晶体三极管的结构作用与开关特性
《晶体三极管》课件

晶体三极管的分类
有两种主要的晶体三极管 类型:PNP和NPN。
2. 晶体三极管的工作原理
1
简单电路
晶体三极管可以作为放大器、开关和振荡器在各种电路中发挥作用。
2
放大器电路
晶体三极管可以放大信号的幅度,使其更适合其他电路的输入。
3
开关电路
晶体三极管可以控制电流的通断,用于构建开关电路。
3. 晶体三极管的应用
5. 晶体三极管的优缺点
1 优点
小巧、高频响应、低功耗、可靠性高、成 本低。
2 缺点
温度敏感、容易受到噪声干扰、容易烧毁。
6. 结论
总结
晶体三极管是一种重要的电子元器件,广泛应用于各种电路和电子设备中。
展望
随着科技的发展,晶体三极管不断改进,将在更广泛的领域发挥作用。
《晶体三极管》PPT课件
晶体三极管是电子学中重要的元器件之一,本课件将介绍晶体三极管的结构、 工作原理、应用、特性以及优缺点,帮助您全面了解晶体三极管。
1. 介绍晶体三极管
ห้องสมุดไป่ตู้
什么是晶体三极管?
晶体三极管是一种半导体 器件,可用作放大,开关 和振荡器。
晶体三极管的结构
晶体三极管由三个不同掺 杂的半导体区域构成:发 射区,基区和集电区。
放大器
晶体三极管可用于构建各类放 大器,如音频放大器、射频放 大器等。
开关
晶体三极管可以用于构建数字 电路和模拟电路中的开关。
振荡器
晶体三极管可以作为振荡器的 关键元件,产生无线电频率信 号。
4. 晶体三极管的特性
基本参数
• 电流放大倍数 • 最大可承受电压 • 最大可承受功率
变化规律
• 输入特性曲线 • 输出特性曲线 • 电流-电压关系
三极管的开关特性

三极管的开关特性在脉冲与数字电路中,三极管作为最基本的开关元件得到了普遍的应用。
三极管工作在饱和状态时,其UCES≈0,相当于开关的接通状态;工作在截止状态时,IC≈0,相当于开关的断开状态,因此,三极管可当做开关器件使用。
结型场效应管场效应管(Fjeld Effect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。
场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。
与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。
场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。
图Z0121 为场效应管的类型及图形、符号。
一、结构与分类图 Z0122为N沟道结型场效应管结构示意图和它的图形、符号。
它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。
在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。
下面以N沟道结型场效应管为例来分析其工作原理。
电路如图Z0123所示。
由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。
漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流ID。
1.栅源电压UGS对导电沟道的影响(设UDS=0)在图Z0123所示电路中,UGS <0,两个PN结处于反向偏置,耗尽层有一定宽度,ID=0。
若|UGS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|UGS| 减小,耗尽层变窄,沟道变宽,电阻减小。
简述三极管的结构及其的功能

简述三极管的结构及其的功能三极管是一种重要的电子元件,广泛应用于电子设备中,如放大器、开关、逻辑门等。
它由三个掺杂不同的半导体材料组成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
这三个区域形成了两个PN结,即发射结和集电结。
三极管的结构和功能有以下几个方面:1. 发射极(Emitter):发射极是三极管的输出端,它是一个高掺杂的N型区域。
当向发射极施加一个正向电压时,发射极将注入大量的电子到基区。
这些电子通过发射结进入基区并与基区内的空穴复合,形成电流。
2. 基极(Base):基极是三极管的控制端,它是一个低掺杂的P型区域。
基极的掺杂浓度较低,使得它的电阻较高。
当向基极施加一个正向电压时,基极与发射极之间的发射结会被偏置,导致发射极注入电子到基区。
基极的电流决定了三极管的放大倍数。
3. 集电极(Collector):集电极是三极管的输入端,它是一个中掺杂的N型区域。
当向集电极施加一个正向电压时,集电极与基极之间形成集电结。
这个结反向偏置,阻止电流从集电极流入基极。
相反,它允许电流从基极流入集电极,形成三极管的输出。
三极管的功能主要体现在放大和开关两个方面:1. 放大功能:三极管的放大功能是利用其输入端的小信号电流或电压,通过电流放大作用,使输出端的电流或电压放大到较大的数值。
放大功能使得三极管可以用于放大音频信号、射频信号等。
在放大器电路中,三极管的基极接收输入信号,而发射极和集电极则输出放大后的信号。
2. 开关功能:三极管的开关功能是利用其输入信号的变化,控制输出信号的开闭状态。
当三极管的输入信号为低电平时,三极管处于截止状态,输出信号为高电平;当输入信号为高电平时,三极管处于饱和状态,输出信号为低电平。
这种开关功能使得三极管可以用于数字电路中的逻辑门、计时器等。
三极管的结构和功能使其成为现代电子技术中不可或缺的元件。
它可以实现电流和电压的放大,同时也能实现信号的开关控制。
简述三极管的结构及其的功能

简述三极管的结构及其的功能三极管是一种半导体器件,由三个掺杂不同的半导体材料构成。
它的主要结构由两个PN结组成,中间夹有一个掺杂相反类型的半导体层。
这三个区域分别被称为发射结、基极和集电结。
让我们来了解一下三极管的结构。
三极管通常由硅或者锗等材料制成。
发射结是N型半导体与P型半导体的结合,基极是P型半导体与N型半导体的结合,集电结是N型半导体与P型半导体的结合。
这样的结构使得三极管能够起到控制电流的作用。
接下来,我们来看一下三极管的功能。
三极管是一种放大器和开关。
在放大器中,三极管可以将输入信号放大到较大的幅度,并输出到加载电路中。
在这种情况下,三极管可以被用作电流放大器或者电压放大器。
当输入信号的幅度较小时,三极管会进入饱和区,输出信号将近似于输入信号的幅度。
而当输入信号的幅度较大时,三极管会进入截止区,输出信号将接近于零。
在开关电路中,三极管可以控制电流的流动。
当输入信号为低电平时,三极管处于截止区,输出电流为零。
而当输入信号为高电平时,三极管处于饱和区,输出电流较大。
因此,三极管可以被用来控制电路的通断。
三极管还具有稳压和恒流的功能。
在稳压电路中,三极管可以通过调整基极电流来实现稳定的输出电压。
在恒流电路中,三极管可以通过调整基极电压来实现稳定的输出电流。
这些功能使得三极管在电子电路中得到了广泛的应用。
总结一下,三极管的结构由发射结、基极和集电结组成,它可以作为放大器和开关来控制电流的流动。
它具有放大、开关、稳压和恒流的功能,广泛应用于各种电子电路中。
通过深入了解三极管的结构和功能,我们可以更好地理解它在电子领域中的重要性和应用价值。
晶体三极管的工作原理

晶体三极管的工作原理
晶体三极管是一种常用的电子器件,由PN结组成。
它具有放
大和开关功能,在电子设备中扮演着重要的角色。
晶体三极管的工作原理涉及到两个主要的区域:基区和发射区。
基区位于PN结中间,发射区位于PN结的一侧。
在正常工作
状态下,基区与发射区之间存在两个反向偏置,即两个PN结
的结电位均高于基位。
当施加一个适当的电压到基区时,基区与发射区之间的PN结
被击穿,导致电流流过发射区。
这个电流的大小与施加到基区的电压成正比,因此可以被用来放大电信号。
这个过程也称为晶体三极管的放大作用。
晶体三极管的开关作用也是基于PN结的反向偏置。
当基区施
加的电压小于某个阈值时,PN结不会被击穿,发射区不会导通,晶体三极管处于关闭状态。
相反,当基区施加的电压大于阈值时,PN结被击穿,产生一个连续的电流,晶体三极管处
于开启状态。
基区电压的变化使得发射区的电流随之变化,这允许晶体三极管在电子电路中进行放大或开关操作。
晶体三极管的放大倍数由PN结的性质和电路的设计决定。
总之,晶体三极管利用PN结的特性,在适当的电压和电流下,能够实现电信号的放大和开关功能。
这使得它在各种电子设备中得到广泛应用。
三极管的特征

三极管的特征三极管,也被称为双极型晶体管(bipolar junction transistor,简称BJT),是一种常见的半导体器件。
它具有三个区域:发射极(Emitter)、基极(Base)和集电极(Collector)。
三极管具有许多特征,下面将逐一介绍。
1. 放大作用三极管的主要功能是放大电流和电压信号。
当在基极-发射极电流(IB)的作用下,由发射极-集电极电流(IC)的增大,即电流放大效应。
这使得三极管可以用作放大器,将弱信号放大为强信号,从而实现信号处理和传输。
2. 开关作用三极管还可以用作开关。
当输入信号的电压或电流超过一定的阈值时,三极管可以处于饱和状态,导通集电极和发射极之间的电流。
反之,当输入信号的电压或电流低于阈值时,三极管处于截止状态,不导通。
这种开关特性使得三极管广泛应用于数字电路和开关电源等领域。
3. 电流放大倍数三极管的电流放大倍数(或称为电流放大系数)是指集电极-发射极电流(IC)与基极-发射极电流(IB)之间的比值,用β表示。
β的数值通常在几十到几百之间。
电流放大倍数决定了三极管的放大能力,也是设计电路时需要考虑的重要参数之一。
4. 输入/输出阻抗三极管具有较高的输入阻抗和较低的输出阻抗。
输入阻抗决定了信号源与三极管之间的匹配程度,输出阻抗决定了三极管与负载电路之间的匹配程度。
较高的输入阻抗可以减少信号源的负载效应,较低的输出阻抗可以提供更好的信号传输能力。
5. 频率响应三极管的频率响应是指其对不同频率信号的放大能力。
一般来说,三极管在低频时具有较好的放大能力,但在高频时可能会出现衰减。
这是由于三极管内部结构和材料特性所致。
为了实现更高的频率响应,可以采用特殊工艺和结构设计。
6. 温度特性三极管的工作性能会受到温度的影响。
一般情况下,三极管的电流放大倍数会随着温度的升高而下降,而饱和电压会随温度的升高而增加。
这需要在设计电路时考虑温度补偿和稳定性。
7. 噪声三极管的工作过程中会产生一定的噪声。
三极管的电流放大原理

一.对系统的设计任务进行具体分析,内容及要求,以明确系统应完成的任务。
二.这一步的工作要求是把系统要完成的任务分配给若干个单元电路,并画出一个能表示各单元功能的整机原理框图。
方案选择的重要任务是根据掌握的知识和资料,的任务,探索,勇于创新,技术先进。
三.根据系统的指标和功能框图,路的设计,参数计算和器件选择。
.单元电路是整机的一部分,设计水平。
每个单元电路设计前都需明确各单元电路的任务,单元电路的性能指标,具体设计时,但都必须保证性能要求。
.参数计算为保证单元电路达到功能指标要求,参数进行计算。
例如,放大电路中各电阻值,放大倍数的计算;振荡器中电阻,参数计算时,成电路设计要求的功能,在实践中能真正可行的参数。
计算电路参数时应注意下列问题:(1元器件的工作电流,电压,频率和功耗等参数应能满足电路指标的要求;(2)定值的(3.(1)阻容电阻和电容种类很多,正确选择电阻和电容是很重要的。
不同的电路对电阻和电容性能要求也不同,要求很严,滤波电路中常用大容量(2分立元件包括二极管,晶体三极管,场效应管,光电二(三)极管,晶闸管等。
根据其用途分别进行选择。
选择的期间种类不同,时,首先注意是选择是大功率管还是小功率管,并注意管子的参数,,T和β是否满足电路设计指标的要求,CEO高频工作时,要求T = (~10),为工作频率。
(3集成电路的选择由于集成电路可以实现很多单元电路甚至整机电路的功能,以选用集成电路来设计单元电路和总体电路既方便又灵活,使系统体积缩小,颇受欢迎。
集成电路又模拟集成电路和数字集成电路。
量集成电路,其器件的型号,原理,功能,特征可查阅有关手册。
选择的集成电路不仅要在功能和特性上实现设计方案,满足功耗,电压,速度,价格等多方面的要求。
四.为详细表示设计的整机电路及各单元电路的连接关系,需绘制完整电路图。
电路图通常是在系统框图,择的基础上绘制的,要注意一下几点:(1图的理解和阅读。
有时一个总电路由几部分组成,一张图纸上。
晶体三极管的开关电路和放大电路的工作过程

晶体三极管的开关电路和放大电路的工作过程晶体三极管是一种重要的半导体器件,常用于电子学中的开关和放大电路中。
它具有高频特性、低噪声以及较高的放大能力,因此被广泛应用于各种电子设备中。
下面我们来详细了解晶体三极管在开关电路和放大电路中的工作原理和过程。
一、晶体三极管的基本结构及工作原理晶体三极管由发射极、基极和集电极组成,通过控制发射极电流来实现对集电极电流的调控。
当在基极端加上一个小信号电压时,将使发射极与基极之间的耗尽层宽度发生变化,进而改变发射极电流,从而达到放大电压信号的目的。
1. 晶体三极管在开关电路中的工作过程晶体三极管可以作为一个二极管开关,用来控制电路的通断。
当在基极端加上一个正电压时,将使发射极-基极间的耗尽层封锁,导通电流,此时处于导通状态;当在基极端加上一个反向偏置电压时,将使发射极-基极间的耗尽层扩大,截至电流,此时处于截至状态。
晶体三极管可以根据基极端的输入信号来控制电路的开关状态。
2. 晶体三极管在放大电路中的工作过程晶体三极管可以作为放大器使用,用来放大小信号电压。
在放大电路中,通过在基极端施加一个交流信号电压,使得发射极-基极之间的电流产生相应变化,从而得到经放大的输出信号。
晶体三极管的放大能力由其电流放大倍数β来决定,β值越大,放大能力越强。
二、晶体三极管的开关电路和放大电路设计1. 晶体三极管开关电路设计晶体三极管开关电路常用于数字电路中,可以实现逻辑门、计数器等功能。
设计开关电路时需要合理选择电阻、电容等元件参数,以保证电路的稳定性和可靠性。
还需要注意控制信号的功率和频率范围,以满足具体应用的需求。
2. 晶体三极管放大电路设计晶体三极管放大电路常用于模拟电路中,可以实现音频放大、射频放大等功能。
设计放大电路时需要考虑输入输出阻抗的匹配、电压和电流的偏置设置、负载电阻的选择等因素,以提高电路的放大性能和线性度。
三、晶体三极管在实际电路中的应用晶体三极管广泛应用于各种电子设备中,如放大器、收音机、电视机、电脑等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体三极管的结构作用与开关特性
在数字电路设计的中,往往需要把数字信号经过开关扩流器件来驱动一些蜂鸣器、LED、继电器等需要较大电流的器件,而用得最多的开关器件要数三极管。
三极管通常也称双极型晶体管(BJT),简称晶体管或三极管。
三极管在电路中常用字母T来表示。
因三极管内部的两个PN结相互影响,使三极管呈现出单个PN结所没有的电流放大的功能。
因此充分了解晶体三极管的结构作用对提高开关电路的设计有很大帮助,这次华强北IC代购网对三极管的开关特性展开以下介绍。
晶体三极管的结构作用介绍
导体二极管内部只有一个PN结,若在半导体二极管P型半导体的旁边,再加上一块N型半导体如图5-1(a)所示。
由图5-1(a)可见,这种结构的器件内部有两个PN结,且N型半导体和P型半导体交错排列形成三个区,分别称为发射区,基区和集电区。
从三个区引出的引脚分别称为发射极,基极和集电极,用符号e、b、c来表示。
处在发射区和基区交界处的PN结称为发射结;处在基区和集电区交界处的PN结称为集电结。
具有这种结构特性的器件称为三极管。
图5-1(a)所示三极管的三个区分别由NPN型半导体材料组成,所以这种结构的三极管称为NPN型三极管,图5-1(b)是NPN型三极管的符号,符号中箭头的指向表示发射结处在正向偏置时电流的流向。
根据同样的原理,也可以组成PNP型三极管,图5-2(a)、(b)分别为PNP型三极管的内部结构和符号。
由图5-1和图5-2可见,两种类型三极管符号的差别仅在发射结箭头的方向上,理解箭头的指向是代表发射结处在正向偏置时电流的流向,有利于记忆NPN和PNP型三极管的符号,同时还可根据箭头的方向来判别三极管的类型。
例如,当大家看到“”符号时,因为该符号的箭头是由基极指向发射极的,说明当发射结处在正向偏置时,电流是由基极流向发射极。
根据前面所讨论的内容已知,当PN结处在正向偏置时,电流是由P
型半导体流向N型半导体,由此可得,该三极管的基区是P型半导体,其它的两个区都是N型半导体,所以该三极管为NPN型三极管。
三极管开关特性的实际应用
图1 三极管电子开关电路图
图1为晶体三极管开关电路在电动玩具中的实际应用,图中VT表示开关三极管,M表示玩具电动机,S表示开关,基极限流电阻器R和电源GB组成。
VT采用NPN型小型功率硅管 SS8050,其集电极最大允许电流可高达1.5A,以满足电动机启动电流的要求。
M选用的是工作电压为3V的小型直流电动机,对应的电源GB亦为3V。
那么要如何确定VT基极限流电阻器R呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。
假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导通所需的基极电流IB≥(1500mA/250)×2=12mA。
在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。
根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13kΩ。
考虑到VT在IC较大时,hfe要减小,电阻值R还要小一些,实取100Ω。
为使电动机更可靠地启动,R甚至可
减少到51Ω。
在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。
三极管 SS8050各性能参数介绍
三极管SS8050是常见的NPN型晶体三极管,我们可以在各种开关电路中看到它,应用范围十分广,生产厂家主要有ST、仙童半导体、飞利浦等,其性能参数并没有因生产厂家的不同而有过多的出入。
技术参数
●类型:开关型;
●极性:NPN;
●材料:硅;
●8050三极管(SOT-23封装)管脚图
●8050三极管(SOT-23封装)管脚图
●最大集电极电流(A):0.5 A;
●直流电增益:10 to 60;
●功耗:625 mW;
●最大集电极-发射极电压(VCEO):25;[1]
●特征频率:150 MHz。