省哈尔滨市道里区第三中学校2020-2021学年高三上学期期末 【答案】C【分析】根据已知条件求出,,B H M 三点坐标,再由三点共线可得斜率相等,从而得出3a c =可得答案.【解析】由题意可设(,0),(,0),(,0)F c A a B a --,设直线AE 的方程(由题知斜率存在)为()y k x a =+,令x c =-,可得(),()M c k a c --,令0x =,可得(0,)E ka ,设OE 的中点为H ,可得0,2ka H ⎛⎫⎪⎝⎭,由,,B H M 三点共线,可得BH BM k k =,即()2kak a c a c a-=---,即为3a c =,可得13c e a ==,故选C .26.已知命题p :22x my =表示焦点在y 轴的正半轴上的抛物线,命题q:22162x y m m +=-+表示椭圆,若命题“p q ∧”为真命题,则实数m 的取值范围是 A .26m -<< B .06m <<C .06m <<且2m ≠D .26m -<<且2m ≠【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【解析】对于命题2:2p x my =表示焦点在y 轴的正半轴上的抛物线,所以0m >,对于命题22:162x yq m m +=-+表示椭圆,所以602062m m m m ->⎧⎪+>⎨⎪-≠+⎩,解得26m -<<且2m ≠, 因为命题“p q ∧”为真命题,所以命题p 和命题q 均为真命题, 所以实数m 的取值范围是06m <<且2m ≠.故选C .27.已知()11,0F -,21,0F ,M 是第一象限内的点,且满足124MF MF +=,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则A .12S S >B .12S SC .12S S <D .1S 与2S 大小不确定【试题来源】浙江省十校联盟2020-2021学年高三上学期10月联考 【答案】B【分析】作出图示,根据,I G 的特点分别表示出1S ,2S ,即可判断出12,S S 的大小关系.【解析】因为121242MF MF F F +=>=,所以M 的轨迹是椭圆22143x y +=在第一象限内的部分,如图所示:因为I 是12MF F △的内心,设内切圆的半径为r ,所以()12121222MMFMF F F rF F y ++⋅⋅=,所以3M y r =,所以12121223I MF F y F F r y S ⋅⋅===,因为G 是12MF F △的重心,所以:1:2OG GM =, 所以12112221133323M M MOF F OF F F yy S S S ⋅===⋅=,所以12S S ,故选B . 28.已知1F 、2F 为椭圆和双曲线的公共焦点,P 为其一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A .BCD .【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP367】【数学】 【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a 12()a a >,半焦距为c , 椭圆和双曲线的离心率分别为1e 和2e ,11||PF r =,22||PF r =, 由椭圆和双曲线的定义可知,1212r r a +=,1222r r a -=±, 因为123F PF π∠=,由余弦定理得222121242cos3c r r r r π=+-221212r r r r =+-,所以22212121124()343c r r r r a r r =+-=-,且22212122124()4c r r r r a r r =-+=+,所以222212443(44)a c c a -=-,即2221234a a c +=,则2221314e e +=,由柯西不等式得22212121131(1)()(13e e e e ++≥⨯+,所以12113e e +≤=,当且仅当13e =,2e =时,等号成立.故选C 29.如图,设1F 、2F 分别是椭圆的左、右焦点,点P 是以12F F 为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则直线2PF 的斜率为A .2-B .1-C .12-D .1【试题来源】浙江省宁波十校2020-2021学年高三上学期期中联考 【答案】A【解析】如下图,连接11,PF QF ,设()20QF x x =>,则14PF x =,因为122PF PF a +=,122QF QF a +=,所以224PF a x =-,12QF a x =-,在△1PF Q 中,1290F PF ︒∠=,所以22211+=PF PQ QF ,即()()()2224242x a x x a x +-+=-,整理得3a x =, 所以121244tan 22464PF x xPF F PF a x x x∠====--,所以直线2PF 的斜率为()21tan 1802k PF F ︒=-∠=-.故选A .30.已知P 是椭圆()2222:10x y C a b a b+=>>上的点,1F ,2F 分别是C 的左,右焦点,O是坐标原点,若212OP OF OF +=且1260F PF ∠=︒,则椭圆的离心率为 A .12BCD 【试题来源】福建省莆田第一中学2021届高三上学期期中考试 【答案】A【解析】如图所示,设M 是2PF 中点,则22OP OF OM +=,1||2||PF OM =, 因为212OP OF OF +=,所以1||||OM OF =,所以112||||2PF F F c ==,因为1260F PF ∠=︒,所以1122||||||2PF F F PF c ===.由椭圆的定义得12||||2PF PF a +=, 所以11222,,22c c c a e a +=∴=∴=.故选A 二、多选题1.已知椭圆()2222:10x y M a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从1F ,2F ,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为A .3 B .2 C .512- D .312- 【试题来源】湘鄂部分重点学校2020-2021学年高三上学期11月联考(理) 【答案】BC【分析】结合椭圆的对称性,只需要考虑三种情况,即以D 、C ,2F 作为三角形的三个顶点;以C 、1F 、2F 作为三角形的三个顶点或以C 、A 、2F 作为三角形的三个顶点,分别根据图形列出关于以a 、b 、c 的齐次式,化简求离心率.【解析】①如图,若以D 、C ,2F 作为三角形的三个顶点,则2DC CF ⊥, 由勾股定理可得,()()2222a ba a c ++=+,由222b ac =-,可得220c ac a +-=,即210e e +-=,因为01e <<,解得512e =;②如图,若以C 、1F 、2F 作为三角形的三个顶点, 则12CF CF ⊥,故245OCF ∠=︒,则2c e a ==;③如图,若以C 、A 、2F 作为三角形的三个顶点, 则22CF AF ⊥,245CF O ∠=︒,则22c e a ==;故选BC .2.已知F 是椭圆2212516x y +=的右焦点,M 为左焦点,P 为椭圆上的动点,且椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,则A .FPM 的面积最大时,24tan 7FPM ∠= B .1FP 的最大值为8 C .d 的值可以为310D .椭圆上存在点P ,使2FPM π∠=【试题来源】湖北省十一校考试联盟2020-2021学年高三上学期12月联考 【答案】ABC【解析】由椭圆2212516x y +=,当点P 为短轴顶点时,FPM ∠最大,FPM 的面积最大,此时24tan 7FPM ∠=,此时角为锐角,故A 正确、D 错误; 椭圆上的动点P ,1a c PF a c -≤≤+,即有128PF ≤≤,又椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,所以1FP 最大值8,B 正确;设1FP ,2FP ,3FP ,…组成的等差数列为{}n a ,公差0d >,则12a ≥,8n a ≤,又11n a a d n -=-,所以663121110d n ≤≤=--,所以3010d <≤,所以d 的最大值是310,故C 正确.故选ABC【名师点睛】由椭圆性质知在椭圆上的点中,与焦点构成的三角形面积、以该点为顶点的角最大时,点在短轴端点上;且2||8FP ≤≤,进而可得d 的范围.3.椭圆2222:1(0)x y C a b a b+=>>,1F ,2F 分别为左、右焦点,1A ,2A 分别为左、右顶点,P 为椭圆上的动点,且12120PF PF PA PA ⋅+⋅≥恒成立,则椭圆C 的离心率可能为A .12BC D .2【试题来源】云南省楚雄州2021届高三上学期期中教学质量检测(理) 【答案】AC【解析】设()00,P x y ,1(,0)F c -,2(,0)F c ,则()100,PF c x y =---,()200,PF c x y =--, ()100,PA a x y =---,()200,PA a x y =--.因为22221212022PF PF PA PA x y a c ⋅+⋅=+--2222220222b x b x a c a ⎛⎫=+--- ⎪⎝⎭222222022330c x a c a c a =+-≥-≥恒成立,所以离心率3c e a =≤.故选AC 【名师点睛】此题考查椭圆的几何性质的应用,考查的离心率的求法,解题的关键是由12120PF PF PA PA ⋅+⋅≥转化为坐标的关系,进而可得到,a c 的关系,考查计算能力,属于中档题4.设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A , B 两点,则下述结论正确的是 A .AF +BF 为定值 B .△ABF 的周长的取值范围是[6,12]C .当m =时,△ABF 为直角三角形D .当m =1时,△ABF【试题来源】海南省2020届高三高考数学五模试题 【答案】AD【解析】设椭圆的左焦点为F ',则AF BF '= 所以=6AF BF AF AF '+=+为定值,A 正确;ABF 的周长为AB AF BF ++,因为AF BF +为定值6,所以AB 的范围是()0,6, 所以ABF 的周长的范围是()6,12,B 错误;将y =(A ,B,因为)F,所以(?60BA BF ⋅=-=-<,所以ABF 不是直角三角形,C 不正确;将1y =与椭圆方程联立,解得()A -,)B ,所以112ABFS=⨯=D 正确.故选AD. 5.已知椭圆22:163x y C +=的左、右两个焦点分别为12,F F ,直线(0)y kx k =≠与C 交于A ,B 两点,AE x ⊥轴,垂足为E ,直线BE 与C 的另一个交点为P ,则下列结论正确的是A .四边形12AF BF 为平行四边形B .1290F PF ︒∠<C .直线BE 的斜率为12k D .90PAB ︒∠>【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(二) 【答案】ABC 【解析】A 选项:根据对称性,如上图有2112,,OA OB BOF AOF OF OF =∠=∠=,所以21BOF AOF ≅,即12OAF OBF ∠=∠,则12//AF BF ,12AF BF =,所以四边形12AF BF 为平行四边形;A 正确.B 选项:由余弦定理222121212122cos F F PF PF PF PF F PF =+-⋅⋅∠,12F F =,12,PF x PF x ==,由直线(0)y kx k =≠中k 存在故x ≠所以212cos F PF ∠=,令t x <=,则x t =+,所以212226cos 166t F PF t t∠==---,203t ≤<, 120cos 1F PF ≤∠<,即1290F PF ∠<︒;B 正确.C 选项:若(,)A m km ,则(,)B m km --,(m,0)E ,所以直线BE 的斜率为22km km =;C 正确.D 选项:由上可设:()2k PB y x m =-,联立椭圆方程22:163x y C +=,整理得22222(2)2120k x mk x m k +-+-=,若(,)p p P x y ,则2222p mkx m k -=+,即2222p mk x m k =++,322p mk y k =+,所以直线PA 的斜率为32221222mk km k mk k k -+=-+,故AB AP ⊥,即90PAB ∠=︒,故D 错误.故选ABC . 三、填空题1.点P 是椭圆22:1167x y C +=上的一点,12,F F 是椭圆的两个焦点,且12PF F △的内切圆半径为1.当点P 在第一象限时,它的纵坐标为__________.【试题来源】云南省昆明市第一中学2021届高三第五次复习检测(理) 【答案】73【分析】椭圆的焦点三角形问题,充分利用椭圆的定义,从两个角度表示出12PF F S ,建立关于p y 的关系式求解.【解析】因为128PF PF +=,126F F =,所以()1212121172PF F S PF PF F F =++⨯=;因为12121372PF F p p SF F y y =⋅==,所以73p y =.故答案为73【名师点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a 等.2.已知椭圆221164x y +=上的一点P 到椭圆一个焦点的距离为6,则点P 到另一个焦点的距离为__________.【试题来源】上海市奉贤区2021届高三上学期一模 【答案】2【解析】利用椭圆定义122PF PF a +=,4a =,可知268PF +=,即22PF =.3.已知F 1,F 2是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为__________. 【试题来源】广西北海市北海中学2021届高三12月考试(理)【答案】5【解析】设1BF k =,则13AF k =,24BF k =,由12122BF BF AF AF a +=+=, 得25a k =,22AF k =,在2ABF 中,21cos 4BAF ∠=, 又在12F AF 中,22212(3)(2)(2)1cos 2324k k c F AF k k +-∠==⨯⨯,得2c =故离心率5c e a ==.故答案为54.已知椭圆22221(0)x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l交椭圆于A B ,两点,且A B ,的中点为112M ⎛⎫⎪⎝⎭,,则椭圆的离心率为__________. 【试题来源】吉林省梅河口市第五中学2021届高三上学期第三次月考(文)【答案】2【解析】由题意知(),0F c -,()0,P b -,所以直线FP 的斜率为00()b bc c--=---,设()11,A x y ,()22,B x y ,则2211221x y a b +=①,2222221x y a b+=②,①-②得2222121222x x y y a b --=-,即()()()()1112221222x x y y y y a x x b =-+--+, 因为112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以122x x +=,121y y +=,所以()()2112222x y y a b x =---,所以2122122ABy y b k x x a-==--, 因为//AB FE ,所以222b b c a-=-,即22a bc =,所以222b c bc +=,所以b c =,所以22222a b c c =+=,所以c e a ==【名师点睛】本题的关键点是利用点差法设设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=,两式相减得2222121222x x y y a b --=-,112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以 122x x +=,121y y +=,可得2122122ABy y b k x x a-==--,再计算00()FP b b k c c --==---, 利用AB FP k k =结合222a b c =+即可求离心率.5.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为__________.【试题来源】北京市中国人民大学附属中学2021届高三上学期数学统练5试题【解析】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=2c a +=,所以,该椭圆的离心率为21cea====.6.已知椭圆22221(0)x ya ba b+=>>,左焦点(,0)F c-,右顶点(,0)A a,上顶点(0,)B b,满足0FB AB=,则椭圆的离心率为__________.【试题来源】四川省成都市第七中学2020-2021学年高三期中(文)【解析】由0FB AB=可得,()(),,0c b a b⋅-=,即222ac b a c==-,则210e e+-=,解得e=(舍)7.已知椭圆1C:()222210x ya ba b+=>>和双曲线2C:22221(0,0)x ym nm n-=>>的焦点相同,1F,2F分别为左、右焦点,P是椭圆和双曲线在第一象限的交点,PM x⊥轴,M为垂足,若223OM OF=(O为坐标原点),则椭圆和双曲线的离心率之积为__________.【试题来源】浙江省台州市六校2020-2021学年高三上学期期中联考【答案】32【分析】设椭圆和双曲线的半焦距为c,根据223OM OF=,得到P的横坐标为23c,设12,PF s PF t==,分别利用椭圆和双曲线的定义求得,s t,然后再利用椭圆和双曲线的第二定义求解.【解析】设椭圆和双曲线的半焦距为c,所以22233OM OF c==,即P的横坐标为23c,设12,PF s PF t==,由椭圆的定义得2s t a+=,由双曲线的定义得2s t m-=,联立解得,s a m t a m=+=-,设椭圆和双曲线的离心率分别为12,e e,由椭圆的第二定义得22223pPF t ca a ax cc c==--,解得123t a e c=-,由双曲线的第二定义得22223p PF t cm m m x c c c==--,解得223t e c m =-,又t a m =-,则223a e c =,1232e e =,所以12232c e e e a ==,故答案为328.已知F 为椭圆22:143x y C +=的左焦点,定点()3,3A --,点P 为椭圆C 上的一个动点,则PA PF +的最大值为__________.【试题来源】湖南省长沙市广益实验中学2020-2021学年高三上学期第一次新高考适应性考试 【答案】9【分析】设椭圆的右焦点为1(1,0)F ,再利用数形结合分析求解. 【解析】设椭圆的右焦点为1(1,0)F ,111=||24||4||49PA PF PA a PF PA PF AF ++-=+-≤+==.【名师点睛】圆锥曲线中的最值问题常用的解题方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件,灵活选择方法求解.9.椭圆C :22221x y a b+=()0a b >>,以原点为圆心,半径为椭圆C 的半焦距的圆恰与椭圆四个项点围成的四边形的四边都相切,则椭圆C 的离心率为__________. 【试题来源】江苏省镇江市2020-2021学年高三上学期期中【分析】由题意画出图形,利用等面积法可得关于a ,b ,c 的等式,结合隐含条件即可求得椭圆的离心率.【解析】如图所示,过点O 作22OM A B ⊥,则290OMA ∠=︒,由题意可得,22221122OB OA A B OM ⋅=⋅,即a b c ⋅=,又由222a b c =+可得,()()2222222a a c a a c c -=+-,整理可得442230a c a c +-=,因为c e a =,所以42310e e -+=,解得2e =,因为01e <<,所以12e =.故答案为12. 10.如图,过原点O 的直线AB 交椭圆C :22221x y a b+=(a >b >0)于A ,B 两点,过点A分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若34AM AP =,则椭圆C 的离心率是__________.【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(三)【分析】设11(,)A x y ,22(,)Q x y ,根据已知条件得B 、P 、M 的坐标,AB AQ ⊥、B ,M ,Q 三点共线,211211y y x x x y -=--以及1212y y x x +=+114y x ,由A ,Q 在椭圆上有2221222212y y b x x a-=--,联立所得方程即可求离心率.【解析】设11(,)A x y ,22(,)Q x y ,则11(,)B x y --,11(,)P x y -,11,2y M x ⎛⎫- ⎪⎝⎭,由AB AQ ⊥,则1212111212111y y y y y xx x x x x y --=-⇒=--- ①, 由B ,M ,Q 三点共线,则BQ BM k k =,即1212y y x x +=+114yx ②.因为2211221x y a b +=,2222221x y a b +=,即22221212220x x y y a b--+=,2221222212y y b x x a -=--③, 将①②代入③得2214b e a =⇒=.11.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__________.【试题来源】四川省眉山市仁寿第二中学2020-2021学年高三上学期第四次诊断(理) 【答案】4【解析】取椭圆的右焦点F ',连接QF ',PF ',由椭圆的对称性,可得四边形PFQF '为平行四边形,则PF QF '=,180********FPF PFQ ∠='=-∠-=,||3||PF QF =3||PF '=,而||||2PF PF a '+=,所以2a PF '=,所以32a PF =, 在PFF '中,2222222914||||58144cos 32332222a a c PF PF FF FPF e a PF PF a +-+-∠===-''''=⨯⨯,解得4e =,故答案为4. 【名师点睛】本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2a PF '=,所以32aPF =,然后在PFF '中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.12.椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,椭圆上的点M 满足:1223F MF π∠=且122MF MF →→⋅=-,则b =__________.【试题来源】河北省保定市2021届高三上学期10月摸底考试 【答案】1【分析】先根据数量积运算得124MF MF =,再结合椭圆的定义与余弦定理即可得1b =. 【解析】因为1223F MF π∠=且122MF MF →→⋅=-,所以124MF MF =, 由椭圆的定义得122MF MF a +=,故222121224MF MF MF MF a++= 所以在12F MF △中,由余弦定理得1222212124cos 2MF M F M F c M F F MF =+-∠,代入数据得222144848288a cb ----==,解得1b =.故答案为1. 【名师点睛】解题的关键在于应用定义122MF MF a +=与余弦定理1222212124cos 2MF M F M F c M F F MF =+-∠列方程求解得1b =.13.已知椭圆的方程为222116x y m+=,焦点在x 轴上,m 的取值范围是__________.【试题来源】江西省贵溪市实验中学2021届高三上学期第二次月考数学(三校生)试题。

高考椭圆几种题型

高考椭圆几种题型

高考椭圆几种题型― 引言在高考之中占有比较重要的地位,并且占的分数也多。

分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。

所以我们对知识必须系统的掌握。

对各种题型,基本的解题方法也要有一定的了解。

二 椭圆的知识 (一)、定义1 平面内与与定点F 1、F 2的距离之和等于定长2a(2a>|F 1F 2|)的点的轨迹叫做椭圆,其中F 1、F 2称为椭圆的焦点,|F 1F 2|称为焦距。

其复数形式的方程为|Z-Z 1|+| Z-Z 2|=2a(2a>|Z 1-Z 2|)2一动点到一个定点F 的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F 称为椭圆的焦点,l 称为椭圆的准线。

(二)、方程1中心在原点,焦点在x 轴上:)0(12222>>=+b a b y a x2中心在原点,焦点在y 轴上:)0(12222>>=+b a bx a y3 参数方程:⎩⎨⎧==θθsin cos b y a x4 一般方程:)0,0(122>>=+B A By Ax (三)、性质1 顶点:),0(),0,(b a ±±或)0,(),0(b a ±±2 对称性:关于x ,y 轴均对称,关于原点中心对称。

3 离心率:)1,0(∈=ace 4 准线ca y c a x 22=±=或 5 焦半径:设),(00y x P 为)0(12222>>=+b a b y a x 上一点,F 1、F 2为左、右焦点,则01ex a PF +=,02ex a PF -=;设),(00y x P 为)0(12222>>=+b a bx a y 上一点,F 1、F 2为下、上焦点,则01ex a PF +=,02ex a PF -=。

三 椭圆题型(一)椭圆定义 1.椭圆定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。

专题22 椭圆(解答题压轴题)(教师版)-2024年高考数学压轴专题复习

专题22 椭圆(解答题压轴题)(教师版)-2024年高考数学压轴专题复习

专题22 椭圆(解答题压轴题)目录①椭圆的弦长(焦点弦)问题 (1)②椭圆的中点弦问题 (10)③椭圆中的面积问题 (15)④椭圆中的参数和范围问题 (22)⑤椭圆中的最值问题 (28)⑥椭圆中定点、定值、定直线问题 (35)⑦椭圆中向量问题 (42)⑧椭圆综合问题 (48)所以()2216432224m m ∆=-⨯⨯-=解得33m -<<.设()11,A x y ,()22,B x y ,则1243m x x +=-,212223m x x -=2.(2023春·甘肃白银·高二统考开学考试)已知椭圆C上一点.(1)求C的方程;(2)设M,N是C上两点,若线段MN3.(2023秋·湖北武汉·高二武汉市第十七中学校联考期末)已知椭圆椭圆上一点与两焦点构成的三角形周长为(1)求椭圆C的标准方程;(2)若直线l与C交于A,B两点,且线段则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得(x 所以()()(1212124x x x x y y +-++又因为P 是DE 中点,所以1x +3.(2023秋·安徽亳州·高三校考阶段练习)令21230t k=->,故24k=当且仅当12tt=,即23,t k=故AOBV面积的最大值为3.)由题意得,四边形ABCD为菱形,则菱形ABCD的面积1S AC=⋅令235t n -=,得2716970n n -+=,解得7n =或977n =,从而2t =±或11621t =±.故直线l 的方程为23x y =±-,或116x =±④椭圆中的参数和范围问题1.(2023·辽宁抚顺·校考模拟预测)已知动点)显然直线l 的斜率存在,设直线:1l y kx =+,1,1)y ,2(B x ,2)y ,则2(D x λ,2)y λ,四边形OAED 为平行四边形,AE =,12(E x x λ+,12)y y λ+,A ,B ,E 均在椭圆C 上,2114y +=,2222194x y +=,221212()()194x x y y λλ+++=,0,2129180x y y λ++=,依题意,设直线l 的方程为(1)(y k x =-易得12x x <.联立方程组()221,1,4y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y 并整理得则2122814k x x k +=+,()21224114k x x k -=+,)得()20A ,,设直线l 的方程为x =2214x my tx y =+⎧⎪⎨+=⎪⎩,得()2242m y mty ++()()()222Δ244416mt m t m =-+-=2mt 24t -)C 短轴顶点时,PAB V 的面积取最大值222a b c =+,解得2,a b =的标准方程为2214x y += .)1122(,),(,)P x y Q x y ,若直线PQ 的斜率为零,由对称性知1111022y y x x -==++,222y k x -=-设直线PQ 的方程为x ty n =+由()2224y k x x y ⎧=+⎨+=⎩,得(2k +()()(22121k x k x ⎡⎤++-+⎣⎦解得()22211k x k -=+或x =-))()0011,,,x y A x y ,()22,B x y ,则可设直线PA 的方程为1x my =-,其中221143x my x y =-⎧⎪⎨+=⎪⎩,化简得(234m +)为椭圆C 的左顶点,又由(1)可知:(2,0)M -,设直线联立方程可得:222(44x ty mt x y =+⎧⇒+⎨+=⎩()()22224(4)40mt t m =-+->,即设直线:l y kx m =+交该椭圆220x +将y kx m =+代入221205x y +=得()2221484200k x kmx m +++-=设()11,D x y ,()22,E x y ,则21221621k x x k +=+,12x x ∴()1212542x x x x =+-,又()2,0A -,()2,0B ,∴直线AD 的方程为()1122y y x x =++,直线BE 的方程为1.(2023·吉林长春·东北师大附中校考一模)椭圆且垂直于长轴的弦长度为1.(1)求椭圆C的标准方程;2.(2023秋·北京海淀·高三清华附中校考开学考试)已知椭圆长轴长为6.(1)求椭圆E的标准方程;(2)椭圆E的上下顶点分别为,A B,右顶点为C,过点于x轴对称,直线AP交BC于M,直线AQ交BC于点【答案】(1)221 94x y+=(2)证明见解析【详解】(1)根据题意可知26a=,可得3a=;联立直线与椭圆方程221942x y y kx ⎧+=⎪⎨⎪=+⎩,消去设(),P P P x y ,易知P x 和0是方程的两根,由韦达定理可得又2P P y kx =+,所以2218894P k y k -=+,即1.(2023秋·辽宁·高二校联考阶段练习)已知椭圆3。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考椭圆大题专题分类一、求椭圆的方程以及面积1.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△P AB 的面积.解析 (1)由已知得c =22,c a =63.解得a =23, 又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎨⎧y =x +m ,x 212+y 24=1得4x 2+6mx +3m 2-12=0.① 设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2), AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4. 因为AB 是等腰△P AB 的底边,所以PE ⊥AB . 所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△P AB 的面积S =12|AB |·d =92.2.(2013·烟台一模)设A (x 1,y 1),B (x 2,y 2)是椭圆C :y 2a 2+x 2b 2=1(a >b >0)上两点,已知m =⎝ ⎛⎭⎪⎫x 1b ,y 1a ,n=⎝ ⎛⎭⎪⎫x 2b ,y 2a ,若m·n =0且椭圆的离心率e =32,短轴长为2,O 为坐标原点. (1)求椭圆的方程;(2)△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 解析 (1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =32.∴a =2,c = 3.∴椭圆的方程为y 24+x 2=1. (2)①当直线AB 的斜率不存在,即x 1=x 2时, y 1=-y 2,由m·n =0得x 21-y 214=0,∴y 21=4x 21.又A (x 1,y 1)在椭圆上,∴x 21+4x 214=1,∴|x 1|=22,|y 1|=2,△AOB 的面积S =12|x 1||y 1-y 2|=12|x 1|·2|y 1|=1.②当直线AB 的斜率存在时,设AB 的方程为y =kx +b (其中b ≠0),代入y 24+x 2=1,得 (k 2+4)x 2+2kbx +b 2-4=0.Δ=(2kb )2-4(k 2+4)(b 2-4)=16(k 2-b 2+4), x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,由已知m·n =0得x 1x 2+y 1y 24=0,∴x 1x 2+(kx 1+b )(kx 2+b )4=0,代入整理得2b 2-k 2=4,代入Δ中,满足题意,∴△AOB 的面积S =12·|b |1+k 2|AB |=12|b |·(x 1+x 2)2-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b 22|b |=1. ∴△AOB 的面积为定值13、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程。

解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y25=1.二、求动点的轨迹方程1.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 三、求椭圆的焦距以及方程1.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2. 所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b 2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5. 故椭圆C 的方程为x 29+y 25=1.四、求椭圆方程及定点在椭圆上1. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba = 1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2 =8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x2y -3,y 0=3y -42y -3. 因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.五、求椭圆的离心率及椭圆与直线的关系1.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。

相关文档
最新文档