2020年高三数学综合练习试题及评分标准

合集下载

哈尔滨市第三中学2020届高三数学综合题三理含解析

哈尔滨市第三中学2020届高三数学综合题三理含解析
∴cos〈 , 〉= = 。
即OE与FD1所成的角的余弦值为 。
10. 若函数 在其定义域的一个子区间 内不是单调函数,则实数 的取值范围是( )
A. B。 C。 D.
【答案】D
【解析】
因 ,故由题设 在区间 内有零点,即 ,所以 且 ,即 ,应选答案D.
11。 已知两正数 , ,满足 ,则 的最小值为( )
【详解】解:∵ ,
复数 的虚部是 .
故选:C
【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题。
2. 已知 ,函数 ,若 满足关于 的方程 ,则下列选项的命题中为假命题的是
A. B。
C. D。
【答案】C
【解析】
试题分析:因为, 满足关于 的方程 ,所以, ,使 取得最小值,因此, 是假命题,选C.
15。 中, , , , 为 边上一动点,则 的最小值为______.
【答案】
【解析】
【分析】
根据三边长得出直角三角形,以 作为基底,表示出 ,即可求得模长,利用函数单调性求出最值。
【详解】 中, , , , ,
根据勾股定理
为 边上一动点,设 ,



,根据二次函数性质,当 时,取得最小值,
最小值为 。
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)
13。 展开式中 的系数是______。(用数字作答)
【答案】
【解析】
【分析】
利用二项式定理得到 展开式通项,进而得到 展开式通项,令 幂指数等于 可求得 ,代入求得结果。
【详解】 展开式通项公式为 ,
展开式通项公式为 ,
考点:方程的根,二次函数的图象和性质,全称命题、存在性命题.

高2020届高三下学期综合练习1参考答案及评分标准(1)(1)

高2020届高三下学期综合练习1参考答案及评分标准(1)(1)

高2020届高三下学期综合练习1参考答案一、选择题:本大题共10小题,每小题4分,共40分.1.B 2.D 3.D 4.C 5.A 6. C 7. A 8.A 9.B 10.D 二、填空题:本大题共5小题,每小题5分,共25分. 注:第15题第一问3分,第二问2分.11.-1012 13.3 14.答案不唯一,如2211648x y -= 15.1232;5三、解答题:本大题共6小题,共85分. 其他正确解答过程,请参照评分标准给分. 16.(本小题满分13分)解:(Ⅰ)因为1()2cos cos )2f x x x x =⋅-……………… 2分2cos cos x x x=-112cos222x x --……………… 5分π1sin(2)62x =--, ……………… 7分所以函数()f x 的最小正周期为2ππ2T ==. ……………… 8分(Ⅱ)因为π02x -≤≤,所以7πππ2666x ---≤≤. ……………… 9分所以当ππ262x -=-,即π6x =-时,()f x 取得最小值32-. ……………… 11分 当π7π266x -=-,即π2x =-时,()f x 取得最大值0. ……………… 13分 17.(本小题满分14分)解:(Ⅰ)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M , ……………… 1分 由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42,……………… 2分 所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==.……………… 3分 (Ⅱ)由题意,X 的所有可能取值为:0,1,2. ……………… 4分因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人为老年人概率是151755=, ……………… 5分 所以022116(0)C (1)525P X ==⨯-=, ……………… 6分 12118(1)C (1)5525P X ==⨯⨯-=, ……………… 7分 22211(2)C ()525P X ==⨯=. ……………… 8分所以随机变量X 的分布列为:……………… 9分 故16812()0122525255E X =⨯+⨯+⨯=. ……………… 11分 (Ⅲ)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,参考答案如下:由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++, ……………… 13分因为11622155>, 所以建议甲乘坐高铁从A 市到B 市. …………… 14分 第3问仅文字说明,且有理,只得1分; 要有必要的计算数据支撑观点,共2分 从满意度来说理,且有数据支撑,得2分从人多少啥得说理,有数据支撑,得1分(因为这里有从众心理)意图数学问题的解答,应“有理有据” 18.(本小题满分15分)解:(Ⅰ)由题意,三棱柱111ABC A B C -为正三棱柱. 连接1A C . 设11AC AC E =I ,则E 是1A C 的中点. 连接DE . 由D ,E 分别为BC 和1A C 的中点,得1//DE A B . ……………… 2分又因为DE ⊂平面1AC D ,1A B ⊄平面1AC D ,所以1//A B 平面1AC D . ……………… 4分B 1 CDB AA 1C 1E(Ⅱ)取11B C 的中点F ,连接DF .因为△ABC 为正三角形,且D 为BC 中点, 所以AD BC ⊥.由D ,F 分别为BC 和11B C 的中点,得1//DF BB ,又因为1BB ⊥平面ABC , 所以DF ⊥平面ABC , 所以DF AD ⊥,DF BC ⊥.分别以DC ,DF ,DA 为x 轴,y 轴,z 轴,如图建立空间直角坐标系,… 5分 则A ,1(1,2,0)C ,(1,0,0)C ,(0,0,0)D ,(1,0,0)B -,所以1(1,2,0)DC =u u u u r ,DA =u u u r ,(CA =-u u u r ,1(0,2,0)CC =u u u u r, …… 6分设平面1AC D 的法向量1111(,,)x y z =n , 由10DA ⋅=u u u r n ,110DC ⋅=u u u u r n ,得1110,20,x y =+=⎪⎩令11y =,得1(2,1,0)=-n . ……………… 8分 设平面1AC C 的法向量2222(,,)x y z =n , 由20CA ⋅=u u u r n ,120CC ⋅=u u u u r n ,得2220,20,x y ⎧-+=⎪⎨=⎪⎩令21z =,得2=n . ……………… 9分 设二面角1C AC D --的平面角为θ,则 1212|cos |||||||θ⋅=⋅n n n n , ……………… 10分 由图可得二面角1C AC D --为锐二面角, 所以二面角1C AC D --. ……………… 11分 (Ⅲ)结论:直线11A B 与平面1AC D 相交. ……………… 12分 证明:因为(1,0,AB =-u u u r,11//A B AB ,且11=A B AB ,所以11(1,0,A B =-u u u u r. ……………… 13分 又因为平面1AC D 的法向量1(2,1,0)=-n ,且11120A B ⋅=≠u u u u rn ,所以11A B u u u u r与1n 不垂直,所以11A B ⊄平面1AC D ,且11A B 与平面1AC D 不平行,故直线11A B 与平面1AC D 相交. ……………… 15分 19.(本小题满分14分)解:(Ⅰ)由题意,得F,直线(l y k x =-:(0k ≠), ……………… 2分 设11(,)A x y ,22(,)B x y ,联立22(1,4y k x x y ⎧=⎪⎨+=⎪⎩消去y,得2222(41)(124)0k x x k +-+-=,…… 3分显然0∆>,12x x +=, ……………… 4分则点M的横坐标122M x x x +=, ……………… 5分因为0M x =>, 所以点M 在y 轴的右侧. ……………… 6分 (Ⅱ)由(Ⅰ)得点M的纵坐标2(41M M y k x k ==+. ……………… 7分即M .所以线段AB的垂直平分线方程为:1(y x k +=-. ……… 8分 令0x =,得D ;令0y =,得C . ……………… 10分 所以△ODC的面积222127||22(41)ODCk k S k ∆⋅=⋅⋅+, ……… 11分△CMF的面积22213(1)||||22(41)CMFk k S k ∆+⋅=⋅⋅=+. …… 12分 因为△ODC 与△CMF 的面积相等,所以22222227||3(1)||2(41)2(41)k k k k k k ⋅+⋅=++,解得4k =±.所以当△ODC 与△CMF 的面积相等时,直线l 的斜率k =. ……… 14分 20.(本小题满分15分) 解:(Ⅰ)由21()e 2x f x x =+,得()e x f x x '=+, ……………… 2分 所以(0)1f =,(0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. …………… 4分 (Ⅱ)由21()e 2x f x x x =-+,得()e 1x f x x '=-+, 则(0)0f '=. … …………… 5分 当0x >时,由e 10,0x x ->>,得()e 10x f x x '=-+>,所以函数()f x 在(0,)+∞上单调递增; ……………… 7分 当0x <时,由e 10,0x x -<<,得()e 10x f x x '=-+<, 所以函数()f x 在(,0)-∞上单调递减.综上,函数()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. … 9分(Ⅲ)由21()2f x x x b ++≥,得e (1)0x a x b -+-≥在x ∈R 上恒成立.设()e (1)x g x a x b =-+-, ……………… 10分 则()e (1)x g x a '=-+.由()e (1)0xg x a '=-+=,得ln(1)x a =+,(1a >-). ……………… 11分随着x 变化,()g x '与()g x 的变化情况如下表所示:所以()g x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增. 所以函数()g x 的最小值为(ln(1))(1)(1)ln(1)g a a a a b +=+-++-.由题意,得(ln(1))0g a +≥,即 1(1)ln(1)b a a a --++≤. …………… 13分设()1ln (0)h x x x x =->,则()ln 1h x x '=--.因为当10e x <<时,ln 10x -->; 当1e x >时,ln 10x --<, 所以()h x 在1(0,)e 上单调递增,在1(,)e +∞上单调递减.所以当1e x =时,max 11()()1e eh x h ==+. 所以当11e a +=,1(1)ln(1)b a a a =+-++,即11e a =-,2eb =时,b a -有最大值为11e+. …………… 15分 第(1)问:直线不化简,不扣分; 第(2)问:求导不给分;第(3)问:不给出a , b 的取值,扣1分(注:h(x)设得不好,便成了复合函数,注意这里没有超纲)21.(本小题满分14分)解:(Ⅰ)答案不唯一. 如{1,2,3,,100}A =L ; ……………… 3分 (Ⅱ)假设存在一个0{101,102,,200}x ∈L 使得0x A ∈, ……………… 4分 令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈, ……………… 6分 由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾, 所以任意{101,102,,200}x ∈L ,x A ∉. ……………… 8分 (Ⅲ)设集合{201,202,,205}A I L 中有(15)m m ≤≤个元素,100m a b -=, 由题意,得12100200m a a a -<<<L ≤,10011002100200m m a a a -+-+<<<<L ,由(Ⅱ),得100100m a b -=≤. 假设100b m >-,则1000b m -+>. 因为10010010055100b m m -+-+=<-≤, 由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤, 所以由(Ⅱ)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤, 又因为121001m a a a -<<<L ≤,i a ∈N ,所以(1100)i a i i m =-≤≤. ……………… 11分 任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,100}{205}A m B =-L U U,以下证明集合0A 符合题意: 对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意, ……………… 13分 所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同, 故满足条件的集合A 有4216=个. ……………… 14分第(2)问,说清楚101,然后逐一列举,最多可以给到满分。

昌平区2020年高三年级第二次统一练习数学试卷参考答案与评分标准

昌平区2020年高三年级第二次统一练习数学试卷参考答案与评分标准

昌平区 2020 年高三年级第二次统一练习数学试卷参考答案及评分标准2020.6一、选择题(共10 小题,每小题 4 分,共 40 分)题号( 1)(2)(3)(4)(5)(6)(7)(8)( 9)(10)答案B D C A BCAA C B二、填空题(共 5 小题,每小题 5 分,共 25分)(11)5( 12) S n n24n(13) 5( 14)12 2( 15)①②;3(注:第 14 题第一空 3 分 ,第二空 2 分;第 15 题全部选对得 5 分,不选或有错选得0分,其他得 3 分.)三、解答题共 6 小题,共85 分.解答应写出文字说明,证明过程或演算步骤.(16)(本小题满分 14 分)解:(Ⅰ)在 ABC 中,由正弦定理,因为3a cos B bsin A ,所以 3 sin Acos B sin Bsin A.⋯⋯⋯⋯⋯ ..2分因为 sin A0 ,所以 3 cos B sin B.所以 tan B 3.⋯⋯⋯⋯⋯ ..4分因为0Bπ,π⋯⋯⋯⋯⋯ ..6 分所以B.3(Ⅱ)因为 b2, c2a,由余弦定理 b2a2c22ac cos B 可得4a24a22a2a1.⋯⋯⋯⋯⋯ ..8分2所以 a 23,c43.⋯⋯⋯⋯⋯ ..12分33所以 S ABC 1acsin B1 2 3 433 2 3 .⋯⋯⋯⋯⋯ ..14 分223323(17)(本小题满分 14 分)解 1;选择①因为 PA平面 ABCD ,所以 PA AD,PA CD .⋯⋯⋯⋯⋯ ..1 分因为 PA AD CD 2 ,所以 PD2 2 .因为 PC2 3 ,所以 CD2PD 2PC2.所以 CD PD .⋯⋯⋯⋯⋯ .4分因为 PAI PD P ,所以 CD平面 PAD .⋯⋯⋯⋯⋯ .6分所以 CD AD .因为 CD BC ,所以 AD// BC.⋯⋯⋯⋯⋯ .7分所以四边形 ABCD 是直角梯形.解 2;选择②因为 PA平面 ABCD ,所以 PA AD,PA CD .⋯⋯⋯⋯⋯ ..1分因为 PA AD CD 2 ,zP所以 PD2 2 .因为 PC2 3 ,E所以CD2PD 2PC2.所以 CD PD .⋯⋯⋯⋯⋯.4因为 PAI PD P ,所以 CD平面PAD .所以 CD AD.因为 BC // 平面 PAD , BC 所以 BC// AD.A Dy 分MB Cx⋯⋯⋯⋯⋯ .6 分平面 ABCD ,平面 PAD I 平面 ABCD =AD ,所以四边形ABCD 是直角梯形.⋯⋯⋯⋯⋯.7分过A作 AD的垂线交 BC于点 M .因为 PA 平面 ABCD ,所以 PA AM , PA AD .⋯⋯⋯⋯⋯.8分如图建立空间直角坐标系 A xyz .⋯⋯⋯⋯⋯.9分则 A(0,0,0), C (2,2,0), D (0,2,0), P(0,0,2) . 因为 E 为 PB 中点, 所以 E(1,1,1).uuur2uuuruuur1 (2,2,(0,2, 2) .⋯⋯⋯⋯⋯ .10 分所以 AE(1,,1),PC 2), PD2r设平面 PCD 的法向量为 n ( x, y, z) ,则 r uuur 0, 2x 2 y 2z 0,n PC r uuur 即 2y 2z 0. ⋯⋯⋯⋯⋯ .11分n PD 0.令 y1,则 z 1, x0 .r (0,1,1)于是 n .⋯⋯⋯⋯⋯ .12 分设直线 AE 与平面 PCD 所成的角为,r uuurr uuur 11 1 1所以 sinn AE2 2.| cos n, AE | ruuur36| n || AE |22所以直线 AE 与平面 PCD 所成角的正弦值为2 .⋯⋯⋯⋯⋯ .14分6(18)(本小题满分 14 分)解:(Ⅰ)因为 (0.05+0.1+0.18+ a0.320.1 0.03 0.02)1 1 ,所以 a0.2 .⋯⋯⋯⋯⋯ .2分因为 0.2 1 100=20 ,所以居家自主学习和锻炼身体总时间该天在 [5,6) 的学生有 20 人.⋯⋯.3 分所以从该校高三年级中随机抽取一名学生, 这名学生该天居家自主学习和锻炼身体总时间在 [5,6) 的概率为20 =0.2 . ⋯⋯⋯⋯⋯ .5分100(Ⅱ)由图中数据可知该天居家自主学习和锻炼身体总时间在[2,3) 和 [8,9) 的人分别有5人和 3 人.⋯⋯⋯⋯⋯.6 分所以 X 的所有可能取值为0,1,2,3.⋯⋯⋯⋯⋯.7 分P( X 0) C 53 5P( X1) C 52C 31 15,C 3,C 3282888P( X 2) C 51C 32 153)C 331⋯⋯⋯⋯⋯.9 分C 3 , P(XC 3 .565688所以 X 的分布列为X0123P51515128285656所以 X 的期望E(X)051152 15319.⋯⋯⋯⋯ .11 分282856568( III )样本中的100 名学生该天居家自主学习和锻炼身体总时间的平均数在[5,6) .⋯14分(19) (本小题满分15 分)c5,a5,a5解:(Ⅰ)由题意得2b4,解得b2,⋯⋯⋯⋯⋯ .3 分a2b2c2 ,c 1.即椭圆的方程为x2y21.⋯⋯⋯⋯⋯ .5分54(Ⅱ)法一由题意,直线l 的斜率存在.当 k 0时,直线l的方程为y1.代入椭圆方程有x 15. 2则 C (15,1), D (15,1) . 22所以 k AC 216216. 15, k AD15151522所以 k AC kAD6612 .⋯⋯⋯⋯⋯ .8分15155当 k0时,则直线 l 的方程为y kx1.y kx1,由x2y2,得 (4 5k 2 ) x210kx150 .⋯⋯⋯⋯⋯.9 分15 4设C( x1 , y1 ) , D ( x2 , y2 ) ,则 x 1 x 210k2, x 1 x215 .⋯⋯⋯⋯ 10 分4 5k 4 5k 2又 A(0, 2) ,所以 k AC y 1 2y 2 2⋯⋯⋯⋯⋯ .11分,k ADx 2 .x 1因为 k ACk AD y 12 y 22 (kx 1 3)( kx 2 3)x 1gx 1x 2x 2k 2 x 1x 2 3k (x 1 x 2 ) 923k ( x 1 x 2 ) 9x 1 x 2kx 1x 23k(10k 2 ) 930k 236 45k 2 12k24 5k k 21515. 54 5k 2即直线 AC 的斜率与直线 AD 的斜率乘积为定值.⋯⋯⋯⋯⋯ .1 5 分法二设直线 l 的斜率为 k ,则直线 l 的方程为 y kx 1 .⋯⋯⋯⋯⋯ .6 分y kx 1,由 x 2 y 2 ,得 (45k 2) x 2 10kx 150 .⋯⋯⋯⋯⋯ .7分154设 C( x 1 , y 1 ) , D ( x 2 , y 2 ) ,则 xx10k , x x15 .⋯⋯⋯⋯⋯ .9 分1 24 5k 2 1 2 4 5k 2又 A(0, 2) ,所以 k ACy 1 2,k AD y 2 2 .⋯⋯⋯⋯⋯ .11分x 1 x 2因为 k ACy 1 2 y 2 2 (kx 1 3)( kx 23)k AD x 1 gx 2 x 1x 2k 2 x 1x 2 3k (x 1 x 2 ) 9k 23k ( x 1 x 2 ) 9x 1 x 2x 1x 23k(10k 2 ) 92 30k 2 36 45k 212k 245k k1515.54 5k 2即直线 AC 的斜率与直线AD 的斜率乘积为定值.⋯⋯⋯⋯⋯ .15 分(20)(本小题满分 14 分)解:(Ⅰ)当 a 1时, f (x) 1 x3x 1.3因为 f'( x) x2 1,⋯⋯⋯⋯⋯ .1分所以 f'(0)1.⋯⋯⋯⋯⋯ .2 分所以曲线 y f (x) 在点 (0,1) 处的切线方程为 x y 10 .⋯⋯⋯⋯⋯.4分( II )定义域为R .因为 f '( x)x2a, a R .①当 a0 时,f'(x)0恒成立 .所以函数 y f(x) 在(-,+) 上单调递增.⋯⋯⋯⋯⋯.5 分②当 a0 时,f'(x)0恒成立 .所以函数 y f( x) 在(-,+) 上单调递增.⋯⋯⋯⋯⋯.6 分③当 a0 时,令f '(x)0 ,则 x a 或 x a .⋯⋯⋯⋯⋯ .7 分所以当 f '(x)0 时, x a 或 x a ;当 f '(x)0时,a x a .⋯⋯⋯⋯⋯ .8分所以函数 y f ( x) 在 (, a ) 和( a,) 上单调递增,在 (a, a ) 上单调递减.⋯⋯⋯⋯⋯.9 分综上可知,当 a0 时,函数y f (x) 在(-,+ ) 上单调递增;当 a0 时,函数y f ( x) 在 (, a ) 和(a,) 上单调递增,在( a , a ) 上单调递减.(III )法一:由(Ⅱ)可知,( 1)当a0 时,函数y f (x) 在(-,+ ) 上单调递增;所以当 x(0,2)时, f min (x) f (0) a.因为 |1 a | =(1 a)a1,所以 f ( x)|1 a | .⋯⋯⋯⋯⋯.10分( 2)当a0 时,函数y f ( x) 在 (, a ) 和( a,) 上单调递增,在( a , a ) 上单调递减.①当 0 a 1,即0 a1时,|1 a | 0.所以当 x(0,2) 时,函数 y f ( x) 在 (0, a ) 上单调递减,( a,2)上单调递增,f min (x) f ( a )1( a )3a a + a3 a( 2a +1) 0 3所以 f ( x)|1a | .⋯⋯⋯⋯⋯ .1 1 分②当 1 a 2 ,即1 a 4 时,|1 a | =1 a 0 .由上可知 fmin ( x) f (a)a(21),a3因为 a(2 a 1)(1a)2a2a a 1 ,33设 g (x)2x x1,(1x4) . 2x3因为 g '(x)2x0,所以 g( x) 在 (1,4) 上单调递增.所以 g( x)g (1)10 .3所以 a(2 a 1)(1a)2a2a a1033所以 f ( x)|1 a |.⋯⋯⋯⋯⋯ .13 分③当 a2,即a4时,|1 a | =1a0 .所以当 x(0,2)时, f min ( x) f (2)81 a .a3所以 f (x)|1 a | .综上可知,当x(0,2)时, f (x)|1 a |.⋯⋯⋯⋯⋯ .14 分(III )法二:因为 f ( x) (|1 a |) f ( x) |1 a |,①当 a 1 时,因为 x (0,2) ,所以所以ax x .f ( x)|1 a | =f ( x) 1 a 1 x3ax 1 1 x3x 1 .⋯⋯⋯⋯⋯10分33②当 a 1 时,f ( x)|1a | = f ( x)a1 1 x3ax2a11 x3a(2x)133因为 x(0,2),所以 a(2x)(2x) .所以 f ( x)|1 a |1x3a(2 x)11x3(2x)11x3x 1 .. 11分1 x3333设 g( x)x 1.3因为 g '( x)x2 1( x1)( x1) ,所以当 g '( x)0 时,x1或 x1,当 g '( x)0 时, 1 x 1.⋯⋯⋯⋯⋯ .12分所以 g(x) 在 (0,1) 上单调递减,在(1,2) 上单调递增.⋯⋯⋯⋯⋯ 13分所以 g( x)g(1)10.min3所以当 x(0,2) 时, f ( x)|1 a | .⋯⋯⋯⋯⋯ .14分(21)(本小题满分 14 分)解:(Ⅰ)数列⑴不是{ a n } 的完全数列;数列⑵是{ a n } 的完全数列.⋯⋯⋯⋯⋯.2分理由如下:数列⑴: 3,5,7,9,11 中,因为3+9=5+7=12,所以数列⑴不是{ a } 的完全数列;数列⑵: 2,4,8,16 中,所有项的和都不相等,数列⑵是{ a n } 的完全数列. ⋯ .4 分(Ⅱ)假设数列{ b k } 长度为 m ≥ 7 ,不妨设 m= 7 ,各项为 b 1 b 2 b 3L b 7 .考虑数列 { b k } 的长度为 2,3,L ,7 的所有子列,一共有27 1 7 120 个.记数列 { b k } 的长度为 2,3,L ,7 的所有子列中, 各个子列的所有项之和的最小值为a ,最大值为 A . 所以 ab 1b 2 , A b 1 b 2 25 24 23 2221 b 1 b 2 115 .所以其中必有两个子列的所有项之和相同. 所以假设不成立.再考虑长度为 6 的子列: 12, 18, 21, 23, 24,25,满足题意 .所以子列 { b k } 的最大长度为 6.⋯⋯⋯⋯⋯ .9分(Ⅲ)数列 { a n } 的子列 { b k } 长度 m 5 ,且 { b k } 为完全数列,且各项为b 1 b 2 b 3 Lb 5 .所以,由题意得,这 5 项中任意 i (1≤ i ≤ 5) 项之和不小于 2i 1 .即对于任意的 1≤ i ≤ 5 ,有 b 1 b 2 Lb i ≥ 2i1 ,即 b 1 b 2i 1.L b i ≥ 1 2 4 L 2对于任意的 1≤ i ≤ 5 , (b 1 1) (b 22) L(b i - 2i 1)≥ 0,设 c i b i 2i 1( (i 1,2,3,4,5) ),则数列 { c i } 的前 j 项和 D j ≥ 0 ( j 1,2,3,4,5) .下面证明: 1 1 11 1≤ 1 1 1 1 1 .b 1 b 2 b 3 b 4b 5 2 4 8 16 1 1 1 1) (1 1 1 11 )因为(1b 1 b 2 b 3b 4 b 524816(1 1) (11) (1 1) (1 1) (1 1 )b 1 2 b 2 4 b 3 8 b 4 16 b 5 b 1 1 b 2 2 b 34 b 4 8 b 516b 12b 2 4b 38b 416b 5D 1 D 2D 1 D 3D 2D 4 D 3D 5 D 4b 12b 2 4b 38b 4 16b 511) D 2(1111) D 4(11)D 5 ≥ 0 ,D 1 (2b 2) D 3(8b 416b 5b 1 2b 24b 34b 3 8b 4 16b 5所以11111≤ 1111131 ,当且仅当b1b2b3b4b524816 16b i 2i 1( i1,2,3,4,5)时,等号成立.所以11111 的最大值为31 .⋯⋯⋯⋯⋯ .14 分b1b2b3b4b516。

2020高考数学(理)必刷试题+参考答案+评分标准 (63)

2020高考数学(理)必刷试题+参考答案+评分标准 (63)

2020高考数学模拟试题(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合,则A∩B=()A.{x|﹣3≤x≤1}B.{x|0≤x≤1}C.{x|﹣3≤x<1}D.{x|﹣1≤x≤0} 2.设复数z=,则|z|=()A.B.C.D.3.在等差数列{a n}中,若a3=5,S4=24,则a9=()A.﹣5B.﹣7C.﹣9D.﹣114.已知幂函数f(x)=xα的图象经过点(3,5),且a=()α,b=,c=logα,则a,b,c的大小关系为()A.c<a<b B.a<c<b C.a<b<c D.c<b<a5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000 户低收入家庭B.在该市从业人员中,低收入家庭共有1800 户C.在该市无业人员中,低收入家庭有4350 户D.在该市大于18 岁在读学生中,低收入家庭有800 户6.平面内不共线的三点O,A,B,满足||=1,||=2,点C为线段AB的中点,若||=,则∠AOB=()A.B.C.D.7.(1+2x﹣)8的展开式中x2y2项的系数是()A.420B.﹣420C.1680D.﹣16808.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍薨.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为()A.B.C.27D.189.函数f(x)=6|sin x|﹣的图象大致为()A.B.C.D.10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为A={(x,y)},设点(x,y)∈A,则z=x+2y的取值范围是()A.[﹣2﹣,2]B.[﹣2,2]C.[﹣2,2+]D.[﹣4,2+] 11.关于函数f(x)=|cos x|+cos|2x|有下列四个结论:①f(x)是偶函数;②π是f(x)的最小正周期;③f(x)在[π,π]上单调递增;④f(x)的值域为[﹣2,2].上述结论中,正确的个数为()A.1B.2C.3D.412.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推,若该数列前n项和N 满足:①N>80②N是2的整数次幂,则满足条件的最小的n为()A.21B.91C.95D.101二、填空题(本大题共4小题,每小题5分,共20分.)13.椭圆=1的离心率是.14.设某总体是由编号为01,02,……,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为.1818 0792 4544 1716 5809 7983 8617第1行6206 7650 0310 5523 6405 0526 6238第2行15.已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为.16.已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点E.若SA=AB=3,则△SED面积的最小值为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每道试题考试必须作答,第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.在△ABC中,内角A,B,C的对边分别是a,b,c,且(a﹣b)2=c2﹣ab.(1)求角C;(2)若4c cos(A+)+b sin C=0,且a=1,求△ABC的面积.18.如图,在三棱锥P﹣ABC中,AC=BC,AB=2BC,D为线段AB上一点,且AD=3DB,PD⊥平面ABC,PA与平面ABC所成的角为45°.(1)求证:平面PAB⊥平面PCD;(2)求二面角P﹣AC﹣D的平面角的余弦值.19.已知椭圆C:+y2=1,不与坐标轴垂直的直线l与椭圆C相交于M,N两点.(1)若线段MN的中点坐标为(1,),求直线l的方程;(2)若直线l过点P(p,0),点Q(q,0)满足k QM+k QN=0,求pq的值.20.某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为x A x B x C x D,家长猜测的序号依次为y A y B y C y D,其中x A x B x C x D和y A y B y C y D都是1,2,3,4四个数字的一种排列.定义随机变量X=(x A﹣y A)2+(x B﹣y B)2+(x C﹣y C)2+(x D﹣y D)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.21.已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).(1)讨论f(x)的单调性;(2)若f(x)≤0恒成立,求e a(b﹣1)的最大值.四、(二)选考题:请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.[选修4-5:不等式选讲]23.已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合,则A∩B=()A.{x|﹣3≤x≤1}B.{x|0≤x≤1}C.{x|﹣3≤x<1}D.{x|﹣1≤x≤0}【解答】解:解一元二次不等式x2+2x﹣3≤0得:﹣3≤x≤1,即A={x|﹣3≤x≤1},解根式不等式<2得:0≤x<4,即B={x|0≤x<4},即A∩B=,故选:B.2.设复数z=,则|z|=()A.B.C.D.【解答】解:z====﹣﹣i,则|z|====,故选:D.3.在等差数列{a n}中,若a3=5,S4=24,则a9=()A.﹣5B.﹣7C.﹣9D.﹣11【解答】解:数列{a n}为等差数列,设首项为a1,公差为d,∵a3=5,S4=24,∴a1+2d=5,4a1+d=24,联立解得a1=9,d=﹣2,则a9=9﹣2×8=﹣7.故选:B.4.已知幂函数f(x)=xα的图象经过点(3,5),且a=()α,b=,c=logα,则a,b,c的大小关系为()A.c<a<b B.a<c<b C.a<b<c D.c<b<a【解答】解:∵幂函数f(x)=xα的图象经过点(3,5),∴3α=5,∴α=log35∈(1,2),∴0<a=()α<1,b=>1,c=logα<logα1=0,∴c<a<b.故选:A.5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000 户低收入家庭B.在该市从业人员中,低收入家庭共有1800 户C.在该市无业人员中,低收入家庭有4350 户D.在该市大于18 岁在读学生中,低收入家庭有800 户【解答】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确;该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确;该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确;该市大于18 岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.6.平面内不共线的三点O,A,B,满足||=1,||=2,点C为线段AB的中点,若||=,则∠AOB=()A.B.C.D.【解答】解:延长OC到E,使得CE=OC=,连AE,BE,则四边形OAEB为平行四边形,∴BE=1,∴cos∠OBE==,∴∠OBE=,∴∠AOB=π﹣∠OBE=π﹣=.故选:C.7.(1+2x﹣)8的展开式中x2y2项的系数是()A.420B.﹣420C.1680D.﹣1680【解答】解:(1+2x﹣)8的展表示8个因式(1+2x﹣)的乘积,故其中有2个因式取2x,有2个因式取﹣,其余的4个因式都取1,可得含x2y2的项.故展开式中x2y2项的系数是•22•••=420,故选:A.8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍薨.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为()A.B.C.27D.18【解答】解:原图为正四棱台,两底的长分别为2和6,高为2,该刍薨的体积为,故选:B.9.函数f(x)=6|sin x|﹣的图象大致为()A.B.C.D.【解答】解:f(﹣x)=f(x),则f(x)为偶函数,图象关于y轴对称,排除C,f(π)=1﹣<0,排除B,f()=6﹣≈6﹣>4,排除D,故选:A.10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为A={(x,y)},设点(x,y)∈A,则z=x+2y的取值范围是()A.[﹣2﹣,2]B.[﹣2,2]C.[﹣2,2+]D.[﹣4,2+]【解答】解:如图,作直线x+2y=0,当直线上移与圆x2+(y﹣1)2=1相切时,z=x+2y 取最大值,此时,圆心(0,1)到直线z=x+2y的距离等于1,即,解得z的最大值为:2+,当下移与圆x2+y2=4相切时,x+2y取最小值,同理,即z的最小值为:﹣2,所以z∈.故选:C.11.关于函数f(x)=|cos x|+cos|2x|有下列四个结论:①f(x)是偶函数;②π是f(x)的最小正周期;③f(x)在[π,π]上单调递增;④f(x)的值域为[﹣2,2].上述结论中,正确的个数为()A.1B.2C.3D.4【解答】解:f(x)=|cos x|+cos|2x|=|cos x|+2cos2|x|﹣1,由cos|x|=cos x,可得f(x)=|cos x|+2cos2x﹣1=2|cos x|2+|cos x|﹣1,由f(﹣x)=2|cos(﹣x)|2+|cos(﹣x)|﹣1=f(x),则f(x)为偶函数,故①正确;可令t=|cos x|,可得g(t)=2t2+t﹣1,由y=|cos x|的最小正周期π,可得f(x)的最小正周期为π,故②正确;由y=cos x在[﹣,0]递增,在[0,]递减,可得f(x)在[,π]递增,在[π,]递减,故③错误;由t∈[0,1],g(t)=2(t+)2﹣,可得g(t)在[0,1]递增,则g(t)的值域为[﹣1,2],故④错误.故选:B.12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推,若该数列前n项和N 满足:①N>80②N是2的整数次幂,则满足条件的最小的n为()A.21B.91C.95D.101【解答】解:依题意,因为N满足条件①N>80②N是2的整数次幂,所以S n=N=2k,(k∈N*,且k≥7)如图:第m行各项的和为2m﹣1,前m行之和=(21﹣1)+(22﹣1)+……+(2m﹣1)=(2+22+23+……+2m)﹣m=2m+1﹣m﹣2,设满足条件的n在第m+1行,则前m行之和为2m+1﹣m﹣2≤2m+1,故N=2m+1,则m+2=1+2+4+……+2s,则满足条件的m的最小值为13,且N为第14行的第4项.所以n=+4=95.故选:C.二、填空题(本大题共4小题,每小题5分,共20分.)13.椭圆=1的离心率是.【解答】解:由椭圆的标准方程可知,a=2,b=,∴c==1∴e==.故答案为:.14.设某总体是由编号为01,02,……,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为06.1818 0792 4544 1716 5809 7983 8617第1行6206 7650 0310 5523 6405 0526 6238第2行【解答】解:由题意依次选取的样本编号为:18,07,17,16,09,(17重复,舍去)06;所以选出来的第6个个体编号为06.故答案为:06.15.已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为.【解答】解:抛物线C:y2=ax(a>0)的焦点为F(,0),准线方程为x=﹣,可得直线AF的方程为y=1﹣x,设M(x1,y1),N(﹣,y2),可得y2=1﹣•(﹣)=2,由|FM|:|MN|=1:2,可得=,可得y1=,代入直线方程可得x1=,代入抛物线方程可得=a•,可得a=.故答案为:.16.已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点E.若SA=AB=3,则△SED面积的最小值为.【解答】解:设BE=x,EC=y,则BC=AD=x+y,∵SA⊥平面ABCD,ED⊂平面ABCD,∴SA⊥ED,∵AE⊥ED,SA∩AE=A,∴ED⊥平面SAE,∴ED⊥SE,由题意得AE=,ED=,在Rt△AED中,AE2+ED2=AD2,∴x2+3+y2+3=(x+y)2,化简,得xy=3,在Rt△SED中,SE=,ED==,∴S△SED==,∵3x2+≥2=36,当且仅当x=,时,等号成立,∴=.∴△SED面积的最小值为.故答案为:.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每道试题考试必须作答,第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.在△ABC中,内角A,B,C的对边分别是a,b,c,且(a﹣b)2=c2﹣ab.(1)求角C;(2)若4c cos(A+)+b sin C=0,且a=1,求△ABC的面积.【解答】(1)由(a﹣b)2=c2﹣ab,得a2+b2﹣c2=ab,所以由余弦定理,得,又因为C∈(0,π),所以;(2)由,得,得﹣4c sin A+b sin C=0,由正弦定理,得4ca=bc.因为c≠0,所以4a=b,又因a=1,所以b=4,所以△ABC的面积.18.如图,在三棱锥P﹣ABC中,AC=BC,AB=2BC,D为线段AB上一点,且AD=3DB,PD⊥平面ABC,PA与平面ABC所成的角为45°.(1)求证:平面PAB⊥平面PCD;(2)求二面角P﹣AC﹣D的平面角的余弦值.【解答】解:(1)证明:∵AC=BC,AB=2BC,∴,∴AB2=AC2+BC2,∴AC⊥BC,在Rt△ABC中,由AC=BC,得∠CAB=30°,设BD=1,由AD=3BD,得AD=3,BC=2,AC=2,在△ACD中,由余弦定理得CD2=AD2+AC2﹣2AD•AC cos30°=3,∴CD=,∴CD2+AD2=AC2,∴CD⊥AD,∵PD⊥平面ABC,CD⊂平面ABC,∴PD⊥CD,又PD∩AD=D,∴CD⊥平面PAB,又CD⊂平面PCD,∴平面PAB⊥平面PCD.(2)解:∵PD⊥平面ABC,∴PA与平面ABC所成角为∠PAD,即∠PAD=45°,∴△PAD为等腰直角三角形,PD=AD,由(1)得PD=AD=3,以D为坐标原点,分别以DC,DB,DP所在直线为x,y,z轴,建立空间直角坐标系,则D(0,0,0),C(,0,0),A(0,﹣3,0),P(0,0,3),=(0,﹣3,﹣3),=(),则==(0,0,3)是平面ACD的一个法向量,设平面PAC的一个法向量=(x,y,z),则,取x=,得=(,﹣1,1),设二面角P﹣AC﹣D的平面角为θ,则cosθ==,∴二面角P﹣AC﹣D的平面角的余弦值为.19.已知椭圆C:+y2=1,不与坐标轴垂直的直线l与椭圆C相交于M,N两点.(1)若线段MN的中点坐标为(1,),求直线l的方程;(2)若直线l过点P(p,0),点Q(q,0)满足k QM+k QN=0,求pq的值.【解答】解:(1)设M(x1,y1),N(x2,y2),则,两式相减,可得,①由题意可知x1+x2=2,y1+y2=1,代入①可得直线MN的斜率k==﹣,所以直线MN的方程y﹣=﹣(x﹣1),即x+2y﹣2=0,所以直线MN的方程x+2y﹣2=0;(2)由题意可知设直线MN的方程y=k(x﹣p),M(x1,y1),N(x2,y2),联立,整理得(1+4k2)x2﹣8k2px+4k2p2﹣4=0,则x1+x2=,,x1x2=,由k QM+k QN=0,则+=0,即y1(x2﹣q)+y2(x1﹣q)=0,∴k(x1﹣p)(x2﹣q)+k(x2﹣p)(x1﹣q)=0,化简得2x1x2﹣(p+q)(x1+x2)+2pq =0,∴﹣﹣+2pq=0,化简得:2pq﹣8=0,∴pq=4.20.某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为x A x B x C x D,家长猜测的序号依次为y A y B y C y D,其中x A x B x C x D和y A y B y C y D都是1,2,3,4四个数字的一种排列.定义随机变量X=(x A﹣y A)2+(x B﹣y B)2+(x C﹣y C)2+(x D﹣y D)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.【解答】解:(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为x A,x B,x C,x D为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序x A,x B,x C,x D为1423的情况,四种食物按1234的排列为ACDB,再研究y A y B y C y D的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820 P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.21.已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).(1)讨论f(x)的单调性;(2)若f(x)≤0恒成立,求e a(b﹣1)的最大值.【解答】解:(1)①当a>0时,则f(x)的定义域为(﹣,+∞),=,由f′(x)=0,得x=1﹣>﹣,所以f(x)在(﹣,1﹣)单调递增,在(1﹣,+∞)单调递减,②当a<0时,则f(x)的定义域为(﹣∞,﹣),由f′(x)=0得x=1﹣>﹣,所以f(x)在(﹣∞,﹣)单调递减,(也可由符合函数单调性得出).(2)由(1)知:当a<0时,取x0<且x0<0时,f(x0)>ln(a×+b)﹣x0>0,与题意不合,当a>0时,f(x)max=f(1﹣)=lna﹣1+≤0,即b﹣1≤a﹣alna﹣1,所以e a(b﹣1)≤(a﹣alna﹣1)e a,令h(x)=(x﹣xlnx﹣1)e x,则h′(x)=(x﹣xlnx﹣lnx﹣1)e x,令u(x)=x﹣xlnx﹣lnx﹣1,则u′(x)=﹣lnx﹣,则u″(x)=,u′(x)在(0,1)上单调递增,在(1,+∞)上单调递减.则u′(x)max=u′(1)<0,从而u(x)在(0,+∞)单调递减,又因为u(1)=0.所以当x∈(0,1)时,u(x)>0,即h′(x)>0;当x∈(1,+∞)时,u(x)<0,即h′(x)<0,则h(x)在(0,1)单调递增,在(1,+∞)单调递减,所以h(x)max=h(1)=0.四、(二)选考题:请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.【解答】解:(1)曲线C的参数方程为(m为参数),两式相加得到m,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.[选修4-5:不等式选讲]23.已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.【解答】解:(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,∴.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥8,∴2xy⋅2yz⋅2xz的最小值为8.。

北京市2020年石景山区高三统一测试数学附答案与评分标准

北京市2020年石景山区高三统一测试数学附答案与评分标准

17.(本小题 14 分)
2020 年,北京将实行新的高考方案.新方案规定:语文、数学和英语是考生的必考科 目,考生还需从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考 科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确 定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考 科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
1 两名男生选考案相同
18.(本小题 14 分)
已知锐角 △ABC ,同时满足下列四个条件中的三个:
2020 年石景山区高三统一测试
数学
本试卷共 6 页,满分为 150 分,考试时间为 120 分钟.请务必将答案答在答题卡上, 在试卷上作答无效,考试结束后上交答题卡.
第一部分(选择题 共 40 分)
一、选择题共 10 小题,每小题 4 分,共 40 分.在每小题列出的四个选项中,选出符合题
目要求的一项.
f
(
x)
1 x
0
x 0 ;② f (x) x2 ;③ f (x) | x2 1| ; x0
具有性质 P 的函数的个数为
A. 0
B. 1
C. 2
D. 3
高三数学试题第 2页(共 6页)
10. 点 M ,N 分别是棱长为 2 的正方体 ABCD A1B1C1D1 中棱 BC,CC1 的中点,动点
1. 设集合 P {1,2,3,4} , Q {x || x | 3, x R} ,则 P Q 等于
A. 1
B. 1, 2,3
C. 3,4
D. 3, 2, 1, 0,1, 2,3
2. 在复平面内,复数 5+6i , 3-2i 对应的点分别为 A,B.若 C 为线段 AB 的中点,则点 C 对应的复数是

2020年郑州市高三三测数学文科试题评分标准

2020年郑州市高三三测数学文科试题评分标准

2020年郑州市高三三测数学文科试题评分参考一、选择题二、填空题13. 8 ; 14.11; 15.6; 16.3.17- 三、解答题 17.(1)由2561,4141==a a ,得41,641143=∴==q a a q ,所以n n a )41(=.……………2分 23)41(log 324-=--=n b n n .……………………………………5分由(1),得)131231(31)13)(23(111+--=+-==+n n n n b b c n n n ,………8分 S n =13(1−14+14−17+⋯+13n−2−13n+1)=13(1−13n+1)=n3n+1.12分18.(1)因为.024.5357.5708050100)20406030(150K 22>≈⨯⨯⨯⨯-⨯=,……………2分 所以有97.5%的把握认为参与马拉松赛事与性别有关.……………3分 (2)(i )根据分层抽样方法得,男生6438=⨯人,女生2人, 所以选取的8人中,男生有6人,女生有2人.……………5分 (ii )设抽取的6名男生分别为F E D C B A ,,,,,,2名女生为b a ,;从中抽取两人,分别记为(A,B),),(),,(),,(),,(F A E A D A C A ,),(),,(b A a A ,(B,C),),(),,(),,(F B E B D B ,),(),,(b B a B ,),(),,(),,(),,(),,(b C a C F C E C D C ,),(),,(F D E D ,),(),,(b D a D ,),(),,(),,(b E a E F E ,),(),,(),,(b a b F a F 共28种情形,……………8分其中2男的共15种情形,……………10分 所以,所求概率2815=p .……………12分19.(1)证明:由题意222PB AB PA =+, 所以∠BAP =90°,则PA ⊥AB ,……………2分又侧面PAB ⊥底面ABCD ,面PAB ∩面ABCD =AB ,PA ⊂面PAB , 则PA ⊥面ABCD .……………4分BD ⊂面ABCD ,则PA ⊥BD ,又因为∠BCD =120∘,ABCD 为平行四边形, 则∠ABC =60∘,又AB =AC ,则ΔABC 为等边三角形,则ABCD 为菱形,则BD ⊥AC . 又PA ∩AC =A ,则BD ⊥面PAC .……………6分 (2)由ACD P PAC M V V --=21,则M`为PB 中点, 由AB =AC =2,∠BCD =120°,得BD =2√3.……………8分 由(I )知,,21PAB D PAB M AMB P V V V ---==……………10分1112223P ABD V -==⨯=……………12分 20.⑴由题易知C 1的半径r 1=√3,C 2圆的半径r 2=2.……………2分又∵椭圆与C 1、C 2同时相切,则212,a r b r ==⎧⎪⎨==⎪⎩……………4分则C :x 24+y 23=1.……………5分⑵①当l 斜率为0时,l 与椭圆C 相切,不符合题意.……………6分 ②l 斜率不为0时,设l :x =my +n , 原点到l 的距离d =√2=r 1=√3.则n 2=3m 2+3 (i )由22,1,43x my n x y =+⎧⎪⎨+=⎪⎩……………7分可得:(3m 2+4)y 2+6mny +3n 2−12=0, 设A (x 1,y 1) B (x 2,y 2),由求根公式得: y 1+y 2=−6mn3m 2+4,y 1y 2=3n 2−123m 2+4,|AB |=√m 2+1√(y 1+y 2)2−4y 1y 2=√m 2+1√48(3m 2−n 2+4)(3m 2+4)2,将(i )代入得|AB |=√m 2+14√33m +4=√3√2+1+12,……………9分令t =2+1则t ≥1,g (t )=3t +1t在[1,+∞)上单调递增,……………11分则t =1,即m =0时,|AB |max =√3.……………12分21.(1)依题意知f (x )的定义域为(0,+∞),……………1分 当6=m 时,,52ln )(2x x x x f -+=∴,)1)(14(541)(xx x x x x f --=-+='……………2分 令0)(=x f ,解得41,1==x x则当0<x <14或x >1时,f ′(x )>0,f (x )单调递增,……………3分 当14<x <1时,f ′(x )<0,)(x f 单调递减.……………4分 ∴所以当1=x 时函数)(x f 取得极小值,且极小值为3)1(-=f , 当41=x 时函数)(x f 取得极大值,且极大值为894ln )41(--=f .…………5分 (2)由22)(x x f =,可得x m x )1(ln -=, 又x >0,所以lnx x=m −1,1ln +=∴xxm .……………7分 令g (x )=1+lnx x(x >0),则g ′(x )=1−lnx x 2,由g ′(x )≥0,得1≤x ≤e ;由g ′(x )≤0,得4≤≤x e ,……………8分 ∴ g (x )在区间[1,e]上是增函数,在区间]4,[e 上是减函数.∴当x =e 时函数g (x )有最大值,且最大值为g (e )=1+1e ,……………9分又,22ln 1)4(g ,1)1(g +==……………10分 ∴ 当em 1122ln 1+<≤+时,方程在区间]4,1[上有两个实数解.……………11分 ∴实数m 的取值范围为em 1122ln 1+<≤+.……………12分 22.(Ⅰ)曲线1C 的普通方程为:0sin cos sin =--θθθy x ,曲线2C 的普通方程为:13422=+y x ;………………………………………………5分 (Ⅱ)将⎩⎨⎧θ=θ+=.sin t ,cos t 1:1y x C (t 为参数)代入2C :13422=+y x 化简整理得:(sin 2θ+3)t 2+6tcosθ−9=0, 设A 、B 两点对应的参数分别为t 1、t 2,则Δ=36cos 2θ+36(sin 2θ+3)=144>0恒成立, t 1+t 2=−6cosθsin 2θ+3,t 1t 2=−9sin 2θ+3,∴|PA |+|PB |=|t 1|+|t 2|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=12sin 2θ+3,∵sin 2θ∈[0,1] ∴|PA |+|PB |∈[3,4].……………………………………………10分 23.(1)当3=m 时,1213)(-++=x x x f ,原不等式4)(>x f 等价于⎪⎩⎪⎨⎧>--<4531x x 或⎪⎩⎪⎨⎧>+≤≤-422131x x 或⎪⎩⎪⎨⎧>>4521x x ,解得:54-<x 或无解或54>x , 所以,4)(>x f 的解集为),54()54,(+∞--∞Y .………………………………………5分(2)02,02,211,20<->+<-∴<<m m m m Θ.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+≤≤-+--<+-=-++=21,)2(,211,2)2(,1,)2(121)(x x m x m x m m x x m x mx x f所以函数)(x f 在)1,(m --∞上单调递减,在]21,1[m -上单调递减,在),21(+∞上单调递增. 所以当x =12时,f(x)取得最小值,21)21()(min m f x f +==.因为对任意m x f R x 23)(,≥∈恒成立,所以mm x f 2321)(min ≥+=.又因为0>m ,所以0322≥-+m m ,解得1≥m (3-≤m 不合题意).所以m 的最小值为1.……………………………………………10分。

2020年重庆市高三学业检测(第二次)-文科数学(含答案、评分细则)

2020年重庆市高三学业检测(第二次)-文科数学(含答案、评分细则)

2020年重庆市高三学业抽测(第二次)文科数学一、选择题:1. 已知集合22{|230},{|log 1}A x x x B x x =--≤=>,则=B A YA .(2)+∞,B .]3,2(C .]3,1[- D. ),1[+∞- 2. 欧拉公式i cos isin xe x x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指 数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数理论里 非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,7πi 5e 表示的复数位于复平面中的A .第一象限B .第二象限C .第三象限D .第四象限3. 在停课不停学期间,某学校组织高三年级学生参加网络数学测试,测试成绩的频率分布直方图如下图,测试成绩的分组为[10,30),[30,50),[50,70),[70,90),[90,110),[110,130),[130,150],若低于70分的人数是175人,则该校高三年级的学生人数是A .350B .500C .600D .10004.已知点1(2,)8在幂函数()nf x x =的图象上,设3()3a f =,(ln π)b f =,2()2c f =, 则a ,b ,c 的大小关系为A .b a c <<B .a b c <<C .b c a <<D .a c b <<5. 已知点22(sin,cos )33P ππ落在角θ的终边上,且02θπ∈(,),则θ的值为 A .3π B .23π C .53π D .116π6. 已知:p x k ≥,2:11q x <+,若p 是q 的充分不必要条件,则实数k 的取值范围是A .[1,)+∞B .(1,)+∞C .(,1]-∞-D .(,1)-∞-7. 某街道招募了志愿者5人,其中1人来自社区A ,2人来自社区B ,2人来自社区C .现从中随机选取2个志愿者参加抗击新型冠状病毒活动,则这2人来自不同社区的概率为频率 组距0.005 0.01 分) 0.0075 0.0125 0.015 10 30 50 70 90 110 130 150 0.0025(第3题图)A .35B .34C .710 D .458.已知函数()cos (0)f x x x ωωω=->, 1()2f x =, 2()2f x =-,且12||x x -最小值为2π,若将()y f x =的图象沿x 轴向左平移ϕ(0)ϕ>个单位,所得图象关于原点对 称,则实数ϕ的最小值为 A.12πB.6π C.3π D.712π 9. 设实数x 、y满足y =54y x +-的最大值为 A .12- B .2- C .12 D .210. 已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线C 交于M ,N 两点,若4PF MF =u u u r u u u r,则||MN =A .32B .3C .92D .911. 已知(34)2,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩对任意1x ,2(,)x ∈-∞+∞且12x x ≠,都有1212()()0f x f x x x ->-,那么实数a 的取值范围是A .(1,)+∞B .(0,1)C .4(,2]3D .4(,4]312. 两球1O 和2O 在棱长为2的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为A.3(2π B.4(2π C.6(2π D.12(2π 二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡相应的位置上.13. 设非零向量,a b r r 满足()a a b ⊥-r r r ,且||2||b a =r r,则向量a r 与b r 的夹角为________. 14. 在高台跳水运动中,某运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系式24.9 6.510h t t =-++,则该运动员在2t =时的瞬时速度是 (/)m s .15. 设ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos sin cos sin a B C b A C c +=,则ABC △外接圆的面积是 .16. 已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,一条渐近线为l ,过点2F且与l 平行的直线交双曲线C 于点M ,若12||2||MF MF =,则双曲线C 的离心率为 . 三、解答题:共70分.解答时应写出必要的文字说明、演算步骤或推理过程.并答在答题卡相应的位置上.第17题第21题为必考题,每个试题考生都必须做答.第22题第23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分为12分)一奶茶店制作了一款新奶茶,为了进行合理定价先进行试销售,其单价(元)与销量(杯)的相关数据如下表:(Ⅰ)已知销量与单价具有线性相关关系,求关于的线性回归方程;(Ⅱ)若该款新奶茶每杯的成本为元,试销售结束后,请利用(Ⅰ)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果保留到整数)参考公式:线性回归方程ˆˆy bxa =+中斜率和截距最小二乘法估计计算公式: ,,参考数据:514195i ii x y ==∑,.18.(本小题满分为12分)已知数列{}n a 的前n 项和为n S ,11a =,121n n a S +=+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设31log ()n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:12111...2nT T T +++<.x y y x y x 7.71221ni ii ni i x y nx ybx nx==-=-∑∑$$a y bx =-$521453.75i i x ==∑19.(本小题满分为12分)如图,平面平面,其中为矩形,为直角梯形,,,.(Ⅰ)求证:FD ⊥平面ABCD ; (Ⅱ)若三棱锥B ADF -的体积为13, 求点A 到面BDF 的距离.(第19题图)20.(本小题满分为12分)已知函数,.(为自然对数的底数)(Ⅰ)若对于任意实数,恒成立,试确定的取值范围;(Ⅱ)当时,函数在上是否存在极值?若存在,请求出这个极值;若不存在,请说明理由.21.(本小题满分12分)已知圆22:(2)24C x y ++=与定点(2,0)M ,动圆I 过M 点且与圆C 相切,记动圆圆心I 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)斜率为k 的直线l 过点M ,且与曲线E 交于,A B 两点,P 为直线3x =上的一点,若ABP∆为等边三角形,求直线l 的方程.ABCD ⊥ADEF ABCD ADEF AF DE ∥AF FE ⊥222AF EF DE ===()()xf x e ax a =+∈R ()ln xg x e x =e 0x ≥()0f x >a 1a =-()()()M x g x f x =-[1,]e(二)选考题:共10分.请考生在第22、23题中任选一题作答.如多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系中,直线的参数方程为222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)已知点的直角坐标为(2,0),直线和曲线交于、两点,求的值.23.【选修4-5:不等式选讲】(本小题满分10分)已知2()2f x x a =+.(Ⅰ)当2a =时,求不等式()15f x x +-≥的解集;(Ⅱ)若对于任意实数x ,不等式23()2x f x a +-<成立,求实数a 的取值范围.xOy l t O x C l C M l C A B 11||||MA MB +文科数学参考答案及评分意见一、选择题:15:;610:;1112:DCBCD BDAAC DD :::.二、填空题:13. 14.13.1- 15.π416三、解答题:17.解:(Ⅰ)由表中数据,计算,1(120110907060)905y =++++=, (2)分则5152221419559.59032453.7559.5i ii ii x y nx ybxnx==--⨯⨯===--⨯-∑∑$,$90329.5394a y bx =-=+⨯=$, 所以关于的线性相关方程为$32394y x =-+........................................6分(Ⅱ)设定价为元,则利润函数为(32394)(7.7)y x x =-+-,其中,..............8分 则232640.43033.8y x x =-+-,所以640.4102(32)x =-≈⨯-(元),........................11分为使得销售的利润最大,确定单价应该定为元........................................12分 18.解:(Ⅰ)因为121n n a S +=+,所以2n ≥,121n n a S -=+,..........................2分 两式相减化简得13n n a a +=(2)n ≥,...................................................4分 又11a =,所以23a =,213a a =符合上式,所以{}n a 是以1为首项,以3为公比的等比数列,所以13n n a -=.........................6分 (Ⅱ)由(Ⅰ)知31log ()n n n b a a +=g 13log 3321n nn -=⨯=-,所以2(121)2n n n T n +-==,.....8分3π1(8.599.51010.5)9.55x =⨯++++=y x x 7.7x ≥10所以22212111111111......1...121223(1)n T T T n n n+++=+++<++++⋅⋅-....................10分 11111111...222231n n n=+-+-++-=-<-.........................................12分19.解:(Ⅰ)证明:作DHAF ⊥于H ,∵,, ∴,∴,...............2分∵,∴,∴,∴,即,................4分∵面面,为两个面的交线,∴面......................6分 (Ⅱ)因为平面平面,,所以平面,,所以,又AD DF ==.............9分∴,2BDF S =V ,设点A 到面BDF 的距离为h ,则11332h =⨯,3h =...12分 20.解:(Ⅰ)∵对于任意实数,恒成立, ∴若,则为任意实数时,恒成立;....................................1分若,恒成立,即在上恒成立,......................2分设,则,.....................................3分 当时,,则在上单调递增; 当时,,则在上单调递减; 所以当时,取得最大值,,所以的取值范围为,综上,对于任意实数,恒成立的实数的取值范围为................5分AF FE ⊥222AF EF DE ===1HF DH==45HDF ∠=︒2AF =1AH=45ADH ∠=︒90ADF ∠=︒DFAD ⊥ABCD ⊥ADEF AD FD ⊥ABCD ABCD ⊥ADEFAB AD⊥AB ⊥ADEF111||1||333B ADF ADF V S AB AB -∆=⨯⨯=⨯⨯=1AB=BD =0x ≥()0f x >0x =()0xf x e=>0x >()0xf x e ax =+>xe a x >-0x >()x e Q x x =-22(1)()x x xxe e x e Q x x x--⋅'=-=(0,1)x ∈()0Q x '>()Q x (0,1)(1,)x ∈+∞()0Q x '<()Q x (1,)+∞1x =()Q x max ()(1)Q x Q e ==-a (,)e -+∞0x ≥()0f x >a (,)e -+∞(Ⅱ)依题意,,所以,....................................6分设,则,.......................................8分 当,,故在上单调增函数, 因此在上的最小值为,即,.................10分 又,所以在上,,所以在上是增函数,即在上不存在极值..............12分 21.解:(Ⅰ)设圆的半径为,题意可知,点满足:,,所以,,由椭圆定义知点的轨迹是以为焦点的椭圆,.................................3分 所以故轨迹方程为:. .................................................5分(Ⅱ)直线的方程为,联立 消去得. 直线恒过定点,在椭圆内部,所以恒成立,设,,则有, ..................7分 ()ln xx M x e x e x =-+1()ln 1(ln 1)1x x x x e M x e x e x e x x'=+-+=+-⋅+1()ln 1h x x x =+-22111()x h x x x x-'=-+=[1,]x e ∈()0h x '≥()h x [1,]e()h x [1,]e (1)0h=1()ln 1(1)0h x x h x=+-≥=0x e >[1,]e 1()(ln 1)10xM x x e x'=+-⋅+>()M x [1,]e ()()()M x g x f x =-[1,]e I r I ||IC r =||IM r =||||IC IM+=I ,C M 2a c ==b =E 22162x y +=l (2)y k x =-2212(62)x y y k x ⎧+=⎪⎨⎪=-⎩y ()222231601212k x k x k +--+=(2)y k x =-(2,0)0∆>11(,)A x y 22(,)B x y 21221231k x x k +=+212212631k k x x -⋅=+21221)|||31k AB x x k +=-==+设的中点为,则,,直线的斜率为(由题意知0k ≠),又P 为直线上的一点,所以 ,......................................9分 当为等边三角形时,,解得,即直线的方程为或........................12分22.解:(Ⅰ)将222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩中参数消去得20x y --=,............................2分 将代入2sin 8cos ρθθ=,得28y x =,∴直线和曲线的直角坐标方程分别为20x y --=和28y x =.........................5分 (ii )将直线的参数方程代入曲线的普通方程,得2320t --=, 设、两点对应的参数为、,则,,且12t t +=1232t t =-,∴16,.............................. ..........8分 ∴12=...............................10分 23.解:(Ⅰ)当时,()|1||24||1|5f x x x x +-=++-≥,则得; .................................................2分AB 00(,)Q x y 202631k x k =+02231k y k =-+PQ 1k-3x =3P x =2023(1)|||31P k PQ x x k +=-=+ABP ∆||||2PQ AB =223(1)31k k +=+1k =±l 20x y --=20x y +-=t cos sin x y ρθρθ=⎧⎨=⎩l C l C A B 1t 2t 1||||MA t =2||||MB t =1212||||||8t t t t +=-==1212121212||||||11111||||||||||||t t t t MA MB t t t t t t +-+=+===2a =22415x x x <-⎧⎨---+≥⎩83x ≤-得; ..................................................3分 得, ....................................................4 分 所以的解集为....................................5分(Ⅱ)对于任意实数,不等式成立,即恒成立,又因为,................................7分 要使原不等式恒成立,则只需, 由得所以实数的取值范围是. ...................................................10分212415x x x -≤≤⎧⎨+-+≥⎩01x ≤≤12415x x x >⎧⎨++-≥⎩1x >()15f x x +-≥8(,][0,)3-∞-+∞U x 23()2x f x a +-<22322x x a a +-+<2222322323x x a x x a a +-+≤+--=-232a a -<2232a a a -<-<13a <<a (1,3)。

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

5.
已知函数
f
(
x)
1
x x
2
sin x ,则函数 y
f (x) 的图像大致为
A.
B.
C.
D.
6.从区间 0,1随机抽取 2n 个数 x1, x2 ,, xn , y1, y2 ,, yn ,组成坐标平面上的 n 个点
(x1, y1 ) ,(x2 , y2 ) ,… (xn , yn ) ,其中到原点距离小于1的点有 m 个,用随机模拟的
A.20100
B.20200
C.40200
D.40400
12.在棱长为 4 的正方体 ABCD A1B1C1D1 中, E, F 分别为 AA1, BC 的中点,点 M 在
棱 B1C1 上, B1M
1 4
B1C1
,若平面
FEM

A1B1 于点 N
,四棱锥 N
BDD1B1 的五
个顶点都在球 O 的球面上,则球 O 半径为
A(3, 0, 0) , B(0, 3, 0) , S(0, 3 , 3 3 ) , C(1,0,0) , 22
上.
(1)求曲线 C 的普通方程及直线 l 的直角坐标方程. (2)求△PAB 面积的最大值.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f (x) | 2x t | ,若 f (x) 1的解集为 (1,0) . (1)求 t 并解不等式 f (x) x 2 ; (2)已知: a,b R ,若 f (x) 2a b | 2x 2 | ,对一切实数 x 都成立, 求证: a 2b 1 .
3
2
根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

门头沟区2020年高三综合练习评分标准数学 2020.3一、选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.复数2(1)i i +的模为 ( ) A.12B. 1C. 2D. 222.集合2{2,},{230}A x x x R B x x x =>∈=-->,则A B =I ( )A. (3,)+∞B. (,1)(3,)-∞-+∞UC. (2,)+∞D. (2,3)3.已知双曲线22:194x y C -=,则C 的渐近线方程为 ( )A .94y x =±B .49y x =±C .32y x =±D .23y x =±4. 若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为 A. 21 B. 63 C. 13 D. 845.某几何体的三视图如图所示,三视图是腰长 为1的等腰直角三角形和边长为1的正方形, 则该几何体中最长的棱长为236 解:由题意可知,此几何体如图所示,底面为一个直角3三角形,高为1,6. 设向量,a b r r 满足 2,1b a ==r r ,且b r 与a r 的夹角为θ。

则“b a -=r r ”是“3πθ=”的A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既不充分也不必要条件解:412313b a a b a b πθ-=⇔+-⋅=⇔⋅=⇔=r r r r r r 选C 【利用向量几何运算更易】7. 已知函数2(0)()ln (0)xx f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围A. [0,)+∞B. (1,)+∞C. (0,)+∞D. [,1)-∞ 解:()0()f x x a f x a x +-=⇔=-作图可得:B 8. 若函数()sin 2f x x =的图象向右平移6π个单位长度得到函数()g x 的图象,若函数()g x 在区间[0,]a 上单调递增,则a 的最大值为A.2π B. 3πC. 512πD. 712π解:()sin(2)3g x x π=-,()g a 为最大值,a 的最大值523212a a πππ-=⇒=,选C9. 已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则21PM PF -的最小值为B. 1)2C. 解:设(,)P x y 是抛物线上任一点,抛物线的焦点为(1,0)F ,2222(2)4441PMx y x x PF x x x-++===+≥-10. 一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为12,,n A A A L (1A 为A 地,n A 为B 地)。

从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1 件,记该邮车到达12,,n A A A L 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =L 。

则k a 的表达式为A. (1)k n k -+B. (1)k n k --C. ()n n k -D. ()k n k -二、填空题(本大题共5小题,每小题5分,满分25分. ) 11. 在二项式26(2)x +的展开式中,8x 的系数为 。

60解:26122166()222,60rrr r r rr T x x r C C --+==⇒=12. 在ABC ∆中,21,3AB BC C π==∠=,则AC = 。

1 解:由余弦定理得:1AC =13.在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制。

下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:根据图中甲、乙两省的数字特征进行比对,通过比较,把你得到最重要的两个结论写在答案纸指定的空白处。

① 。

② 。

开放性试题,如甲省比乙省的新增人数的平均数低;甲省比乙省的方差要大;从2月10日开始两个省的新增人数都在下降;2月10日两个省的新增人数在一周内都达到了最大值;等等。

至少有一个数据信息能涉及到平均数或方差,并且给出的两个数据信息都是正确,给满分5分;若两个结论都没有涉及到平均数或方差,两个数据信息都正确也要扣2分。

14. 已知两点(1,0),(1,0)A B -,若直线0x y a -+=上存在点(,)P x y 满足0AP BP ⋅=u u u r u u u r则实数a 满足的取值范围是 。

解:设(,)P x y ,则2201AP BP x y ⋅=⇔+=u u u r u u u r ,1[2,2]2a d a =≤⇒∈- 15. 集合{(,),0},{(,)1}A x y x y a a B x y xy x y =+=>=+=+, 若A B I 是平面上正八边形的顶点所构成的集合,则下列说法正确的为 ②③ ①a 的值可以为2; ②a 的值可以为2; ③a 的值可以为22+;本题给出的结论中,有多个符合要求,全部选对得5分,不选或有选错得0分,其它得3分。

xyO解:(1)若01a <≤时,不可能构成正八边形; (2) 若12a <<时,设正八边形边长为l ,如图10cos 4512221222l ll l a +=⇒=-⇒=+= (3)若2a =时,不合题意;(4)若2a >时,此时正八边形边长为2,故12122a =++=+,如图2 11 12 131415 601甲省比乙省的新增人数的平均数低;甲省比乙省的方差要大;等②③13.开放性试题,如甲省比乙省的新增人数的平均数低;甲省比乙省的方差要大;从2月10日开始两个省的新增人数都在下降;2月10日两个省的新增人数在一周内都达到了最大值;等等。

至少有一个数据信息能涉及到平均数或方差,并且给出的两个数据信息都是正确,给满分5分;若两个结论都没有涉及到平均数或方差,两个数据信息都正确也要扣2分。

三、解答题:(本大题共6小题,满分85分.解答应写出文字说明、演算步骤或证明) 16.(本小题满分为13分)已知函数()sin()(0,)2f x x πωϕωϕ=+><满足下列3个条件中的2个条件:①函数()f x 的周期为π; ②6x π=是函数()f x 的对称轴;③()04f π=且在区间(,)62ππ上单调(Ⅰ)请指出这二个条件,并求出函数()f x 的解析式; (Ⅱ)若[0,]3x π∈,求函数()f x 的值域。

[2,2]-xO 图1xO图2解:(Ⅰ)由①可得,22ππωω=⇒=………1分由②得:,6226k k k Z πωπππωϕπϕπ+=+⇒=+-∈………2分由③得,,44220322633m m m ZT πωπωϕπϕππππππωω+=⇒=-∈≥-=⇒≥⇒<≤………………4分若①②成立,则2,,()sin(2)66f x x ππωϕ===+……………5分若①③成立,则,42m m m Z πωπϕππ=-=-∈,不合题意…………6分 若②③成立,则12()66,,264k m m k m k Z ππωπωππω+-=-⇒=--≥∈与③中的03ω<≤矛盾,所以②③不成立…………………………8分 所以,只有①②成立,()sin(2)6f x x π=+………………………………9分(Ⅱ)由题意得,5102()136662x x f x ππππ≤≤⇒≤+≤⇒≤≤……12分 所以,函数()f x 的值域为1[,1]2………………………………………13分17.(本题满分15分)在四棱锥P ABCD -的底面ABCD 中,//,BC AD CD AD ⊥,PO ABCD ⊥平面,是的中点,且222PO AD BC CD ====(Ⅰ)求证://AB POC 平面; (Ⅱ)求二面角O PC D --的余弦值;(Ⅲ)线段PC 上是否存在点E ,使得AB DE ⊥, 若存在指出点E 的位置,若不存在,请说明理由。

解: (Ⅰ)连结OC ,,//BC AO BC AD = 则四边形ABCO 为平行四边形………1分O AD A////AB OC AB POC AB POC OC POC ⎧⎪⊄⇒⎨⎪⊂⎩平面平面平面…4分 (Ⅱ)PO ABCD ⊥平面,CD ADOD BC CD ⊥⎧⇒⎨==⎩四边形OBCD 为正方形 所以,,,OB OD OP 两两垂直,建立如图所示坐标系,………………6分 则(1,1,0),(0,0,2),(0,1,0),(1,0,0)C P D B ,设平面PCD 法向量为1(,,)n x y z =u r ,则1110(0,2,1)0n CD n n PD ⎧⋅=⎪⇒=⎨⋅=⎪⎩u r u u u r u r u r u u u r,……………………8分 连结BD ,可得,BD OC ⊥又BD PO ⊥ 所以,BD POC ⊥平面,平面POC 的法向量2(1,1,0)n BD ==-u u r u u u r(其它方法求法向量也可)……10分设二面角O PC D --的平面角为θ,则1212cos n n n n θ⋅==u r u u r u r u u r g 11分 (Ⅲ)线段PC 上存在点E 使得AB DE ⊥……………………12分方法一:设(,,),(,,2)(1,1,2)(,,22)E x y z PE PC x y z E λλλλλ=⇒-=-⇒-u u u r u u u r(,1,22)DE λλλ=--u u u r ,(1,1,0)AB =u u u r ,102AB DE AB DE λ⊥⇒⋅=⇒=u u u r u u u r …14分所以,点E 为线段PC 的中点……………15分 方法二:设E 是线段PC 的中点,BD OC M =I ,//EM PO EM ABCD ⇒⊥平面OC BDOC BED OC ED OC EM ⊥⎧⇒⊥⇒⊥⎨⊥⎩平面 //AB OC ,所以AB ED ⊥…………15分18.(本小题满分13分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准。

提高了各项报销的比例,其中门诊报销比例如下:A表1:新农合门诊报销比例根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元。

相关文档
最新文档