水轮机选型设计

合集下载

(一)水电站水轮机选型设计方法及案例

(一)水电站水轮机选型设计方法及案例

水电站水轮机选型设计总体思路和基本方法水轮机选型是水电站设计中的一项重要任务。

水轮机的型式与参数的选择是否合理,对于水电站的动能经济指标及运行稳定性、可靠性都有重要的影响。

水轮机选型过程中,一般是根据水电站的开发方式、动能参数、水工建筑物的布置等,并考虑国内外已经生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一 已知参数1 电站规模:总装机容量:32.6MW 。

2 电站海拔:水轮机安装高程:▽=850m3 水轮机工作水头:max H =8.18m ,min H =8.3m ,r H =14.5m 。

二 机组台数的选择对于一个确定了总装机容量的水电站,机组台数的多少将直接影响到电厂的动能经济指标与运行的灵活性、可靠性,还将影响到电厂建设的投资等。

因此,确定机组台数时,必须考虑以下有关因素,经过充分的技术经济论证。

1机组台数对工程建设费用的影响。

2机组台数对电站运行效率的影响。

3机组台数对电厂运行维护的影响。

4机组台数对设备制造、运输及安装的影响。

5机组台数对电力系统的影响。

6机组台数对电厂主接线的影响。

综合以上几种因素,兼顾电站运行的可靠性和设备运输安装的因素,本电站选定机组为:4×8.15MW 。

三 水轮机型号选择 1 水轮机比转速s n 的选择水轮机的比转速s n 包括了水轮机的转速、出力与水头三个基本工作参数,它综合地反映了水轮机的特征,正确的选择水轮机的比转速,可以保证所选择的水轮机在实际运行中有良好的能量指标与空化性能。

各类水轮机的比转速不仅与水轮机的型式与结构有关,也与设计、制造的水平以及通流部件的材质等因素有关。

目前,世界各国根据各自的实际水平,划定了各类水轮机的比转速的界限与范围,并根据已生产的水轮机转轮的参数,用数理统计法得出了关于水轮机比转速的统计曲线或经验公式。

当已知水电站的水头时,可以用这些曲线或公式选择水轮机的比转速。

水轮机选型设计

水轮机选型设计

第六章水轮机选型设计由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。

水轮机由于它自身能量特性、汽蚀特性和强度条件的限制,每种水轮机适用的水头和流量范围比较窄,要作出很多系列和品种(尺寸)的水轮机,设计、制造任务繁重,生产费用和成本也大。

因此有必要使水轮机生产系列化、标准化和通用化,尽可能减少水轮机系列,控制系列品种,以便加速生产、降低成本。

在水电站设计中按自己的运行条件和要求选择合适的水轮机。

一、水轮机选型设计的任务及内容1.任务水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。

每一种型号水轮机规定了适用水头范围。

水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。

2.内容(1) 确定机组台数及单机容量(2) 选择水轮机型式(型号)及装置方式(3) 确定水轮机的额定功率、转轮直径D1、同步转速n、吸出高度H s、安装高程Z a 、飞逸转速、轴向水推力;冲锤式水轮机,还包括喷嘴数目Z0、射流直径d0等。

(4) 绘制水轮机运转特性曲线(5) 估算水轮机的外形尺寸、重量及价格、蜗壳、尾水管的形式、尺寸、调速器及油压装置选择(6) 根据选定水轮机型式和参数,结合水轮机在结构上、材料、运行等方面的要求,拟定并向厂家提出制造任务书,最终由双方共同商定机组的技术条件,作为进一步设计的依据。

二、选型设计1.水轮机选型设计一般有三种基本方法(1) 水轮机系列型谱方法: 中小型水电站水轮机选多此种方法或套用法。

(2) 套用方法: 用于小型水电站设计。

(3) 统计分析的方法:大型水电站设计,应用较广泛。

第二节 水轮机选型设计

第二节 水轮机选型设计

反击式水轮机转轮公称直径系列
25 30 35 (40) 42 50 60 71 (80) 84 100 120 140 160 180 200 225 250
275 300 330
380
410 450 500 550 850 900 950 1000
• 五、反击式水轮机的主要参数选择 • 2、转速n的选择
• 3、选择水轮机的型号: • (3)也可根据教材表8-4或图8-25确定水轮机的类型后, 或当用上述方法有两个型号接近的可选方案时,可用下 述方法选择水轮机的型号(比转速) • 轴流式 • 混流式
2300 ns Hr
2000 ns 20 Hr
• 贯流式:查下面曲线
• 2、装置方式选择 • 在大中型水电站中,其水轮发电机组的尺寸一般较大, 安装高程也较低,因此其装置方式多采用立轴式,即水 轮机轴和发电机轴在同一铅垂线上,并通过法兰盘联接。 这样使发电机的安装位置较高不易受潮,机组的传动效 率较高,而且水电站厂房的面积较小,设备布置较方便。 • 对机组转轮直径小于1m,吸出高度Hs为正值的水轮机, 常采用卧轴装置,以降厂房高度。而且卧式机组的安装、 检修及运行维护也较方便。
• 三、机组台数及单机容量的选择 • (2)运行效率 • 较大单机尺寸的机组,效率比较高。这对于预计经常满 负荷运行的水电厂获得的动能效益特别显著。 • 对变动负荷的水电厂,若采用过少的机组台数,虽单机 效率高,但在部分负荷时,由于负荷不便于在机组间调 节,因而不能避开低效率区。因此电厂的平均效率较低。
• 四、水轮机型号及装置方式的选择 • 1、根据电站装机总容量及机组台数,计算单机容量。
PZ P Z
• 2、选择水轮机的型号: • (1)根据水轮机系列应用范围综合图选择转轮型号 • 选型时可用已知的水电站设计水头和单机容量,在水轮 机系列应用范围综合图上找出适当的水轮机型号和装置 方式。有时可能有两种或三种适用的水轮机型号,这时 就需要根据具体情况,对不同机型方案进行全面的分析 比较,最后选用一种最优的机型。 • 常用于中小型机组的选择。

水轮机选型设计毕业论文

水轮机选型设计毕业论文

水轮机选型设计毕业论文目录第一章水轮机....................................... - 4 - 1.1 特征水头的确定............................................. - 4 -1.2 水轮机选型................................................. - 6 -1.3 水轮机蜗壳及尾水管......................................... - 8 - 1.3.1 蜗壳尺寸确定............................................ - 8 - 1.3.2 尾水管尺寸确定.......................................... - 8 -1.4 调速设备及油压设备选择..................................... - 9 - 1.4.1 调速功计算.............................................. - 9 - 1.4.2 接力器选择.............................................. - 9 - 1.4.3 调速器的选择............................................ - 9 - 1.4.4 油压装置............................................... - 10 -第二章发电机...................................... - 11 -2.1 发电机的尺寸估算.......................................... - 11 - 2.1.1 主要尺寸估算........................................... - 11 - 2.1.2 外形尺寸估算........................................... - 12 -2.2 发电机重量估算............................................ - 13 - 第三章混凝土重力坝................................ - 14 -3.1 剖面设计.................................................. - 14 - 3.1.1 坝高的确定............................................. - 14 - 3.1.2 坝底宽度的确定......................................... - 16 -3.2 稳定与强度校核............................................ - 17 -紧水滩水电站坝后式厂房方案论证设计3.2.1 作用大小............................................... - 17 - 3.2.2 承载能力极限状态强度和稳定验算......................... - 20 - 3.2.3 正常使用极限状态进行强度的计算和验算................... - 25 -第四章引水建筑物布置.............................. - 27 -4.1 压力钢管布置.............................................. - 27 - 4.1.1 确定钢管直径........................................... - 27 -4.2 进水口布置................................................ - 28 - 4.2.1 确定有压进水口的高程................................... - 28 - 4.2.2 渐变段尺寸确定......................................... - 28 - 4.2.3 拦污栅尺寸确定......................................... - 28 - 4.2.4 通气孔的面积确定....................................... - 29 -第五章主厂房尺寸及布置 ............................ - 30 -5.1 厂房高度的确定............................................ - 30 - 5.1.1 水轮机安装高程......................................... - 30 - 5.1.2. 尾水管顶部高程及尾水管底部高程......................... - 30 - 5.1.3 基岩开挖高程........................................... - 30 - 5.1.4 水轮机层地面高程....................................... - 31 - 5.1.5 发电机层楼板高程....................................... - 31 - 5.1.6 吊车轨顶高程........................................... - 31 - 5.1.7 厂房顶高程............................................. - 31 -5.2 主厂房长度的确定.......................................... - 31 - 5.2.1 机组段长度确定......................................... - 31 - 5.2.2 端机组段长度........................................... - 32 - 5.2.3 装配场长度............................................. - 33 -5.3 主厂房宽度和桥吊跨度的确定................................ - 33 - 第六章混凝土溢流坝................................ - 34 -6.1 溢流坝段总宽度的确定...................................... - 34 - 6.1.1 单宽流量q的选择....................................... - 34 - 6.1.2 确定溢流前缘总净宽L ................................... - 34 - 6.1.3 确定溢流坝段总宽度..................................... - 35 -6.2 堰顶高程的确定............................................ - 35 -6.2.1 堰顶高程的确定 ......................................... - 35 - 6.2.2 闸门高度的确定 ......................................... - 36 - 6.3 堰面曲线的确定 ............................................ - 36 - 6.3.1 最大运行水头max H 和定型设计水头d H 的确定 ............... - 36 - 6.3.2 三圆弧段的确定 ......................................... - 36 - 6.3.3 曲线段的确定 ........................................... - 36 - 6.3.4 直线段的确定 ........................................... - 37 - 6.3.5 反弧段的确定 ........................................... - 37 - 6.3.6 鼻坎挑角和坎顶高程的确定 ............................... - 38 - 6.3.7 溢流坝倒悬的确定 ....................................... - 38 - 6.4 溢流坝强度和稳定验算 ...................................... - 39 - 6.4.1 作用大小 ............................................... - 39 - 6.4.2 承载能力极限状态强度和稳定验算 ......................... - 41 - 6.4.3 正常使用极限状态进行强度的计算和验算 ................... - 43 - 6.5 消能与防冲 ............................................... - 44 - 6.5.1 挑射距离和冲刷坑深度的估算 ............................. - 44 -第七章 压力钢管应力分析及结构设计................... - 44 -7.1 水力计算 .................................................. - 45 - 7.1.1 水头损失计算 ........................................... - 45 - 7.1.2 水锤计算 ............................................... - 49 - 7.2 压力钢管厚度的拟定 ........................................ - 53 - 7.3 钢管、钢筋、混凝土联合承受压的应力分析 .................... - 54 - 7.3.1 混凝土开裂情况判别 ..................................... - 54 - 7.3.2 应力计算 ............................................... - 58 -紧水滩水电站坝后式厂房方案论证设计第一章 水轮机1.1特征水头的确定1. 在校核洪水位下, 四台机组满发,下泄流量Q=14100m 3/s,由厂区水位流量关系可得,尾水位▽尾=220.54m ,▽库=291.8mH 1=0.99×(▽库-▽尾)=0.99×(291.8-220.54)=70.54m2, 在设计洪水位下,四台机组满发,下泄流量Q=11000 m 3/s,由厂区水位流量关系得, 尾水位▽尾=217.82m, ▽库=289.94mH 2=0.99×(▽库-▽尾)=0.99×(289.94-217.82)=71.40m3, 在设计蓄水位下,一台机组满发,由下列式子试算出该情况下对应的下泄流量和水头N=9.81QH η H=0.99×(▽库-▽尾) ▽尾=f (Q)η=η水×η电=0.95×0.9列表试算,得当下泄流量为67.5 m 3/s 时,一台机组满发,对应水头为81.26m.,即H 3=81.26m.4.在设计蓄水位下,四台机组满发,试算该情况下对应的下泄流量和水头,列表试算当下泄流量为274 m 3/s 时,四台机组满发,对应水头为80.08m ,即H 4=80.08m 。

水轮机选型设计

水轮机选型设计

⽔轮机选型设计第⼀章⽔轮机的选型设计第⼀节⽔轮机型号的初步选择⼀、沙溪⽔电站的主要参数H max =68.0m H p =50.0m H min =43.0m由《⽔利机械》P 36设计⽔头 H r 初算时可近似取(0.9~1.0)H p H r = 0.95×50.0= 47.5m 总装机35万kw⼆、因为沙溪⽔电站的⽔头范围为43.0m~68.0m,根据《⽔轮机》课本,符合此⽔头范围的要求,分别是 HL220,它的使⽤⽔头为30~70m 。

该⽔电站的⽔头范围为38-68m ,适合此⽔头范围⽔轮机的类型有斜流式和混流式。

⼜根据混流式⽔轮机的优点:(1)⽐转速范围⼴,适⽤⽔头范围⼴,可适⽤30-700m ;、(2)结构简单,价格低;(3)装有尾⽔管,可减少转轮出⼝⽔流损失;故选择混流式⽔轮机。

⼆.⽐转速的选择按我国⽔轮机的型谱推荐的设计⽔头与⽐转速的关系,⽔轮机的s n 为 )(19.270205.472000202000kw m H n rs ?=-=-=因此,选择s n 在260左右的⽔轮机为宜。

在⽔轮机型谱中有HL220,故按HL220进⾏计算三.单机容量第⼆节原型⽔轮机主要参数的选择按电站建成后,在电⼒系统的作⽤和供电⽅式,初步拟定为2台、3台、4台、5台四种⽅案进⾏⽐较。

HL220其主要参数如下:模型转轮直径D 1=46cm,导叶相对⾼度b 0/D 1=0.25 z 1=14, 最优⼯况n 10’=70r/min,Q 10’=1.0m 3/s,η=92%,ns0=255,σ=0.115; 限制⼯况Q 1’=1.150m 3/s,η=89%,σ=0.133. 最⼤单位飞逸⽐转速n 1p ’= 133 r/min⼀.(⼆台)1、计算转轮直径⽔轮机额定出⼒:kw N P GGr 4.17857198.0105.174=?==η式中:G η-----发电机效率,取0.98 G N -----机组的单机容量(KW )取最优单位转速流量,Q 11r =1.14m 3/s ,对应的模型效率ηm=0.886,暂取效率修正值Δη=0.03,则设计⼯况原型⽔轮机效率η=ηm +Δη=0.916)(29.7916.05.4714.181.99183781.95.15.1111m H Q P D r r ===η按我国规定的转轮直径系列,计算值处于标准值7.0m 和7.5m 之间。

水轮发电机组中水轮机的选型设计

水轮发电机组中水轮机的选型设计

水轮发电机组中水轮机的选型设计摘要: 在水利水电系统中的建设过程, 怎样合理选择适用的水轮机组的类型对水轮机的性能是否优越十分重要。

因此应本着具体情况具体分析的原则设计相应的实践方案, 以提高其运行的灵活性。

本文着重阐述实践中应如何对水轮机组进行设计。

关键词: 水轮机组;特征;选型设计Abstract: In the water conservancy and hydropower system in the construction process, how to choose suitable hydraulic turbine type on turbine performance is superior is very important. It should be based on concrete analysis of the principles of design and the corresponding practices, in order to improve the operation flexibility. This paper focuses on the practice should be how to design of hydraulic turbine.Key words: turbine selection design; feature;0引言水轮机组的选型设计是水电站水力机械设计的重要组成部分。

发电机由水轮机驱动,它的转子短粗,机组的起动、并网所需时间较短,运行调度灵活。

水轮机组选型设计不仅为以后的电气部分、水工部分设计打下基础,同时也会影响到电站的机电设备投资、厂房投资及发电效益等经济指标。

因此,水轮机组的选型设计必须做到科学、准确、合理、先进,满足技术性能和经济指标的要求。

1水轮机选型设计的任务及内容水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。

水轮发电机组选型设计设计

水轮发电机组选型设计设计

第1章 水轮发电机组选型设计1.1、机组台数及型号选择1.1.1、水轮机型式的选择已知参数6.25max =H , 8.22min =H , 3.23av =H , MW 200=N保证出力:MW 35=b N ,利用小时数:h 2225 取设计水头3.23av r ==H H按我国水轮机的型谱推荐的设计水头与比转速的关系,混流式水轮机的比转速s n :)(kW m H n s ⋅=-=-=394203.232000202000 轴流式水轮机的比转速s n : )(4773.2323002300kW m H n s ⋅===根据原始资料,适合此水头范围的水轮机类型有轴流式和混流式。

轴流式和混流式水轮机优点:(1)混流式结构紧凑,运行可靠,效率高,能适应很宽的水头范围,是目前应用最广泛的水轮机之一。

(2)轴流式水轮机s n 较高,具有较大的过流能力,轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行根据表本电站水头变化范围m H 6.25~8.22=查《水电站机电设计手册—水力机械》因为设计电站是无调节电站,所以工作容量等于保证出力MW 35=b N选用混流式机组的单机容量不得超过MW 8.7745.035= 选用轴流式机组的单机容量不得超过MW 10035.035= 确定机组台数4台和5台 方案列表如下:转轮型号 HL260/A244JK503 ZZ500 HL260/A244 JK503 ZZ500单机容量(MW) 50 50 50 40 40 401.2、水轮机方案比较1.2.1、方案Ⅱ、MW 504⨯ 244/260A HL1、计算转轮直径水轮机的额定出力为:W 51020%9850000k N P G Gr ===η取最优单位转速min 80110r/n =与出力限制线的交点的单位流量为设计工况点单位流量,则)(s /m 29.1Q 3110=,对应的模型效率875.0m =η,暂取效率修正值%2=∆η,则设计工况原型水轮机效率895.002.0875.0m =+=∆+=ηηη。

第六章 水轮机的选型设计

第六章 水轮机的选型设计
② 重叠区内相同型式不同型号转轮的比 较
3、选择水轮机主要参数计算
4、计算各方案的吸出高度 H s
5、绘制各方案的运转综合特性曲线
6、确定各方案的安装高程 安
7、各方案分析比较
8、结论
§6-3 反击式水轮机主要参数计算
主要介绍最常见的用模型综合特性曲线选择 参数的方法,基于几点考虑:
①原、模型水轮机满足相似条件,因此,可 用相似公式计算原、模型水轮机主要参数。
9.81Q11H 2
P 式中: ----水轮机的额定出力,单位kW。P Pf f
其中 Pf 为同步发电机额定容量; f 为发电机效
率,中小型 f 95% ~ 96% ,大中型 f 96% ~ 98%
H ----水轮机的设计水头,单位m。
Q11 ----设计工况下的单位流量
对HL式和ZD式水轮机,采用模型最优单位
转速 n110M 与模型出力限制线交点的单位流量值
;对ZZ式水轮机,由于无出力限制线,出力受
气蚀的限制,故选用小于型谱推荐的 Q11 值。
----水轮机效率,可按单位流量取值点的
模型效率 M ,先初略加上1%---3%的效率修正
值进行计算。待求出 D1 后,再按转轮直径标 准系列取与之接近的标准直径(见课本P17)。
转速所包含的区间,这个区间就是原型水轮机的
工作范围。若这个区间在模型综合特性图上处于
高效率区,则说明原型水轮机工作范围理想,所
选参数配合合理。
初选水轮机基本参数表
台数Z
P Pf Z f
D1
P
3Hale Waihona Puke 9.81Q11H 2标准直径
max
1 1 M max
5
D1M D1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮机的选型设计水轮机选型是水电站设计中的一项重要任务。

水轮机的型式与参数的选择是否合理,对于水电站的动能经济指标及运行稳定性、可靠性都有重要的影响。

水轮机选型过程中,一般是根据水电站的开发方式、动能参数、水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一、水轮机选型的内容、要求和所需资料1.水轮机选择的内容⑴确定单机容量及机组台数。

⑵确定机型和装置形式。

⑶确定水轮机的功率、转轮直径、同步转速、吸出高度及安装高程、轴向水推力、飞逸转速等参数。

对于冲击式水轮机,还包括确定射流直径与喷嘴数等。

⑷绘制水轮机的运转综合特性曲线。

⑸估算水轮机的外形尺寸、重量和价格。

⑹根据选定的水轮机型式与参数、结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。

2.水轮机选择的基本要求水轮机选择必须充分考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。

在几个可能的方案中详细地进行以下几方面的比较,从中选择出技术经济综合指标最优的方案。

⑴保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。

⑵根据水电站水头的变化及电站的运行方式,选择合适的水轮机型式及参数,使电站运行中平均效率尽可能高。

⑶水轮机的性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。

在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损、抗空蚀性能。

⑷机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。

⑸机组制造供货应落实,提出的技术要求应符合制造厂的设计、试验与制造水平。

⑹机组的最大部件和最重部件要考虑运输方式与运输的可行性。

3.水轮机选型所需的原始技术资料水轮机的型式及参数的选择是否合理、是否与电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。

根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料。

⑴枢纽资料:包括河流的水能总体规划、流域的水文地质、水能开发方式、水库的调节性能、水利枢纽布置、电站类型及厂房条件、上下游综合利用的要求、工程的施工方式和规划等情况。

还应包括经过严格分析与核准的水能基本参数,诸如电站的最大水头、最小水头、加权平均水头、设计水头,各种特征流量、、,典型年(设计水平年、丰水年、枯水年)的水头、流量过程线。

此外还应有电站的总装机容量、保证出力以及水电站下游水位流量关系曲线。

⑵电力系统资料:包括电力系统负荷组成、设计水平年负荷图、典型日负荷图、远景负荷;设计电厂在系统中的作用与地位,例如调峰、基荷、调相、事故备用的要求以及与其他电站并列调配运行方式等。

⑶水轮机设备产品技术资料:包括国内外水轮机型谱、产品规范及其特性;同类水电站的水轮机参数与运行的经验、存在问题等。

⑷运输及安装条件:应了解通向水电站的水陆交通情况,例如公路、水路及港口的运载能力(吨位及尺寸);设备现场装配条件,大型专用加工设备在现场临时建造的可能性及经济性;大型部件整件出厂与分块运输现场装配的比价等。

除上述资料外,对于水电站的水质应有详细的资料,包括水质的化学成分、含气量、泥沙量等。

二、水轮机选型的基本方法目前世界上各国在设计水电站中选择水轮机的方法不尽相同,主要方法可以概括为下面几种。

⒈应用统计资料选择水轮机这种方法以已建水电站的统计资料为基础,通过汇集、统计国内外已建水电站的水轮机的基本参数,在把它们按水轮机型式、应用水头、单机容量等参数进行分析归类。

在此基础上,用数理统计法作出水轮机的比转速、单位参数与应用水头的关系曲线= 、=、= 以及电站空化系数与比转速的关系曲线等,或者用数值逼近法得出关于这些参数的经验公式。

当确定了水电站的水头与装机容量等基本参数后,可根据统计曲线或经验公式确定水轮机的型式与基本参数。

按照选定的水轮机参数向水轮机生产厂提出制造任务书,由制造厂生产出符合用户要求的水轮机。

这种方法在国外被广泛采用。

⒉按水轮机系列型谱选择水轮机在一些国家,对水轮机设备进行了系列化、通用化和标准化,制定了水轮机型谱,为每一水头段配置了一种或两种水轮机转轮,并通过模型试验获得了各型号水轮机的基本参数与模型综合特性曲线。

这样,设计者就可以根据水轮机型谱与模型综合特性曲线选择水轮机的型号与参数。

我国与原苏联都曾颁布过水轮机型谱。

水轮机型谱为水轮机的选型设计提供了便利,可使选型工作简化与标准化。

但要注意不可局限于已制定的水轮机型谱,当型谱中的转轮性能不能满足设计电站的要求时,要通过认真分析,研究新的水轮机方案,并与生产厂家协商,设计、制造出符合要求的水轮机。

同时,要不断发展、完善、更新水轮机的型谱。

3.用套用法选择水轮机这种方法是直接套用与拟建电站的基本参数(水头、容量)相近的已建电站的水轮机型号与参数。

这种方法多用于小型水电站的设计,它可以使设计工作大为简化。

但要注意必须合理套用,要对拟建电站与已建电站的参数进行详细的分析与比较,还要考虑不同年代水轮机的设计与制造水平的差异,90年代设计的电站若直接套用60年代电站的水轮机,往往会使水轮机的参数偏低。

因此,必要时对已建电站的水轮机参数做适当修正后再套用。

我国过去应用较多的方法是按照水轮机型谱选择水轮机。

但随着水电开发的进展,旧的水轮机型谱已不能满足目前水电站设计的需要,设计者常采用不同的选型方法相互结合、相互验证,以保证水轮机选型的科学性与合理性。

三、机组台数选择对于一个确定了总装机容量的水电站,机组台数的多少将直接影响到电厂的动能经济指标与运行的灵活性、可靠性,还影响到电厂建设的投资等。

因此,确定机组台数时,必须考虑以下有关因素,经过充分的技术经济论证。

⒈机组台数对工程建设费用的影响机组台数的多少直接影响单机容量的大小,单机容量不同时,机组的单位千瓦造价不同,一般,小机组的单位千瓦造价高于大机组。

一方面,小机组的单位千瓦金属消耗高于大机组,另一方面,单位重量的加工费也较大。

除主要机电设备外,机组台数的增加,要求增加配套设备的台数,主副厂房的平面尺寸也需增加,因此,在同样的装机容量条件下,水电站的土建工程与动力厂房的成本也随机组台数的增加而增加。

⒉机组台数对电站运行效率的影响当采用不同的机组台数时,电站的平均效率是不同的。

较大单机容量的机组,其单机效率较高,这对于预计经常满负荷运行的水电站获得的效益较显著。

但是,对于变动负荷的水电站,若采用过少的机组台数,虽单机效率高,但在部分负荷时由于负荷不便在机组间调节,因而不能避开低效率区,这会使电站的平均效率降低。

电站的最佳装机台数,要通过电厂的经济运行分析来确定。

此外,机组类型不同时,台数对电站运行效率的影响不同。

对于固定叶片式水轮机,尤其是轴流定桨式水轮机,其效率曲线比较陡峭,当出力变化时,效率变化剧烈。

若机组台数多一些,则可通过调整开机台数而避开低负荷运行,从而使电站的运行效率明显提高。

但是,对于转桨式水轮机或多喷嘴的水斗式水轮机,由于可以通过改变叶片角度或增减使用喷嘴的数目而使水轮机保持高效率运行,因此,装有这些机组的水电站,机组台数对电站运行效率的影响较小。

⒊机组台数对电厂运行维护的影响机组台数较多时,其优点是运行方式灵活,发生事故时对电站及所在系统的影响较小,检修也容易安排。

但台数较多时,运行人员增加,运行用的材料,消耗品增加,因而运行费用较高。

同时,较多的设备与较频繁的开停机会使整个电站的事故发生率上升。

⒋机组台数对设备制造、运输与安装的影响机组台数增加时,水轮机和发电机的单机容量减小,则机组的尺寸小,制造、运输及现场安装都较容易。

反之,台数减小则机组尺寸增大,机组的制造、运输、安装的难度也相应加大。

因此,最大单机容量的选择要考虑制造厂家的加工水平及设备的运输、安装条件。

此外,从发电机转子的机械强度方面考虑,发电机转子的直径必须限制在转子最大线速度的允许值之内,机组的最大容量有时也会因此受到限制。

⒌机组台数对电力系统的影响对于占电力系统比重较大的水电厂及大型机组,发生事故时对电力系统的影响较大,考虑到电力系统中备用容量的设置及电力系统的安全性,在确定台数时,单机容量不应大于系统的备用容量,即使在容量较小的电网中,单机容量也不宜超过系统容量的1/3。

⒍机组台数对电厂主接线的影响由于水电厂水轮发电机组常采用扩大单元主结线方式(超大型机组除外),故机组台数多采用偶数。

同时为了运行方式的机动灵活及保证机组检修时的厂用电可靠,除了特殊情况和农村小电站外,一般都装两台以上机组。

对于装置大型机组的水电厂,由于主变压器的最大容量受到限制,常采用单元接线方式,因此机组台数的选择不必受偶数的限制。

以上与机组台数有关的诸因素,许多是既相互联系又相互矛盾的,在选择时应针对主要因素,进行综合技术经济比较,选择出合理的机组台数。

四、水轮机型式的选择根据水电站的实际情况正确地选择水轮机的型式是水轮机选型设计中的一个重要环节。

虽然各类水轮机有明确的适用水头范围,但由于它们的适用范围存在着交叉水头段,因此,必须根据水电站的具体条件对可供选择的水轮机进行分析比较,才能选择出最合适的机型。

㈠各类水轮机的适用范围大中型水轮机的类型及其适用的水头范围如表6-5示。

表6-5 水轮机的类型及适用范围各类水轮机的适用范围除了与使用水头有关外,还与水轮机的容量有关,同一类型同一比转速的水轮机,在小容量时使用水头较低,在容量较大时使用水头较高。

为了便于选择水轮机的型式,制定了水轮机应用范围图,见图6-28。

从表6-5及图6-28中可看出,各类水轮机的应用水头范围是交叉的,其中,存在交界水头段。

在水轮机选择时,若同一水头段有多种机型可供选择,则需要认真分析各类水轮机的特性并进行技术经济比较以确定最适合的机型。

不同类型的水轮机具有不同的适用范围与特点,各类水轮机的特点可概括如下。

图6-28 各类型水轮机应用范围图。

相关文档
最新文档