高中数学导数基础练习题

合集下载

《导数》基础训练题(1)答案

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。

导数基础练习题(2)

导数基础练习题(2)

2导数基础练习题一选择题1函数f (x) =(2nx )的导数是(C )2 2(A) f (x) =4二x (B) f (X) =4二x (C) f (x) =8二x (D) f (x) =16二x2.函数f(x)二X €公的一个单调递增区间是( A )(A) 1-1,0 1 (B) 2,8 1 (C) 1,21 (D) 0,213 .已知对任意实数x,有f(-x)--f( ,x) g卜x)二g(且x 0时,f ( x) ,0 g (x ),则x 0 时(B )A. f (x) 0, g (x) 0B. f (x) 0, g (x) :: 0C. f (x) :: 0, g (x) 0D. f (x) ::0, g (x) :: 034.若函数f (x) = x -3bx 3b在0,1内有极小值,则(A )1(A) 0 : b :1 (B) b 1(C) b 0 (D) b :-25•若曲线y =x4的一条切线I与直线x • 4y-8 = 0垂直,则I的方程为(A )A. 4x-y-3=0 B . x 4y-5=0 C . 4x-y 3 = 0 D . x 4y 3 = 06.曲线y =e x在点(2, e2)处的切线与坐标轴所围三角形的面积为( D )A. 2 2B. 2e c. eD.7.设f (x)是函数f (x)的导函数,将y二f (x)和y二f(x)的图象画在同一个直角坐标系B. C. D.2&已知二次函数f(x)=ax bx c 的导数为f'(x) , f'(O).O ,对于任意实数 x 都有f (x) Z 0,则丄^的最小值为(C )f'(0)c5 c3A . 3B .C . 2D .-2 29. 设 p: f (x^ e x ln x • 2x 2 mx 1 在(0, •::)内单调递增,q : m > -5,则 p 是 q 的 (B )A.充分不必要条件 E.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数f (x^ax 3 bx 2 c ,其导数f (x)的图像如图所示,则函数 是( )A. a b cB. 3a 4b cC. 3a 2bD. c11. 函数y=f(x)的图象如图所示,则导函数 y = f (x)的图象可能是() 12.函数f(x)=(x-3) 的单调递增区间是( )A. (2, ::)B. (0,3)C. (1,4)D. (一::,2)13.函数f (x) =2x 3 -6x 2 m ( m 为实数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为A -3B -27C -37D -5414三次函数 f(x)3 ..=mx — x 在(—8,+^ )上是减函数,则 m 的取值范围是()A. m<0B. m<1C. m< 0D. mC 1[答案]A[解析]f ' (x) =3mx — 1,由条件知f ' (x) <0在(—8,+8 )上恒成立,f (x)的极小值yxy = 3x 3 + x 在点(1 , 4)处的切线斜率k = y ,|3 34• k = 2,切线方程为 y — 3= 2(x — 1),即 6x — 3y — 2= 0, 2 1 112 1令 x = 0 得 y = — 3,令 y = 0 得 x =命二 S = X 3 X 2= &216.若函数f(x)的导数为.f'(x)=-2x+1,则f(x)可能是 ( D )17.已知曲线y=£-3lnx 的一条切线的斜率为J ,则切点的横坐标为(B A -2 B 3 C 118.正弦曲线y 二sinx 上一点P,以点P 为切点的切线为直线 L ,则直线是(A )21已知直线y = x + 1与曲线y = In(x + a)相切,则a 的值为(C. — 1222已知函数f (x )在R 上满足f(x)=2f (2-x)-x &-8,则曲线y= f(x)在点m<0△ = 12m<0,二 m<0,故选 A.15曲线y = ]x 3+ x 在点j 1, 4处的切线与坐标轴围成的三角形面积为3i 3 ;A. 1 1 B .9 1 C.3 2 D.3[答案][解析] ••• y '= x 2+ 1,•••曲线 x =1= 1 + 1 = 2,A.-2 x 3+1B.-X+1C.-4xD.-3x 3+xL 的倾斜角的范围A [0,-][注二)B [0,二)C4 4n [419 yx =3处的导数值为(B. -D.-20若曲线y = x 2+ ax + b 在点(0, b)处的切线方程是 x — y + 1 = 0,则()A . a = 1, b = 1 b = 1C . a = 1, b =— 1D . a =— 1, b =— 1二.填空题32 •已知函数 f(x)二x -12x 8在区间[-3, 3]上的最大值与最小值分别为 M,m ,则M -m= —32.3 23.点P 在曲线y = x —x —上移动,设在点P 处的切线的倾斜角为为 〉,则〉的取值范3围是 ------------------------------ 0/ |; ” ,|—,二 --------IL 2 _41 3 24 •已知函数y x x • ax -5(1)若函数在-:= 总是单调函数,则 a 的取值范围3是 _________ a^1 ______ .⑵若函数在[1,+处)上总是单调函数,则a 的取值范围(1,f(1))处的切线方程是 () A 『=2X — 1 B 『=x c y=3x-2 D y = -2 x + 323•函数f(x)的定义域为开区间(a,b),导函数f (x)在(a,b)内的图象如图所示, 极小值点 (f(x) 4 B.—312 D.—325.以下四图, 的序号是都是同一坐标系中三次函数及其导函数的图像, 、④1.函数f(x)=xlnx(x 0)的单调递增区间是.内有8 C.—324.如图是函数2A.—3=x 34个bx 2 cx d 的大致图象,则x其中一定不正确④① ②③ C .D . 3(3 )若函数在区间(-3 , 1 )上单调递减,则实数a的取值范围是a _ -3. _________ .5. 函数f(x)=x3—ax在[1 , +m)上是单调递增函数,则a的取值范围是__________________ 。

导数公式练习题

导数公式练习题

导数公式练习题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

了解和掌握导数的公式对于解决各种数学问题非常关键。

本文将通过一系列导数练习题,帮助读者加深对导数公式的理解和应用。

1. 求函数 f(x) = x^2 + 3x - 2 在 x = 2 处的导数。

解答:首先,我们可以使用导数的定义来求解。

导数的定义是函数在某一点上的斜率或者切线的斜率,可以通过极限的思想来表示。

根据导数的定义:f'(x) = lim (h->0) [f(x + h) - f(x)] / h代入 f(x) = x^2 + 3x - 2:f'(x) = lim (h->0) [(x + h)^2 + 3(x + h) - 2 - (x^2 + 3x - 2)] / h= lim (h->0) [x^2 + 2hx + h^2 + 3x + 3h - 2 - x^2 - 3x + 2] / h= lim (h->0) [2hx + h^2 + 3h] / h= lim (h->0) [2x + h + 3]= 2x + 3所以,函数 f(x) = x^2 + 3x - 2 在 x = 2 处的导数为 f'(2) = 2*2 + 3 = 7。

2. 求函数 g(x) = 5e^x - 3x 在 x = 0 处的导数。

解答:函数 g(x) = 5e^x - 3x 可以看作是两个函数相加的形式:f(x) = 5e^x 和 h(x) = -3x。

根据导数的性质,我们知道两个函数相加的导数等于两个函数分别求导后再相加。

首先,求 f(x) = 5e^x 的导数:f'(x) = (5e^x)' = 5e^x (指数函数的导数就是其本身)然后,求 h(x) = -3x 的导数:h'(x) = (-3x)' = -3 (常数函数的导数为 0)因此,函数 g(x) 的导数可以表示为:g'(x) = f'(x) + h'(x)= 5e^x - 3x + 0= 5e^x - 3x所以,函数 g(x) = 5e^x - 3x 在 x = 0 处的导数为 g'(0) = 5e^0 - 3*0 = 5。

导数在研究函数中的应用练习题(基础、经典、好用)

导数在研究函数中的应用练习题(基础、经典、好用)

导数在研究函数中的应用一、选择题1.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点2.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)x在区间(1,+∞)上一定()A.有最小值B.有最大值C.是减函数D.是增函数3.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是() A.(0,1) B.(-∞,1)C.(0,+∞) D.(0,1 2)4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有() A.f(x)≥f(a) B.f(x)≤f(a)C.f(x)>f(a) D.f(x)<f(a)5.若函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为()A.33 B. 3 C.3+1 D.3-1二、填空题6.函数f(x)=xln x的单调递减区间是________.7.已知函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m+n=________.8.已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.三、解答题9.(2013·肇庆调研)已知函数f(x)=ax2+b ln x在x=1处有极值1 2.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.10.设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.11.(2013·惠州模拟)已知函数f(x)=x2+2a ln x.(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;(2)求函数f(x)的单调区间;(3)若函数g(x)=2x+f(x)在[1,2]上是减函数,求实数a的取值范围.导数在研究函数中的应用解析及答案一、选择题1.【解析】∵f(x)=2x+ln x(x>0),∴f′(x)=-2x2+1x.由f′(x)=0解得x=2.当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.∴x=2为f(x)的极小值点.【答案】 D2.【解析】由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,可得a的取值范围为a<1,又g(x)=f(x)x=x+ax-2a,则g′(x)=1-ax2,易知在x∈(1,+∞)上g′(x)>0,所以g(x)为增函数.【答案】 D3.【解析】f′(x)=3x2-6b,令f′(x)=0得x2=2b,由题意知0<2b<1,∴0<b<12,故选D.【答案】 D4.【解析】 由(x -a )f ′(x )≥0知, 当x >a 时,f ′(x )≥0;当x <a 时,f ′(x )≤0. ∴当x =a 时,函数f (x )取得最小值,则f (x )≥f (a ). 【答案】 A5.【解析】 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2.令f ′(x )=0,得x =a 或x =-a (舍),①若a ≤1时,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a=33. 解得a =3-1,符合题意. ②若a >1,在[1,a ]上f ′(x )>0; 在[a ,+∞)上f ′(x )<0. ∴f (x )max =f (a )=a 2a =33,解得a =34<1,不符合题意, 综上知,a =3-1. 【答案】 D 二、填空题6.【解析】 f ′(x )=ln x -1ln 2x ,令f ′(x )<0得 ln x -1<0,且ln x ≠0. ∴0<x <1或1<x <e ,故函数的单调递减区间是(0,1)和(1,e). 【答案】 (0,1),(1,e)7.【解析】 ∵f ′(x )=3x 2+6mx +n ,且f (x )在x =-1处的极值为0. ∴⎩⎨⎧f (-1)=(-1)3+3m (-1)2+n (-1)+m 2=0,f ′(-1)=3×(-1)2+6m (-1)+n =0, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =2,n =9,当⎩⎨⎧m =1,n =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0恒成立与x =-1是极值点矛盾, 当⎩⎨⎧m =2n =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3), 显然x =-1是极值点,符合题意, ∴m +n =11. 【答案】 118.【解析】 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1, 得0<t <1或2<t <3. 【答案】 (0,1)∪(2,3) 三、解答题9.【解】 (1)f ′(x )=2ax +b x ,又f (x )在x =1处有极值12. ∴⎩⎪⎨⎪⎧f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解之得a =12且b =-1. (2)由(1)可知f (x )=12x 2-ln x , 其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x .当x 变化时,f ′(x )、f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 +f (x )极小值所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞). 10.【解】 (1)f ′(x )=1+2ax +bx (x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎨⎧f (1)=0,f ′(1)=2,即⎩⎨⎧1+a =0,1+2a +b =2. 解之得a =-1,b =3.(2)由(1)知,f (x )=x -x 2+3ln x ,定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0,则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)内单调递增,在(1,+∞)内单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 11.【解】 (1)f ′(x )=2x +2a x =2x 2+2ax , 由已知f ′(2)=1, 解得a =-3.(2)函数f (x )的定义域为(0,+∞).①当a ≥0时,f ′(x )>0,f (x )的单调递增区间为(0,+∞); ②当a <0时,f ′(x )=2(x +-a )(x --a )x .当x 变化时,f ′(x ),f (x )的变化情况如下:x (0,-a )-a (-a ,+∞)f ′(x ) -0 +f (x )极小值由上表可知,函数f (x )的单调递减区间是(0,-a ); 单调递增区间是(-a ,+∞).(3)由g (x )=2x +x 2+2a ln x 得g ′(x )=-2x 2+2x +2ax , 由已知函数g (x )为[1,2]上的单调减函数, 则-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x2在[1,2]上恒成立.令h(x)=1x-x2,h′(x)=-1x2-2x=-(1x2+2x)<0,所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-7 2,所以a≤-7 2.。

导数基础练习题

导数基础练习题

导数基础练习题1.与直线2x-y+4=的平行的抛物线y=x的切线方程是A。

2x-y+3=B。

2x-y-3=C。

2x-y+1=D。

2x-y-1=2.函数y=(x+1)(x-1)在x=1处的导数等于A。

1B。

2C。

33.过抛物线y=x上的点M(-π/4,11/4)的切线的倾斜角为A。

π/24B。

3π/42C。

3π/144.函数y=1+3x-x^2有()A。

极小值-1,极大值1 B。

极小值-2,极大值3 C。

极小值-2,极大值2 D。

极小值-1,极大值35.已知f(x)=x,则f'(3)等于A。

2B。

6C。

1D。

96.f(x)=的导数是A。

1B。

不存在C。

2x7.y=3x^2的导数是A。

3x^2B。

x^2/11C。

-2/3x^38.曲线y=x^n在x=2处的导数是12,则n等于A。

1B。

2C。

3D。

49.若f(x)=3x,则f'(1)等于A。

-3B。

3C。

1D。

610.y=x^2的斜率等于2的切线方程是A。

2x-y+1=B。

2x-y+1=或2x-y-1=C。

2x-y-1=D。

2x-y=11.在曲线y=x^2上的切线的倾斜角为π/4的点是A。

(0,0)B。

(2,4)C。

(11/24,11/16)D。

(11/16,11/24)12.已知f(x)=x-5+3sinx,则f'(x)等于A。

-5x-6-3cosxB。

x-6+3cosxC。

-5x-6+3cosxD。

x-6-3cosx13.函数y=cos^-2x的导数是A。

-2cosxsinxB。

sin2xcos^-4xC。

-2cos^2xD。

-2sin^2x14.设y=f(sinx)是可导函数,则y'等于A。

f'(sinx)B。

f'(sinx)cosxC。

f'(sinx)sinxD。

f'(cosx)cosx15.函数y=4(2-x+3x^2)的导数是A。

8(2-x+3x^2)B。

2(-1+6x)^2C。

高中数学导数练习题

高中数学导数练习题

高中数学导数练习题----c2430ac8-6ebe-11ec-8276-7cb59b590d7d专题8:导数(文)经典例子分析测试点1:推导公式。

例1f?(x)是f(x)吗?13x?2倍?1的导数,那么f?(?1)的值为。

32解析:F'?十、十、2,那么f′??1.1.2.答案:3考点二:导数的几何意义。

例2已知函数y?F(x)在m(1)点的像的切线方程是y?,f(1))1x?2,然后是2F(1)?F(1)?。

解析:因为k?11,所以f'?1??,由切线过点m(1,f(1)),可得点m的纵坐标为2255,所以f?1??,所以f?1??f'?1??322答案:3例3曲线y?十、2倍?4x?2点(1,±3)处的切线方程为。

解析:y'?3x?4x?4,?点(1,?3)处切线的斜率为k?3?4?4??5,所以设切232,? 3)引入切线方程得到B?2.3)直线方程是y??5倍?b、设定点(1)。

因此,曲线上点(1)处的切线方程为5x?Y2.0.答案:5x?Y2.0点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4已知曲线C:y?十、3倍?2X,直线L:y?直线L在点处与曲线C相切32?x0,y0?x0?0,求直线l的方程及切点坐标。

决议:?如果直线穿过原点,那么K?y0?x0?0分?x0,y0?在曲线C上,然后是x0y0?x0?3x0?2x0?32y02?x0?3x0?2.Y'?3x2?6x?2.在X02?x0,y0?处曲线c的切线斜率是k?f'?x0??3x0?6x0?2.222x0?3x0?0,已排序:解决方案:x0?x0?3x0?2.3x0?6x0?2.3或x0?02(舍),此时,y0??311,k??。

所以,直线l的方程为y??x,切点坐标是844?33??,??。

?28?答案:直线l的方程为y??1?33?x,切点坐标是?,??4?28?点评:本小题考查导数几何意义的应用。

导数概念练习题

导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。

导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。

下面是一些导数概念的练习题,帮助大家更好地理解这个概念。

已知函数f(x) = x^2 + 2x + 1,求f'(x)。

已知函数f(x) = sin(x),求f'(x)。

已知函数f(x) = log(x),求f'(x)。

已知函数f(x) = e^x,求f'(x)。

已知函数f(x) = x^n,求f'(x)。

已知函数f(x) = x/ln(x),求f'(x)。

解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。

已知函数f(x) = e^(arctan(x)),求f'(x)。

解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。

解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。

解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。

导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。

求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。

下面是一些求导数的练习题,供大家参考。

(1)θ=sinx,y=cosx。

(x)=3xx=0为函数的极值点。

随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。

导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。

因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。

函数求导练习题(含解析)

函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数基础练习题20170305
一、选择题
1.曲线y =2x 2−x 在点(0,0)处的切线方程为( )
A. x +y +2=0
B. x −y +2=0
C. x −y =0
D. x +y =0 2.“a ≤0”是“函数f(x)=ax +lnx 存在极值”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件 3.设曲线2
y x =上任一点(,)x y 处的切线的斜率为()g x ,则函数()()cos h x g x x =的部分图像可以为( )
4.已知函数f(x)=(e
x−1
−1)(x −1),则( )
A. 当x <0,有极大值为2−4e
B. 当x <0,有极小值为2−4e
C. 当x >0,有极大值为0
D. 当x >0,有极小值为0
5.已知函数()f x 是奇函数,当0x <时,()()ln 2f x x x x =-++,则曲线()y f x =在1x =处的切线方程为( )
A .23y x =+
B .23y x =-
C .23y x =-+
D .23y x =-- 6.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )
7.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有
()()f x xf x '>,则不等式()()1f x xf >的解集为
A. (),0-∞
B. ()0,1
C. ()0,+∞
D.(1,+∞)
8.已知函数()f x 是偶函数,当0x >时,()()21ln f x x x =-,则曲线()y f x =在点()()
1,1f --处的切线的斜率为( )
A.2-
B.1-
C.1
D.2 9.在下面的四个图象中,其中一个图象是函f (x )=
13
x 3+ax 2+(a 2
-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).
A
二、填空题
10.定义在R 上的偶函数f(x)满足:当x <0时,f(x)=x
x−1,则曲线y =f(x)在点(2,f(2))处的切线的斜率为__________. 11,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜恒成立,则实数a 的取值范围是 . 12.设函数f(x)=x 3−3x +1,x ∈[−2,2]的最大值为M ,最小值为m ,则M +m =__________.
13.在平面直角坐标系xoy 中,若曲线y =ax 2+b
x (a,b 为常数)过点P(2,−5),且该曲
线在点P 处的切线与直线7x +2y +3=0平行,则a +b = .
14.过函数 ()3
2
325f x x x x =-++图像上一个动点作函数的切线,则切线倾斜角的
取值范围是 __________. 15,若0'()1f x =,则 16.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时,
,则 a b c ,,的大小关系是 .
17,直线l 与函数()(),f x g x 的图像都相切于点(1,0).
(1)求直线l 的方程及函数()g x 的解析式;
(2)若()()()h x f x g x '=-(其中()g x '是()g x 的导函数),求函数()h x 的极大值. 18.已知函数f(x)=x 2−2x ,g(x)=ax −1,若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2
19 (1)若3x =是()f x 的极值点,求()f x 的极大值; (2)求a 的范围,使得()1f x ≥恒成立.
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

答案第1页,总1页
参考答案
1.D 2.B 3.A 4.D 5.B 6.A 7.B 8.B 9.B 10.1
9 11
12.2 13.−3 143,4ππ⎫⎡⎫
⎪⎪⎢⎭⎣⎭
15.1 16.b c a << 17.(1)1y x =-,
g (2 18.(−∞,
−4]∪[2,+∞)【答案】(1)5-
;(2。

相关文档
最新文档