超临界和超超临界发电机组
蒋寻寒---超临界机组和超超临界机组的优化设计问题

大型火电机组的一些优化设计问题蒋寻寒1,马启磊1,阮圣奇1,曹祖庆2(1,安徽省电力科学研究院,合肥 230601;东南大学,南京 210018)摘要:从节能角度出发,对目前引进型超超临界火电机组的汽轮机、锅炉方面一些典型的设计问题进行了分析,指出能耗增加的不良后果,建议新机组设计进一步向节能倾斜,并提出一些优化设计方法,以便今后新建的超超临界机组能够充分发挥低能耗、低排放的优势;对于节能相关运行仪表的配置,也给出了一些技术建议。
关键词:超超临界,火电机组,优化设计Some key points in optimizing design for large scale coal fired power unitsAbstract: For the super critical coal fired power units in China, there are some typical shortcomings for energy conservation in design, which are pointed out in this paper. Improvements are presented for the units to be setup for lowest energy consumption and waste emission. Instrunments configuration methods for most important parameters are also presented for thermo performance test and analysis.Key words: Ultra super critical, coal fired power unit, design optimization1前言由于种种原因,国内的很多超临界和超超临界机组未能充分发挥其应有的低能耗、低排放优势,需要从设计、安装、调试、运行和维护等诸多方面发现和解决问题。
超临界火电机组

火力发电革命性变革——超临界(超超临界)机组运用超临界(超超临界)是一个热力学概念。
对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。
同时这一状态下对应的饱和温度为374.15℃。
超临界机组即指蒸汽压力达到超临界状态的发电机组。
蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。
超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。
但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。
现在全世界各国都非常重视超临界(超超临界)机组技术的发展。
超超临界机组蒸汽参数愈高,热效率也随之提高。
热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。
在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。
超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。
经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。
与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。
超临界(超超临界)机组具有如下特点:(1)热效率高、热耗低。
超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。
(2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。
电厂节能技术

电厂节能技术汇总节能减排是关系经济社会可持续发展的重大战略问题,是国家确定的经济社会发展的重大战略任务。
电力行业既是优质清洁能源的创造者,又是一次能源消耗大户和污染排放大户,因而也是国家实施节能减排的重点领域。
电厂节能技术如下:1.超临界及超超临界发电技术超临界机组是指主蒸汽压力大于水的临界压力的机组,即压力大于等于22.12MPa。
习惯上又将主蒸汽压力大于27MPa的机组统称为超超临界机组。
所以对于超临界机组可以分为2个层次:一是常规超临界参数机组,其主蒸汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为540~560℃;二是超超临界机组,通常也称为高参数超临界机组,其主蒸汽压力为25~35MPa及以上,主蒸汽和再热蒸汽温度为580℃及以上。
对于常规超临界机组的效率可比亚临界机组约高2%,而对于超超临界机组,其效率可比常规超临界机组再提高4%左右。
在环保方面,超超临界机组加装锅炉尾部烟气脱硫、脱硝和高效除尘装置,可满足严格的排放标准。
同时,由于超超临界机组提高了效率,相应地也节约了发电耗水量。
2、燃气-蒸汽联合循环发电技术燃气-蒸汽联合循环发电系统是由燃气轮机发电系统和锅炉-蒸汽轮机发电系统所组成。
燃气轮机发电系统是由压气机将空气加压进入燃烧室,与燃料混合燃烧产生的高温高压烟气在透平中膨胀作功,将高温高压烟气的能量(通常烟气压力0.5~1.0MPa,温度1000~l300℃)转换成机械能,推动燃气轮机发电机发电。
锅炉-蒸汽轮机发电系统是利用燃气余热锅炉产生的高(中)压过热蒸汽(通常蒸汽压力为3.82~16.70MPa,温度450~550℃)在汽轮机中作功,将蒸汽的能量转换成机械能,推动蒸汽轮机发电机发电,完成朗肯循环过程。
热力循环过程中燃气轮机循环吸热平均温度比较高,可高达1300℃。
纯蒸汽动力循环由于蒸汽的热物理性质限制了汽轮机的进汽温度,通常最高进汽温度为450~550℃。
但其循环放热平均温度很低,一般为30~38℃。
亚临界,超临界,超超临界火电机组技术

亚临界、超临界、超超临界火电机组技术区别一、定义所谓的"临界"是指锅炉工作情况下承受的一定温度和压力的蒸汽状态。
可以查出水的临界压力为22.115MPa ,由此知,此压力对应下的状态叫临界状态;(1)水在加热过程中存在一个状态点——临界点(2)低于临界点压力,从低温下的水加热到过热蒸汽的过程中要经过汽化过程,即经过水和水蒸汽共存的状态;(3)而如果压力在临界压力或临界压力以上时,水在加热的过程中就没有汽水共存状态而直接从水转变为蒸汽。
T-S图临界点T饱和水线饱和汽线S水的临界点1.1 压力低于25MPa(对应的蒸汽温度低于538摄氏度)时的状态为亚临界状态;亚临界自然循环汽包锅炉的燃烧室蒸发受热面与汽包构成循环回路。
受热面上升管吸热量越大,则上升管内的含汽率增大,与下降管比重差增大,因此推动更大的循环量。
其特性是带有“自补偿”性质的。
而直流锅炉燃烧室内的平行上升管组吸热量越大则工质比容增大,体积流速变大,阻力增大。
对带有联箱的平行管组,吸热多的管子质量流量必然降低,其特点是“直流”性质的。
1.2 压力在25MPa 时的状态(对应的蒸汽温度高于538摄氏度)为超临界状态;超临界是物质的一种特殊状态,当环境温度、压力达到物质的临界点时,气液两相的相界面消失,成为均相体系。
当温度压力进一步提高,即超过临界点时,物质就处于超临界状态,成为超临界流体。
超临界水是一种重要超临界流体,在超临界状态下,水具有类似于气体的良好流动性,又具有远高于气体的密度。
超临界水是一种很好的反应介质,具有独特的理化性质,例如扩散系数高、传质速率高、粘度低、混合性好、介电常数低、与有机物、气体组分完全互溶;对无机物溶解度低,利于固体分离,反应性高、分解力高;超临界水本身可参与自由基和离子反应等等。
1.3 压力在25-31MPa 之间(温度在600度以上)则称为超超临界状态。
二、 参数水的临界状态参数为压力22.115MPa 、温度374.15℃2.1 亚临界火电机组蒸汽参数: P=16~19MPa ,T= 538℃/ 538℃或T= 540℃/ 540℃。
超临界、超超临界燃煤发电技术

1.工程热力学将水的临界状态点的参数定义为:22.115MPa,374.15℃。
当水蒸气参数值大于上述临界状态点的压力和温度时,则称其为超临界参数。
超超临界设定在蒸汽压力大于25MPa、或蒸汽温度高于593℃的范围。
2.提高机组热效率:提高蒸汽参数(压力、温度)、采用再热系统、增加再热次数。
3.常规亚临界机组参数为16.7MPa/538℃/538℃,发电效率约38%;超临界机组主汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为538—560℃,典型参数为24.1MPa/538℃/538℃,发电效率约41%;超超临界追压力25—31MPa及以上,主蒸汽和再热蒸汽温度为580—600℃及以上。
超临界机组热效率比亚临界机组的高2%—3%,超超临界机组的热效率比超临界机组高4%以上。
4.在超超临界机组参数条件下,主蒸汽压力提高1MPa,机组的热效率就可下降0.13—0.15%;主蒸汽温度每提高10℃,机组的热效率就可下降0.25%—0.30%。
再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%—0.20%。
如果增加再热参数,采用二次再热,则其热耗率可下降1.4%—1.6%。
当压力低于30MPa时,机组热效率随压力的提高上升很快;当压力高于30MPa时,机组热效率随压力的提高上升幅度较小。
5.锅炉布置主要采用Ⅱ型布置、塔式布置、T型布置。
超超临界机组可采用四角单切圆塔式布置、墙式对冲塔式布置、单炉膛双切圆Ⅱ型布置及墙式对冲Ⅱ型布置。
Ⅱ型布置适用于切向燃烧方式和旋流对冲燃烧方式;塔式炉适用于切向燃烧方式和旋流对冲燃烧方式;T型布置适用于切向燃烧方式和旋流对冲燃烧方式。
6.水冷壁型式:变压运行超临界直流锅炉水冷壁:炉膛上部用垂直管,下部用螺旋管圈及内螺纹垂直管屏。
7.我国超超临界技术参数:一次再热、蒸汽参数(25—28)MPa/600℃/600℃,相应发电效率预计为44.63%—44.99%,发电煤耗率预计为275—273g/kWh。
探析超临界、超超临界机组运行安全性、可靠性

探析超临界、超超临界机组运行安全性、可靠性摘要:随着近几十年国家的快速发展,超临界和超超临界发电机组目前已经成为我国火力发电的主力机组,它的运行安全性、可靠性以及经济性等都对火电发电企业有着重大影响。
对影响其运行安全性和可靠性指标的原因进行归类、总结和分析。
结果表明,制造质量不良、施工安装质量不良、设备老化、检修质量不良是影响机组主设备运行安全、可靠性的主要原因,尤以制造质量不良为主;漏粉、漏水、漏汽、机械磨损、堵塞、断裂、振动、冲蚀、开焊等是影响机组辅助设备运行安全、可靠性的主要原因。
关键词:超临界和超超临界;安全性;可靠性;运行1.超临界和超超临界机组的发展概况超临界和超超临界机组(一般指汽压大于24Mpa与汽温大于593℃或汽压大于27.5Mpa与汽温大于580℃的机组)作为当前燃煤电厂先进可靠的发电设备,是火电厂热力系统从低压—中压—高压—超高压—亚临界的发展升级。
超临界机组发电净效率可达45%左右,与增压流化床联合循环发电技术(PFBC)和整体煤气化联合循环发电技术(IGCC)相当,超临界机组具有良好的负荷调节特性,在部分负荷下仍能保持较高的效率,并且超临界机组在扩大容量、基建投资和发电成本方面要比IGCC和PFBC优越。
因此工业发达国家非常重视发展超临界和超超临界机组。
美国于1957年投运第一台125MW超临界机组,美国超临界机组单机双轴最大容量达1300MW,其中单机容量大于500MW的占70%以上。
原苏联于1963年投入第一台300MW超临界机组运行,现300MW以上机组全部采用超临界参数,且单机双轴最大容量为1200MW。
日本于1967年从美国引进第一台超临界600MW机组,然后采用引进、仿制、再创造的技术路线,并自行开发了能带中间负荷、直流滑压运行的超临界锅炉。
日本的超临界机组大多为600~1000MW。
德国、丹麦、英国等都是发展超临界机组较好的国家。
我国先后从美国、俄罗斯等国引进一批超临界机组。
超临界、超超临界机组临界温度

超临界、超超临界机组临界温度
超临界和超超临界发电机组是指采用高温高压条件下运行的火力发电机组,分别称为
超临界、超超临界发电机组。
其运行参数一般分别为: 主蒸汽压力25-30 MPa,过热温度570-620℃,再热温度605-620℃,蒸汽流量较大,可达到1600t/h以上。
而且它们可以避免使用煤炭等传统能源的问题,对环境污染的影响更小。
超临界和超超临界技术的应用,可以大大提高火力发电的效率和节能降耗水平。
但是,在使用这种技术的过程中,需要注意机组的运行参数,特别是临界温度,这是十分重要的
一个参数,不同的临界温度也会对机组的性能和稳定性产生不同的影响。
超临界机组临界温度:是指机组开始发生超临界状况的温度,一般为374℃,也就是
说在超过374℃的条件下,水和蒸汽不再有明显的相变,而是呈现出超临界流体的特性。
超临界流体具有高密度、高动力性、低粘度等特点,可以大大提高机组能量的利用效率。
总的来说,在超临界和超超临界机组的使用过程中,需要注意它们的临界温度,特别
是在超超临界机组中,临界温度更为关键。
如果温度过高或者过低,都会对火力发电机组
的稳定性和效率产生不良的影响。
因此,必须控制好机组的临界温度,以确保机组能够在
合理、稳定的状态下运行,同时保证发电效率和能源利用效率的最大化。
超临界、超超临界机组汽机的结构特点2

3.4.1总体特点本次机组具有超群的热力性能;优越的产品运行业绩及可靠性;高效、高可用率、容易维护、检修所花时间少、运行灵活、快速启动及调峰能力。
机组采用一只高压缸、一只中压缸和二只低压缸串联布置。
汽轮机四根转子各由两只径向轴承来支承。
这种支承方式不仅安装维护方便,属于传统成熟结构;相对于单支承轴承跨距小,转子刚度高,厂内高速动平衡状态的动力特性与现场转子工作状基本相同,减少现场动平衡量;而且轴承工作比压相对较低,在一般轴承比压设计范围内,联轴器螺栓受力较小,汽机转子能平稳安全运行。
本机组采用以下在多台相近蒸汽参数和相同容量的机组得到验证的设计和结构特征,来保证机组具有高的可靠性和运行高效率。
●模块设计●采用成熟可靠结构●高效率冲动式叶型●选用合适的材料来适应高蒸汽参数●对高温部件作特殊精心设计●可靠的防止固体微粒腐蚀的技术●高压、中压缸为双层缸结构●汽缸采用水平中分面、窄高法兰,并采用合理的螺栓冷却系统●中心线支承方式●汽缸和隔板精确的同心度●经过验证的叶片固定方式●每个转子配有独立的双轴承支撑●对轴系稳定性进行了慎密校核●实心合金钢整锻转子,轮盘式转子结构●低压缸为三层缸结构,防止热变形●铁素体不锈钢汽封和接触式汽封●径向汽封,动静间隙合理●全部隔板采用焊接结构●结构上有足够的疏水槽●钢台板●先进的低压缸喷水系统●测温元件可在线更换●转子厂内高速动平衡和超速试验,将不平衡量降到最小●高效、高可靠性的阀门●面向用户的设计、检修维护方便图3-26 高压内缸中分面螺栓冷却图图3-27 中压缸纵剖面3.4.2 高压模块(HP 汽缸)高压缸为单流式,包括1个双向流冲动式调节级和8个冲动式压力级。
高压汽缸采用双层缸结构,内缸和外缸之间的夹层只接触高压排汽,使缸壁设计较薄,高压排汽占据内外缸空间,简化汽缸结构。
汽缸设计采用合理的结构和支撑方式,保证热态时热变形对称和自由膨胀,降低扭曲变形。
高压内、外缸由合金钢铸件制成,精确加工和手工研磨水平中分面达到严密接触,防止漏汽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Latest Developments in the World ′s Wind Power Industry
Luo Chengxian
(Former SINOPEC Center of Information ,Beijing 100011)
[Abstract]In recent years ,renewable energy source-based power generation ,particularly wind power ,has been growing rapidly.Pushed by some wind power foregoer countries ,significant progress has been made in the de -velopment of large-capacity wind turbine power generating sets with single-generator capacity having quickly broken through the key level of 1MW.10MW wind turbine power generating sets are expected to enter the market soon.The development of larger-capacity generators has enhanced the economic viability and competi -tiveness of wind power.The utilization rate of wind turbines will rise to 28%by 2015from the current about 25%and the investment cost will drop considerably.Under GWEC ′s high-growth scenario ,the investment cost will fall to 1093Euro/kW by 2030from 1350Euro/kW in 2009.Given the intermittent and stochastic nature of wind ,power storage technology is an effective approach to introducing renewable energy on a large scale.Japan and many American and European countries have invested in the research and development of power storage technology.A recent IEA research note shows that use in combination with heat and power cogenera -tion technology ,which focuses on heat supply ,can greatly expand the scale of use of renewable energy sources.Smart grids will be the fundamental approach to resolving the problems relating to the large -scale grid integration of wind power and power transmission.Smart grid technology will greatly enhance the overall utilization efficiency of the power system and can effectively reduce the fossil fuel consumption of power plants.China has made some progress in developing smart grids although there are still many problems yet to be resolved.The renewable energy -derived power purchasing policies enacted by countries around the globe have promoted the development of the global wind power industry.Germany ′s wind power purchasing policies can be used by China for reference.
[Keywords]wind power generation ;larger generator ;equipment utilization rate ;investment cost ;power storage technology ;smart grid ;wind power purchasing policy
·39·
第5期罗承先.世界促进风电产业发展最新动向·能源知识·
超临界和超超临界发电机组
火电厂超临界和超超临界机组指的是锅炉内工质的压力。
锅炉内的工质都是水,水的临界压力是22.115MPa ,温度为347.15℃。
在这个压力和温度时,水和蒸汽的密度是相同的,这就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31MPa 则称为超超临界。
超临界机组具有无可比拟的经济性,单台机组发电热效率最高可达50%,每千瓦时煤耗最低仅为255g(丹麦BWE 公司),较亚临界压力机组(最低约327g 左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其他有害物质,且脱硫率超98%,可实现节能降耗、环保的目的。
超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率还要高1.2%,一年就可节约6000t 优质煤。
未来火电建设将主要发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。
我国已成功掌握先进的超超临界火力发电技术,并为百万千瓦超超临界机组产业化创造了条件。
目前一批百万千瓦超超临界机组项目正在建设中。
(供稿舟丹)。