水轮机选型设计
浅谈水电站水机选型设计

浅谈水电站水机选型设计摘要:水轮机是水电站中最主要的动力设备之一,它关系到水电站工程投资、安全运行、动能指标及经济效益等重大问题,正确地进行水轮机选择是水电站设计中的主要任务之一。
影响水电站水机选型设计的因素众多,本文通过对水机选型设计原则的分析介绍了水电站水机选型的一般内容,并分别以大小水电站为例探讨了水机选型的一些要点问题。
关键词:水机选型;原则;磨蚀一、水电站水机选型设计及其原则水轮机的选型设计是水电站设计中的一项重要任务,其计算结果直接关系到水电站的机组能否长期稳定运行、投资的多少、经济效益的高低。
它是根据水电站设计部门提供的原始资料及参数,选择合理的水轮机型号和计算水轮机的各种性能参数。
一般情况下,先根据水电站的类型、动能计算以及水工建筑物的布置等初选若干个方案,然后进行技术经济比较,再根据水轮机的生产情况和制造水平,最后确定最佳的水轮机型号及尺寸。
水轮机选型设计的一般原则如下:(1)所选水轮机要具有较高的能量特性。
不仅要选择额定工况下ηmax 较高的水轮机转轮型号,而且还要根据水轮机的工作特性曲线,即η=f(N)及η=f(H)曲线,选择平均效率最高的水轮机型号,使水轮机在负荷和水头变化的情况下具有最高的平均运行效率。
(2)所选水轮机不仅要具有良好的空蚀性能,还要有较好的工作稳定性能,运行要灵活、平稳、安全和可靠。
(3)所选水轮机的尺寸应较小,结构要合理、先进,便于运输、安装、运行及检修。
(4)转轮选择比较时,应尽可能选用ns 较高的水轮机,这样转速较高,相应的机组尺寸就小,并且使所选的水轮机经常在最优区运行。
选择转轮参数时应该使n11 值稍高于n110,而且Q11 值应接近于Q11max 。
(5)水轮机分为混流式、轴流式、贯流式、斜流式、冲击式等几种类型。
一般地,混流式水轮机适用水头为50~700m,轴流转浆式水轮机适用水头为3~70m,贯流式水轮机适用水头为2~25m,斜流式水轮机适用水头为40~200m,冲击式中斜击式水轮机适用水头为50~400m、双击式水轮机适用水头为10~150m。
水轮机选型毕业设计

水轮机选型毕业设计【篇一:水轮机毕业设计毕业论文】摘要本次毕业设计的主要内容是对越南dongnai5电站水轮机进行结构设计。
设计主要途径是在给定dongnai5电站水轮机型号和转轮标称直径等基本参数的前提下,通过查阅相关资料进行结构设计。
以cad软件为平台,绘制总装配图、导水机构装配图、导叶布置图和控制环零件图。
关键词:dongnai5电站,水轮机结构,cadabstractthe main contents of this graduation adsign are the vietnam dongnai5 hydropower plant hydraulic turbine structural design.the main way of design is with the basic paramrters of dongnai5 hydropower plant model and runner nominal diameter and accessing relevant information for the structural design.drew general assembly drawings, water guide mechanism assembly drawing,guide vane arrangement drawing and control loop parts drawing.key words:dongnai5 hydropower plant, structure of hydraulic turbine, cadi目录前言 (1)概述 (1)设计内容与要求 (2)1 越南dongnai5电站基本资料 (3)2 轴面流道图 (4)3 水轮机真机运转特性曲线 (6)3.1 等效率线的绘制 (6)3.2 等开度线的绘制 (10)3.3 真机运转特性曲线的绘制 (12)4 埋入部件结构设计 (13)4.1 座环 (13)4.1.1 结构型式 (13)4.1.2 尺寸系列 (13)4.3 尾水管里衬 (14)5 导水机构结构设计 (16)5.1 导水机构总体结构设计 (16)5.2 导叶布置图的绘制 (16)5.2.1 导叶翼型的确定 (16)5.2.2 导叶开度的确定 (18)5.2.3 导叶布置图以及相关曲线的绘制 (19)5.3 导叶装置结构设计 (20)5.3.1 导叶的结构 (20)5.3.2 导叶轴套结构 (21)5.3.3 导叶轴颈的密封 (23)5.3.4 导叶的止推装置 (24)5.3.5 导叶套筒结构 (25)5.4 导叶传动机构设计 .. (26)5.4.1 导叶臂 (26)5.4.2 连接板 (27)5.4.3 叉头 (28)5.4.4 连接螺杆 (29)5.4.5 分半键 (29)5.4.6 剪断销 (30)5.4.7 叉头销 (31)5.4.8 端盖 (32)5.5 导水机构环形部件结构设计 (32)5.5.1 底环 (33)5.5.2 控制环 (33)5.5.3 顶盖 (36)6 转动部件结构设计 (37)6.1 转轮结构 (37)6.2 泄水锥 (37)6.3 止漏装置 (38)6.4 主轴结构设计 (39)7 轴承、主轴密封及其它部件设计 (42)7.1 轴承 (42)7.3 补气装置 (43)7.4 其他部件设计 (44)结论、讨论和建议 (46)致谢 (47)参考文献 (48)iii前言概述电力是现代化工业生产和生活不可或缺的动力能量,水力发电是电力工业的一个门类。
第二节 水轮机选型设计

反击式水轮机转轮公称直径系列
25 30 35 (40) 42 50 60 71 (80) 84 100 120 140 160 180 200 225 250
275 300 330
380
410 450 500 550 850 900 950 1000
• 五、反击式水轮机的主要参数选择 • 2、转速n的选择
• 3、选择水轮机的型号: • (3)也可根据教材表8-4或图8-25确定水轮机的类型后, 或当用上述方法有两个型号接近的可选方案时,可用下 述方法选择水轮机的型号(比转速) • 轴流式 • 混流式
2300 ns Hr
2000 ns 20 Hr
• 贯流式:查下面曲线
• 2、装置方式选择 • 在大中型水电站中,其水轮发电机组的尺寸一般较大, 安装高程也较低,因此其装置方式多采用立轴式,即水 轮机轴和发电机轴在同一铅垂线上,并通过法兰盘联接。 这样使发电机的安装位置较高不易受潮,机组的传动效 率较高,而且水电站厂房的面积较小,设备布置较方便。 • 对机组转轮直径小于1m,吸出高度Hs为正值的水轮机, 常采用卧轴装置,以降厂房高度。而且卧式机组的安装、 检修及运行维护也较方便。
• 三、机组台数及单机容量的选择 • (2)运行效率 • 较大单机尺寸的机组,效率比较高。这对于预计经常满 负荷运行的水电厂获得的动能效益特别显著。 • 对变动负荷的水电厂,若采用过少的机组台数,虽单机 效率高,但在部分负荷时,由于负荷不便于在机组间调 节,因而不能避开低效率区。因此电厂的平均效率较低。
• 四、水轮机型号及装置方式的选择 • 1、根据电站装机总容量及机组台数,计算单机容量。
PZ P Z
• 2、选择水轮机的型号: • (1)根据水轮机系列应用范围综合图选择转轮型号 • 选型时可用已知的水电站设计水头和单机容量,在水轮 机系列应用范围综合图上找出适当的水轮机型号和装置 方式。有时可能有两种或三种适用的水轮机型号,这时 就需要根据具体情况,对不同机型方案进行全面的分析 比较,最后选用一种最优的机型。 • 常用于中小型机组的选择。
选型及结构设计

2019/7/26
24
导叶轴颈密封及其轴套
导叶轴颈密封装在导叶套筒下端,采用“L”型密 封。该结构封水性能好,结构简单。导叶下轴颈的 密封主要是防止泥沙进入、轴颈磨损。导叶轴套材 料采用ZGSn6-6-3,它的润滑性能好,耐磨
叉头传动机构
本设计采用叉头传动机构,其受力情况较好。 叉头传动机构主要由导叶臂、连接板、叉头、叉头 销、连接螺杆、螺冒、分半键、剪断销、轴套和补 偿环等组成。
2019/7/26
21
4.3 轴承密封
轴承密封分为工作密封和检修密封两种。 本设计采用的工作密封为水压端面密封,检 修密封为空气围带式密封
空气围带检修密封
1--围带压板;2—空气围带;3—固定外壳
2019/7/26
22
4.4 座环
座环是反击式水轮机的基础部件, 除了承受水压力作用外,还承受整个 机组和机组段混凝土重量,因此要求 有足够的强度和刚度。其结构由上环、 下环和固定导叶组成。本设计采用与 金属蜗壳连接的座环。
与蝶形边相连接的金属蜗壳圆形断面尺寸图 2019/7/26
与蝶形边连接的金属蜗壳椭圆形断面尺寸图 10
通过程序即可计算出的蜗壳各断面尺寸即 可绘制蜗壳的水力单线图,各断面数据如下表 所示:
2019/7/26
11
蜗壳单线图
2019/7/26
12
3 尾水管水力设计
尾水管的作用:
(1) 将尾水管做成扩散形,可回收转轮出口处水的 部分动能。 (2) 当尾水管进口与下游水位的高程差大于零时, 可以利用尾水管进口与下游水位的高程差的几何高度 所具有的动能; (3) 使水流按要求排至下游。
2019/7/26
7
单位转速的修正值 : △n11=0
水轮机选型设计毕业论文

水轮机选型设计毕业论文目录第一章水轮机....................................... - 4 - 1.1 特征水头的确定............................................. - 4 -1.2 水轮机选型................................................. - 6 -1.3 水轮机蜗壳及尾水管......................................... - 8 - 1.3.1 蜗壳尺寸确定............................................ - 8 - 1.3.2 尾水管尺寸确定.......................................... - 8 -1.4 调速设备及油压设备选择..................................... - 9 - 1.4.1 调速功计算.............................................. - 9 - 1.4.2 接力器选择.............................................. - 9 - 1.4.3 调速器的选择............................................ - 9 - 1.4.4 油压装置............................................... - 10 -第二章发电机...................................... - 11 -2.1 发电机的尺寸估算.......................................... - 11 - 2.1.1 主要尺寸估算........................................... - 11 - 2.1.2 外形尺寸估算........................................... - 12 -2.2 发电机重量估算............................................ - 13 - 第三章混凝土重力坝................................ - 14 -3.1 剖面设计.................................................. - 14 - 3.1.1 坝高的确定............................................. - 14 - 3.1.2 坝底宽度的确定......................................... - 16 -3.2 稳定与强度校核............................................ - 17 -紧水滩水电站坝后式厂房方案论证设计3.2.1 作用大小............................................... - 17 - 3.2.2 承载能力极限状态强度和稳定验算......................... - 20 - 3.2.3 正常使用极限状态进行强度的计算和验算................... - 25 -第四章引水建筑物布置.............................. - 27 -4.1 压力钢管布置.............................................. - 27 - 4.1.1 确定钢管直径........................................... - 27 -4.2 进水口布置................................................ - 28 - 4.2.1 确定有压进水口的高程................................... - 28 - 4.2.2 渐变段尺寸确定......................................... - 28 - 4.2.3 拦污栅尺寸确定......................................... - 28 - 4.2.4 通气孔的面积确定....................................... - 29 -第五章主厂房尺寸及布置 ............................ - 30 -5.1 厂房高度的确定............................................ - 30 - 5.1.1 水轮机安装高程......................................... - 30 - 5.1.2. 尾水管顶部高程及尾水管底部高程......................... - 30 - 5.1.3 基岩开挖高程........................................... - 30 - 5.1.4 水轮机层地面高程....................................... - 31 - 5.1.5 发电机层楼板高程....................................... - 31 - 5.1.6 吊车轨顶高程........................................... - 31 - 5.1.7 厂房顶高程............................................. - 31 -5.2 主厂房长度的确定.......................................... - 31 - 5.2.1 机组段长度确定......................................... - 31 - 5.2.2 端机组段长度........................................... - 32 - 5.2.3 装配场长度............................................. - 33 -5.3 主厂房宽度和桥吊跨度的确定................................ - 33 - 第六章混凝土溢流坝................................ - 34 -6.1 溢流坝段总宽度的确定...................................... - 34 - 6.1.1 单宽流量q的选择....................................... - 34 - 6.1.2 确定溢流前缘总净宽L ................................... - 34 - 6.1.3 确定溢流坝段总宽度..................................... - 35 -6.2 堰顶高程的确定............................................ - 35 -6.2.1 堰顶高程的确定 ......................................... - 35 - 6.2.2 闸门高度的确定 ......................................... - 36 - 6.3 堰面曲线的确定 ............................................ - 36 - 6.3.1 最大运行水头max H 和定型设计水头d H 的确定 ............... - 36 - 6.3.2 三圆弧段的确定 ......................................... - 36 - 6.3.3 曲线段的确定 ........................................... - 36 - 6.3.4 直线段的确定 ........................................... - 37 - 6.3.5 反弧段的确定 ........................................... - 37 - 6.3.6 鼻坎挑角和坎顶高程的确定 ............................... - 38 - 6.3.7 溢流坝倒悬的确定 ....................................... - 38 - 6.4 溢流坝强度和稳定验算 ...................................... - 39 - 6.4.1 作用大小 ............................................... - 39 - 6.4.2 承载能力极限状态强度和稳定验算 ......................... - 41 - 6.4.3 正常使用极限状态进行强度的计算和验算 ................... - 43 - 6.5 消能与防冲 ............................................... - 44 - 6.5.1 挑射距离和冲刷坑深度的估算 ............................. - 44 -第七章 压力钢管应力分析及结构设计................... - 44 -7.1 水力计算 .................................................. - 45 - 7.1.1 水头损失计算 ........................................... - 45 - 7.1.2 水锤计算 ............................................... - 49 - 7.2 压力钢管厚度的拟定 ........................................ - 53 - 7.3 钢管、钢筋、混凝土联合承受压的应力分析 .................... - 54 - 7.3.1 混凝土开裂情况判别 ..................................... - 54 - 7.3.2 应力计算 ............................................... - 58 -紧水滩水电站坝后式厂房方案论证设计第一章 水轮机1.1特征水头的确定1. 在校核洪水位下, 四台机组满发,下泄流量Q=14100m 3/s,由厂区水位流量关系可得,尾水位▽尾=220.54m ,▽库=291.8mH 1=0.99×(▽库-▽尾)=0.99×(291.8-220.54)=70.54m2, 在设计洪水位下,四台机组满发,下泄流量Q=11000 m 3/s,由厂区水位流量关系得, 尾水位▽尾=217.82m, ▽库=289.94mH 2=0.99×(▽库-▽尾)=0.99×(289.94-217.82)=71.40m3, 在设计蓄水位下,一台机组满发,由下列式子试算出该情况下对应的下泄流量和水头N=9.81QH η H=0.99×(▽库-▽尾) ▽尾=f (Q)η=η水×η电=0.95×0.9列表试算,得当下泄流量为67.5 m 3/s 时,一台机组满发,对应水头为81.26m.,即H 3=81.26m.4.在设计蓄水位下,四台机组满发,试算该情况下对应的下泄流量和水头,列表试算当下泄流量为274 m 3/s 时,四台机组满发,对应水头为80.08m ,即H 4=80.08m 。
水轮机选型设计

⽔轮机选型设计第⼀章⽔轮机的选型设计第⼀节⽔轮机型号的初步选择⼀、沙溪⽔电站的主要参数H max =68.0m H p =50.0m H min =43.0m由《⽔利机械》P 36设计⽔头 H r 初算时可近似取(0.9~1.0)H p H r = 0.95×50.0= 47.5m 总装机35万kw⼆、因为沙溪⽔电站的⽔头范围为43.0m~68.0m,根据《⽔轮机》课本,符合此⽔头范围的要求,分别是 HL220,它的使⽤⽔头为30~70m 。
该⽔电站的⽔头范围为38-68m ,适合此⽔头范围⽔轮机的类型有斜流式和混流式。
⼜根据混流式⽔轮机的优点:(1)⽐转速范围⼴,适⽤⽔头范围⼴,可适⽤30-700m ;、(2)结构简单,价格低;(3)装有尾⽔管,可减少转轮出⼝⽔流损失;故选择混流式⽔轮机。
⼆.⽐转速的选择按我国⽔轮机的型谱推荐的设计⽔头与⽐转速的关系,⽔轮机的s n 为 )(19.270205.472000202000kw m H n rs ?=-=-=因此,选择s n 在260左右的⽔轮机为宜。
在⽔轮机型谱中有HL220,故按HL220进⾏计算三.单机容量第⼆节原型⽔轮机主要参数的选择按电站建成后,在电⼒系统的作⽤和供电⽅式,初步拟定为2台、3台、4台、5台四种⽅案进⾏⽐较。
HL220其主要参数如下:模型转轮直径D 1=46cm,导叶相对⾼度b 0/D 1=0.25 z 1=14, 最优⼯况n 10’=70r/min,Q 10’=1.0m 3/s,η=92%,ns0=255,σ=0.115; 限制⼯况Q 1’=1.150m 3/s,η=89%,σ=0.133. 最⼤单位飞逸⽐转速n 1p ’= 133 r/min⼀.(⼆台)1、计算转轮直径⽔轮机额定出⼒:kw N P GGr 4.17857198.0105.174=?==η式中:G η-----发电机效率,取0.98 G N -----机组的单机容量(KW )取最优单位转速流量,Q 11r =1.14m 3/s ,对应的模型效率ηm=0.886,暂取效率修正值Δη=0.03,则设计⼯况原型⽔轮机效率η=ηm +Δη=0.916)(29.7916.05.4714.181.99183781.95.15.1111m H Q P D r r ===η按我国规定的转轮直径系列,计算值处于标准值7.0m 和7.5m 之间。
水轮发电机组中水轮机的选型设计

水轮发电机组中水轮机的选型设计摘要: 在水利水电系统中的建设过程, 怎样合理选择适用的水轮机组的类型对水轮机的性能是否优越十分重要。
因此应本着具体情况具体分析的原则设计相应的实践方案, 以提高其运行的灵活性。
本文着重阐述实践中应如何对水轮机组进行设计。
关键词: 水轮机组;特征;选型设计Abstract: In the water conservancy and hydropower system in the construction process, how to choose suitable hydraulic turbine type on turbine performance is superior is very important. It should be based on concrete analysis of the principles of design and the corresponding practices, in order to improve the operation flexibility. This paper focuses on the practice should be how to design of hydraulic turbine.Key words: turbine selection design; feature;0引言水轮机组的选型设计是水电站水力机械设计的重要组成部分。
发电机由水轮机驱动,它的转子短粗,机组的起动、并网所需时间较短,运行调度灵活。
水轮机组选型设计不仅为以后的电气部分、水工部分设计打下基础,同时也会影响到电站的机电设备投资、厂房投资及发电效益等经济指标。
因此,水轮机组的选型设计必须做到科学、准确、合理、先进,满足技术性能和经济指标的要求。
1水轮机选型设计的任务及内容水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。
水轮机选型设计

第六章水轮机选型设计由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。
水轮机由于它自身能量特性、汽蚀特性和强度条件的限制,每种水轮机适用的水头和流量范围比较窄,要作出很多系列和品种(尺寸)的水轮机,设计、制造任务繁重,生产费用和成本也大。
因此有必要使水轮机生产系列化、标准化和通用化,尽可能减少水轮机系列,控制系列品种,以便加速生产、降低成本。
在水电站设计中按自己的运行条件和要求选择合适的水轮机。
一、水轮机选型设计的任务及内容1.任务水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。
每一种型号水轮机规定了适用水头范围。
水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。
2.内容(1) 确定机组台数及单机容量(2) 选择水轮机型式(型号)及装置方式(3) 确定水轮机的额定功率、转轮直径D1、同步转速n、吸出高度H s、安装高程Z a 、飞逸转速、轴向水推力;冲锤式水轮机,还包括喷嘴数目Z0、射流直径d0等。
(4) 绘制水轮机运转特性曲线(5) 估算水轮机的外形尺寸、重量及价格、蜗壳、尾水管的形式、尺寸、调速器及油压装置选择(6) 根据选定水轮机型式和参数,结合水轮机在结构上、材料、运行等方面的要求,拟定并向厂家提出制造任务书,最终由双方共同商定机组的技术条件,作为进一步设计的依据。
二、选型设计1.水轮机选型设计一般有三种基本方法(1) 水轮机系列型谱方法: 中小型水电站水轮机选多此种方法或套用法。
(2) 套用方法:用于小型水电站设计。
(3) 统计分析的方法:大型水电站设计,应用较广泛。
2.装机特征设计包括:机组台数、单机容量、水轮机型式与装置方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章水轮机选型设计由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。
水轮机由于它自身能量特性、汽蚀特性和强度条件的限制,每种水轮机适用的水头和流量范围比较窄,要作出很多系列和品种(尺寸)的水轮机,设计、制造任务繁重,生产费用和成本也大。
因此有必要使水轮机生产系列化、标准化和通用化,尽可能减少水轮机系列,控制系列品种,以便加速生产、降低成本。
在水电站设计中按自己的运行条件和要求选择合适的水轮机。
一、水轮机选型设计的任务及内容1.任务水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。
每一种型号水轮机规定了适用水头范围。
水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。
2.内容(1) 确定机组台数及单机容量(2) 选择水轮机型式(型号)及装置方式(3) 确定水轮机的额定功率、转轮直径D1、同步转速n、吸出高度H s、安装高程Z a 、飞逸转速、轴向水推力;冲锤式水轮机,还包括喷嘴数目Z0、射流直径d0等。
(4) 绘制水轮机运转特性曲线(5) 估算水轮机的外形尺寸、重量及价格、蜗壳、尾水管的形式、尺寸、调速器及油压装置选择(6) 根据选定水轮机型式和参数,结合水轮机在结构上、材料、运行等方面的要求,拟定并向厂家提出制造任务书,最终由双方共同商定机组的技术条件,作为进一步设计的依据。
二、选型设计1.水轮机选型设计一般有三种基本方法(1) 水轮机系列型谱方法: 中小型水电站水轮机选多此种方法或套用法。
(2) 套用方法: 用于小型水电站设计。
(3) 统计分析的方法:大型水电站设计,应用较广泛。
2.装机特征设计包括:机组台数、单机容量、水轮机型式与装置方式。
(1) 掌握机组台数选择的原则及机组台数对水电厂运行的影响。
(2) 水轮机型式的选择依据单机容量和水电站的特征水头(H max 、H min 、H a 、H r )进行选择。
型号的选择主要取决于水头。
各种水轮机都有一定的使用范围,根据电站运行水头的范围,直接查系列型谱,确定水轮机的型号。
如果两种型号均可采用时,可通过水轮机比转速水平分析和水轮机性能与应用特点比较确定水轮机的型式,保证水轮机较高的动能经济指标和可靠的安全性能。
根据目前国内设计、施工和运行的电站资料,在特征水头相近、单机容量适当,经济技术指标相近时,有限套用已经生产国的机组,这样可以节省设计时间、尽早供货、提前发电。
3.反击式水轮机基本参数计算(1) 用模型综合特性曲线计算D 1的确定r r r r H Q P D η2/311181.9'= (m) P r :水轮机额定出力,P r = N f /ηfN f —发电机额定出力(机组容量),ηf —— 发电机的效率,大中型:ηf =0.95~0.97 r Q 11:水轮机额定工况的单位流量;混流式水轮机由5%出力限制线得到11Q ;轴流式由汽蚀条件得到,或限制H S 反推σz ,以防止开挖过多。
H r :水轮机的额定水头;若取H=H max 进行计算,则求出的D 1太小,除H=H max 以外,均不能发出额定出力。
若取H=H min 进行计算,则求出的D 1太大,增加设备投资。
η:原型水轮机额定工况下的效率,在D 1未确定时,不能得出确切的η。
一般先取η=ηM +△η (△η=2~3%),求得D 1后再修正。
转速的选择1110D H n n a =110n 为原型水轮机的最优单位转速; H a 为水电站的平均水头;工作范围的验算求出水轮机的参数D 1、n 后,在模型综合特性曲线上绘出水轮机的相似工作范围,检验是否包括了高效率区,以验证D 1、n 的合理性。
H S 的计算H H s )(90010σσ∆+-∇-≤ 计算时,选择H max 、H min 、H a 、H r 若干水头,分别计算出不工况下的吸出高度,从中选取最小值作为最大允许高度。
注意:计算H S 时,要用各水头下限制工况下空化系数。
(2) 用比转速和统计资料推算水轮机的基本参数D 1的确定 r r r r H Q P D η2/311181.9'= 转速的选择 rrs P H n n 45=H S 的计算 H H z s σ-∇-≤90010第九章 水电站辅助设备一、水轮机进水阀水轮机进水阀是为了保护机组的安全、减轻导叶间隙磨蚀破坏、缩短引水钢管的充水时间而设置。
蝶阀:用于水头在200m 以下的水电站。
球阀:用于水头在200m 以上的水电站闸阀:用于小管径(D<1m)、高水头的水电站 。
筒形阀:装在固定导叶与活动导叶之间。
二、油系统1.透平油与绝缘油的功用及其用户透平油:供给机组轴承的润滑油和操作用的压力油,称为透平油。
其作用是润滑、散热及传递能量。
绝缘油:供给变压器、油开关等电气设备的绝缘油,其作用是绝缘、散热及灭弧。
两种油的性质不同,应有两套独立的油系统。
2.油系统的作用接收新油、储备净油、给设备充油、向运行设备添加油、从设备中排出污油、油的监督、维护和取样化验、油的净化处理、废油的收集及处理。
3.油系统的组成油系统由:油罐、油处理设备、油化验设备、油吸附设备、管网、测量及控制元件。
三、气系统1.压气系统的用途压缩空气分为低压压缩空气和高压压缩空气。
(1) 低压压缩空气系统。
机组制动;调相运行压水;蝶阀关闭时,将压缩空气通入阀上的空气围带,使其膨胀而减少漏水;检修时清扫设备,供风动工具使用;通向拦污栅,防冻清污。
额定气压为0.5~0.8MPa。
(2) 高压压缩空气系统。
厂房中所有调速器油压装置的压力油箱充气,调速器压力油箱中约有2/3的体积为压缩空气,以保证调速器用油时无过大的压力波动,额定气压为2.5MPa 及4MPa。
配电装置如空气断路器的灭弧和操作的用气,以及开关和少油断路器的操作用气,额定气压为2~5MPa。
2.压缩空气系统主要设备有:空压机、过滤器、储气罐、油水分离器、冷却器四、水系统1.供水系统水电站厂房内的供水系统包括技术供水、生活供水、消防供水。
技术供水包括冷却及润滑用水,如发电机的空气冷却器、机组导轴承和推力轴承的油冷却器、水润滑导轴承、空气压缩机气缸冷却器、变压器的冷却设备等。
注意不同用户对水压、水温、水质的要求。
特别是水冷变压器对水压的要求,空气冷却器对水温的要求,水润滑轴承对水质的要求。
2.水电厂的供水系统由水源、供水设备、水处理设备、管网和测量控制元件组成。
3种供水水源:上游水库、下游尾水与地下水。
5种供水方式:自流供水、水泵供水、混和供水、射流泵供水和循环供水。
3种供水设备配置方式:集中供水、单元供水与分组供水。
(注意不要把供水方式与供水设备配置方式混淆。
)3.水电厂排水的内容:生产用水的排水、机组和厂房水下部分的检修排水及渗漏排水。
4.检修排水的两种方式:直接排水和廊道排水。
5.排水系统的主要设备:排水阀和排水泵。
6.水力参数测量的目的是为了保证水电站的安全运行和实现经济运行;考查已投入运行机组的实际性能,为科研、设计提供和积累资料。
水力监测的内容:拦污栅前后的压力差,电站上下游水位,水轮机装置水头,工作水头,引用流量,水轮机引,排水系统的监测、辅助设备系统的监测等。
第十章 水轮机调节系统一、水轮机调节的任务1.随外界负荷的变化,迅速改变机组的出力。
2.保持机组转速和频率变化在规定范围内。
3.启动、停机、增减负荷,对并入电网的机组进行成组调节(负荷分配)。
随着电力系统负荷变化,水轮机相应地改变导叶开度(或针阀行程),使机组转速恢复并保持为额定转速的过程,称为水轮机调节。
二、水轮机调节原理(一) 原理:水轮发电机组的运动方程式为: dt d JM M g t ϖ=- (1) 当t M =g M 时,dtd ϖ=0,0n n C ==ϖ (2) N ↓→g M ↓→t M 〉g M →dtd ϖ〉0→n ↑ (3) N ↑→g M ↑→t M 〈g M →dtd ϖ〈0→n ↓ 所以当负荷变化时,应调节t M ,使t M =g M ,0n n =,又:ϖηγηγϖ/HQ M QH M t t =⇒=要使C =ϖ,一般不能改变H 和效率η(做不到或不经济),而是通过改变Q 而达到改变主动力矩M t 的目的。
调节流量的途径: 反击式水轮机: 通过改变导叶开度a 0轴流转浆式水轮机:改变导叶开度a0,同时改变叶片转角冲击式水轮机:通过改变喷嘴开度调节实质:调节转速水轮机调节所用的调节装置称为水轮机调速器。
三、水轮机调节系统的组成调速器的作用:以转速信号为依据,迅速自动地调节导叶开度,以达到改变出力恢复转速的目的。
调速器由自动调整机构、控制机构、油压装备、保护装备和监视仪表组成。
其中,自动调整主要由测量元件、放大元件、校正元件等组成,调速器与机组构成水轮机调节系统。
当系统频率出现偏差时,能自动改变导水机构的开度,使机组输出的有功功率满足电网负荷的需要,维持频率稳定。
转速调整机构和开度限制机构通过自动调节机构起着控制作用。
测量元件是个比例环节,能将输入频率信号变为机械位移或电气信号,以便推动下一级放大机构;放大元件是个积分环节,如无负反馈信号的作用,放大元件的动作将不会停止;硬反馈元件是按比例将输入值变为输出值,加入到综合元件后,起着调差作用;软反馈元件是个实际微分环节,一调整器中作校正元件,形成调节规律,电调中的PID环节通过集成电路,将比例积分、微分调节规律用硬件完成送入信号综合放大回路;微机调节器是通过采样的离散处理,利用三次采样的偏差值由PID控制算式取得输出值作用于功率放大机构。
四、调速器的类型1.按调速器元件结构分为:机械液压(机调)和电气液压(电调)2.按调节规律可分为:PI和PID调速器3.按执行机构数目分:单调节和双调节调速器单调节:只有一个导叶起闭机构,如混流和轴流定浆机组双调节:有两个调节机构(导叶开度,叶片转置角),ZZ、CJ(针阀、折流板转动)4.按反馈的位置分为:辅助接力器型、中间接力器型、电子调节器5.按调速器工作容量大小可分为:大型:活塞直径80mm以上中型:操作功10000~30000N. m小型:操作功小于10000 N. m,特小:小于3000N.m五、调节保证计算(一) 基本概念1.调节保证计算的任务:根据水电站水轮机组和引水系统条件,针对甩荷过渡过程所进行的机组转速和引水系统压力上升的计算叫调节保证计算。
调节保证计算的任务及目的为:(1) 计算有压引水系统的最大和最小内水压力。