解题技巧专题:勾股定理与面积问题

合集下载

勾股定理典型题总结(较难)

勾股定理典型题总结(较难)

勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。

求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。

勾股定理(知识点+题型分类练习)

勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

专题11 解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(解析版)

专题11 解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(解析版)

专题11解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【类型一三角形中,利用面积求斜边上的高】 (1)【考点二结合乘法公式巧求面积或长度】 (6)【考点三巧妙割补求面积】 (9)【考点四“勾股树”及其拓展类型求面积】 (13)【考点五几何图形中的方程思想—折叠问题(利用等边建立方程)】 (19)【考点六几何图形中的方程思想—公边问题(利用公边建立方程)】 (25)【考点七实际问题中的方程思想】 (28)【典型例题】【类型一三角形中,利用面积求斜边上的高】A.8013B.【答案】D【变式训练】A.5【答案】C【分析】根据图形,可以求出根据题意得,13AB AC BC ==,∴1122BD BC ==,在Rt ADB 中,根据勾股定理得,∴22221312AD AB BD =-=-3.(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A 、B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为__________.【答案】ABC 中AB 【分析】如图所述,过点在Rt △ABD 中,可求出【详解】解:如图所述,过点∵ABC 是格点图形,每个小正方形的边长为单位∴3AD =,3BC =,BD ∴在Rt △ABD 中,AB =∵11·22ABC S BC AD == ∴·335BC AD CE AB ⨯===(1)求BC的长.(2)求斜边AB边上的高.BC【答案】(1)=6(2)斜边AB边上的高是【点睛】本题考查勾股定理,三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2023秋·全国·八年级专题练习)在【类型二结合乘法公式巧求面积或长度】例题:已知在Rt ABC 中,90,,C A B C ∠=︒∠∠∠,所对的边分别为a ,b ,c ,若10cm,8cm a b c +==,则Rt ABC 的面积为()A .29cm B .218cm C .224cm D .236cm 【答案】A【解析】【变式训练】1.在ABC 中,AD 是BC 边上的高,4,5AD AB AC ===,则ABC 的面积为()A .18B .24C .18或24D .18或303.直角ABC 三边长分别是x ,1x +和5,则ABC 的面积为__________.【类型三巧妙割补求面积】是直角三角形;(1)求证:ACD(2)求四边形ABCD的面积.【答案】(1)见解析【变式训练】【答案】24平方米【分析】连接AC,根据勾股定理求出据直角三角形的面积公式求出结果即可.∠=︒,4=ADC90AD米,CD=225∴=+=米,AC AD CD(1)求这个四边形草地的面积;(2)如果清理草地杂草,每平方米需要人工费36m【答案】(1)2(2)清理完这块草地杂草需要(2)解:2036720⨯=(元)答:清理完这块草地杂草需要【点睛】本题主要考查了勾股定理,勾股定理的逆定理,解题的关键是掌握直角三角形两直角边的平方和等于斜边平方,两边平方和等于第三边平方的三角形是直角三角形.(1)求线段CD 与BC 的长;(2)求四边形ABCD 的面积;(3)求证:90BCD ∠=︒.【答案】(1)25BC =,(2)292(3)见解析∴22345BD =+=,∵()22225BC CD +=+∴222BC CD BD +=,∴BCD △是直角三角形,且∴90BCD ∠=︒.【点睛】此题考查勾股定理和勾股定理的逆定理,关键是根据勾股定理得出各边的长解答.【类型四“勾股树”及其拓展类型求面积】例题:(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是6、10、4、6,则最大正方形E 的面积是()A .20B .26C .30D .52【答案】B 【分析】根据正方形的面积公式并结合勾股定理,能够导出正方形A ,B ,C ,D 的面积和即为最大正方形的面积即可.【详解】解:如图:根据勾股定理的几何意义,可得:E F GS S S =+=A B C DS S S S +++=61046+++=26故选B .【点睛】本题考查勾股定理,熟悉勾股定理的几何意义是解题的关键.【变式训练】1.(2023·广西柳州·校考一模)如图,90BDE ∠=︒,正方形BEGC 和正方形AFED 的面积分别是289和225,则以BD 为直径的半圆的面积是()A .16πB .8πC .4πD .2π【答案】B【答案】12;s1+s2=s3(1)如图2,分别以ABC 的三条边为直径向外作半圆,其半圆的面积由小到大分1S 、2S 、3S 3S 有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S 1、S 中的探索,直接回答12S S +与3S 有怎样的数量关系;(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为1S ,2S ,3S ,利用勾股定理,判断这3个图形中面积关系满足123S S S +=的有________②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为2S ,直角三角形面积为3S ,也满足123S S S +=吗?若满足,请证明;若不满足,请求出1S ,关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这【点睛】本题考查了勾股定理,勾股树.解题的关键在于正确的表示各部分的面积.【类型五几何图形中的方程思想—折叠问题(利用等边建立方程)】A .54B .74C .15【答案】B【分析】根据图形翻折变换的性质可知,AE BE =【变式训练】1.(2023春·湖北咸宁·八年级校考阶段练习)如图,有一块直角三角形纸片,9043C AC BC ∠=︒==,,,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则BD 的长为()A .34【答案】C【分析】利用勾股定理求得则3CD x =-,根据勾股定理可得【答案】103/133【分析】由折叠的性质可得【详解】解:D 是AB 中点,【答案】1或65【分析】分90BFA '∠=︒和90,30,C A BC ∠=︒∠=︒=30,DA E '∠=︒ 60,EA H '∴∠=︒在Rt EHA ' 中,12A H '=在Rt BEH 中,(1)如图①,当A '与点B 重合且3,5BC AB ==.①直接写出AC 的长;②求BCD △的面积.(2)当37A ∠=︒.①A '与点E 在直线AC 的异侧时.如图②,直接写出A EB ∠-∠'②当∥A D BC '时,如图:∵∥A D BC ',90C ∠=︒,∴90ADA '∠=︒,∵ADE V 由A DE ' 折叠所得,∴1452ADE ADA '∠=∠=︒;当A E BC '∥时,如图:∵37A ∠=︒,90C ∠=∴903753B ∠=︒-︒=︒∵ADE V 由A DE ' 折叠所得,∴37A A '∠=∠=︒,综上:ADE ∠的度数分别为【点睛】本题主要考查了勾股定理,三角形那个的内角和定理,折叠的性质,平行线的性质,解题的关键是掌握勾股定理内容,根据勾股定理建立方程求边的长度;掌握三角形是内角和为于与它不相邻的两个内角之和,平行线的性质.【类型六几何图形中的方程思想—公边问题(利用公边建立方程)】例题:如图,在△ABC 中,AB =10,BC =9,AC =17,则BC 边上的高为_______.【答案】8【解析】【分析】作AD BC ⊥交BC 的延长于点D ,在Rt ADB 中,222AD DB AB +=,在Rt ADC 中,222AD DC AC +=,根据2222AB DB AC DC -=-列出方程即可求解.【详解】如图,作AD BC ⊥交BC 的延长于点D ,【变式训练】1.已知:如图,在ABC 中,90C AD ∠=︒,是ABC 的角平分线,35CD BD ==,,则AC =____.【答案】6【分析】作DE AB ⊥,如图,根据角平分线的性质可得3DE CD ==,勾股定理求出BE ,证明()Rt Rt HL ACD AED ≅ ,推出AC AE =,设AC AE x ==,根据勾股定理列出方程即可求出AC .【详解】解:作DE AB ⊥于点E ,如图,∵在ABC 中,90C AD ∠=︒,是ABC 的角平分线,3CD =,∴3DE CD ==,【点睛】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常见题型,熟练掌握上述知识,利用勾股定理得出方程是解题的关键.△和Rt2.如图,在Rt ABC(1)求证:点A在M∠∥,AB(2)若AC DM【答案】(1)见解析(2)5【分析】(1)连接AM在Rt ABC △和Rt ADE △中,∵90B D ∠=∠=︒,AC AE =,BC DE =,Rt Rt (HL)ABC ADE ∴≅ ,AB AD ∴=,AB BM ⊥ ,AD DM ⊥,MA ∴平分BMD ∠,∴点A 在BMD ∠的平分线上;(2)解:AC DM ∥ ,CAM AMD ∴∠=∠,AMB CAM ∴∠=∠,CM AC ∴=,设BC x =,18CM AC x ∴==-,在Rt ABC △中,222AB BC AC +=,22212(18)x x ∴+=-,5x ∴=.5BC ∴=.【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,勾股定理,解决本题的关键是得到Rt Rt (HL)ABC ADE ≅ .【类型七实际问题中的方程思想】例题:(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千绳索OA 悬挂于O 点,静止时竖直下垂,A 点为踏板位置,踏板离地高度为一尺(AC =1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),则秋千绳索(OA或OB)长______尺.【变式训练】1.(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解析】【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.2.(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好倍.问门高、门宽各为多少?3.(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明.(2)求原来的路线AC 的长.【答案】(1)CH 是从村庄C 到河边的最近路;理由见解析;(2)原来的路线AC的长为1.25千米.【解析】【分析】(1)根据勾股定理的逆定理证明△CHB是直角三角形即可;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,再根据勾股定理解答即可.(1)解:是,理由是:在△CHB中,∵CH2+BH2=1.22+0.92=2.25,BC2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x-0.9)2+1.22,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点睛】本题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.4.(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC'D',最后折叠形成一条线段BD''.某家装厂设计的折叠床是AB=4cm,BC=8cm,(1)此时CD为_________cm;(2)折叠时,当AB⊥BC′时,四边形ABC′D′的面积为_______cm2.【点睛】。

勾股定理面积问题

勾股定理面积问题
3 S3 S4 S4
1 S1 S2
2 S2
若变为作其它任意正 多边形,情形会怎样? S3
B
C
S2
a c
B
b
A
S3 A S2
S1
C
S1
四变: 如图,分别以直角△ABC三边 为直径向外作三个半圆,其面积分别用S1、 S2、S3表示,则S1、S2、S3有什么关系? 不难证明S3=S1+S2 .
C S1 a B
S2
b c
A
S3
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少? 规律:
18.1勾股定理 ----实际应用面积问题:
A的面积+B的面积=C的面积
C
A
B
B A
C
D
二变:如图,分别以Rt △ABC三边为 斜边向外作三个等腰直角三角形,其面 积分别用S1、S2、S3表示,则S1、S2、S3 之间的关系是 S1 S2 S3,请说理。
C
S3
A
b
a c
S2
B
S1
三变:如图,分别以Rt △ABC三边为 边向外作三个正三角形,其面积分别用 S1、S2、S3表示,则S1、S2、S3之间的关 系是 S1 S2 S3 ,请说理。
2 3 4 5
S2+S3+S4+S5= S1
1
二.y=0 复习面积法证明勾股定理
已知S1=1,S2=3,S3=2,S4=4,求 S5、S6、S7的值
S3
S4
S2
结论:
S1+S2+S3+S4 =S5+S6 =S7
S1
S5
S6

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。

通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。

在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。

同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。

如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。

例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。

现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。

同时梯子的顶端B下降至B′。

那么BB′的长度是小于1m的(选项A)。

又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。

设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。

注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。

若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。

勾股定理解题方法

勾股定理解题方法

17。

1勾股定理技巧1利用勾股定理计算线段的长如图所示,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求AB的长及△ADB的面积.解析:(1)根据角平分线的性质得出CD=DE,从而DE=3;(2)首先利用勾股定理求出AB的长,然后计算△ADB的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理,得AB=22+AC BC=2268+=10,∴△ADB的面积为S△ADB=12AB DE=1103152××=.技巧2利用勾股定理解决折叠问题如图所示,将长方形ABCD沿着BD折叠,使点C落在C'处,BC'交AD于点E,若AD=8.AB=4.(1)求△BDE的周长;(2)求△BDE的面积.解析:(1)由将长方形ABCD沿BD折叠,知C'D=CD,∠C=∠C',∠1=∠2,可证BE=DE,即AE+BE=AD.在Rt△ABE和Rt△BCD中,利用勾股定理求出BE,BD的长,进而求出△BDE的周长;(2)由题意,知C'=90°,即DC'⊥BC’,则S△BDE=12BD·C'D.解:(l)∵将长方形ABCD沿着BD折叠,∴CD=C’D,∠C=∠C',∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.在Rt△ABE中,BE2-AE2=AB2,即x2一(8一x)2=42,解得x=5,即BE=DE=5.在Rt△BCD中,BD=22228445+=+=BC CD,∴△BDE的周长为BE+DE+BD=10+45.(2)∵∠C'=90°,∴DC'⊥BC'.∴S△BDE=12BE·C’D=12×5×4=10,即△BDE的面积为10.技巧3利用勾股定理解决最短路径问题如图(1)所示是一个长方体的大箱子,已知它的高为3 m,底面是边长为2 m的正方形.现在点A处有一只壁虎,想沿长方体表面到达点C处,则壁虎爬行的最短路程是多少?(1)(2) (3)解析:首先将长方体展开成平面图形,连接AC,根据两点之间线段最短来解答,然后利用勾股定理求出线段的长度.解:(1)如图(2),将长方体的右表面翻折至前表面,使A,C两点共面,连接AC,则此时线段AC的长度即为此种情况的最短路程.∴AC2=(2+2)2+32=25.∴AC=5.(2)如图(3),将长方体的后表面翻折至上表面,使A,C两点共面,连接AC,则此时线段AC的长度即为此种情况的最短路程.∴AC2=22+(2+3)2=4+25=29.∴AC=29.∵29>5,∴壁虎爬行的最短路程是5m.技巧4利用勾股定理求图形的面积如图所示,已知四边形ABCD是正方形,E是正方形内一点,且AE⊥BE.若AE=6,BE=8,求图中阴影部分的面积.解析:先利用勾股定理求得正方形ABCD的边长,再根据面积公式求得正方形和直角三角形的面积,最后求出阴影部分的面积.解:∵AE⊥BE,∴∠E=90°.∵AE=6,BE=8,∴AB=22226810AE BE+=+=.∴正方形ABCD的面积为AB2=100.∵S△ABE=116824 22AE BE=××=,∴图中阴影部分的面积为S阴影=100-24=76.技巧5利用勾股定理解决非直角三角形中的问题如图(1)所示,已知在△ABC中,∠C=60°.AB=14,AC=10,求BC的长.(1) (2)解析:过点A作AD⊥BC,则出现两个直角三角形:Rt△ACD与Rt△ABD,借助于勾股定理解题即可.解:如图(2)所示,过点A作AD⊥BC,交BC于点D.∵∠C=60°,AC=10,∴CD=5,AD=53.又∵AB=14,∴BD=2214531967511-()=-=.∴BC=BD+CD=11+5=16.技巧6勾股定理在解决实际问题中的应用如图(1),由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城正西方向240 km的点B处,以12 km/h的速度向北偏东600方向移动,距沙尘暴中心150 km的范围均为受影响区域.(1)A城是否会受到这次沙尘暴的影响?为什么?(2)若A城受到这次沙尘暴影响,则遭受影响的时间有多长?(1) (2)解析:(1)过点A向沙尘暴行进的方向作垂线,得到点A到直线BM的距离,将该距离与150 km作比较来判断A城是否会受影响.(2)由于在沙尘暴中心周围150 km的范围内均受影响,故以点A为圆心,以150 km为半径画弧,该弧与沙尘暴所经路线有两个交点,先利用勾股定理求出这两点的距离,再用这个距离除以沙尘暴的速度即可求出A城受影响的时间.解:(1)A城会受到影响,理由如下:如图(2),过点A作AC⊥BM,交BM于点C.∵在Rt△ABC中,∠ABM=30°,∴AC=12AB=12×240=120(km).∵120<150,∴A 城会受到这次沙尘暴的影响.(2)如图(2),以点A 为圆心,以150 km 为半径画弧,与BM 交于E ,F 两点. 由题意,得CE =222215012090AE AC +=+=(km ). ∵AE =AF ,∴∠AEF =∠AFE .又∵∠ACE =∠ACF ,AC =AC ,∴△ACE ≌△ACF (AAS ).∴CE =CF .∴EF =2CE =2×90=180(km ).∴ 180÷12=15(h ).∴A 城遭受这次沙尘暴影响的时间为15 h .17.2 勾股定理的逆定理技巧1利用勾股定理的逆定理判断三角形的形状已知a ,b ,c 是△ABC 的三边长,且满足关系式2220c a b a b --+-=,则△ABC 的形状为___________.解析:∵2220c a b a b --+-=,∴c 2-a 2-b 2=0,且a -b =0.∴c 2=a 2+b 2,且a =b∴△ABC 为等腰直角三角形.答案:等腰直角三角形.技巧2勾股定理及其逆定理的综合运用如图所示,在四边形ABCD 中,已知AB =1,BC =2,CD=2,AD =3,且AB ⊥BC .试说明AC ⊥CD .解析:先在Rt △ABC 中,利用勾股定理,求出AC 的长,再利用勾股定理的逆定理求得∠ACD =90°.解:∵AB ⊥BC ,∴∠B =90°.∵AB =1,BC =2,∴AC 2=AB 2+BC 2=12+22—5.在△ACD 中,AC 2+CD 2=5+22=5+4=9,AD 2=32=9,∴AC 2+CD 2=AD 2.∴∠ACD =90°,即AC ⊥CD .技巧3利用勾股定理的逆定理求三角形的面积如图所示,已知D ,E ,F 分别是△ABC 中BC ,AB ,AC 边上的点,且AE =AF ,BE =BD ,CF =CD ,AB =4,AC=3,32BD CD =,求△ABC 的面积. 解析:先出BC ,证明△ABC 是直角三角形,即可求出面积.解:∵32BDCD=,设BD=3x,则CD=2x,由AE=AF,BE=BD,CF=CD,即AF=3-2x,AE=4-3x,∴3-2x=4-3x,解得x=1,∴BC=3x+2x=5.又∵32+42=52,即AC2+AB2=BC2,∴△ABC是直角三角形,∠A=90°.S△ABC=11436 22AB AC=××=.技巧4利用勾股定理的逆定理解决实际问题如图所示,南北向直线MN为我国领海线,即MN以西为我国领海,以东为公海,上午9:50,我国反走私艇A发现正东方向有一走私艇C以13 n mile/h的速度偷偷向我国领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A,C两艇的距离是13 n mile,A,B两艇的距离是5 n mile,反走私艇B测得其离走私艇C的距离是12 n mile.若走私艇C的速度不变,则走私艇C最早会在什么时间进入我国领海?解析:如图所示,设MN交AC于点E,从而确定么BEC=90°,由已知条件确定∠ABC =90°,利用勾股定理求出CE的长,最后由速度公式求出时间.解:如图所示,设MN交AC于点E,则∠BEC=90°.由题意,得AB2+BC2=52+122=169=132=AC2,故△ABC是直角三角形,∠ABC=90°.又∵MN⊥CE,∴走私艇C进入我国领海的最短距离是CE,且CE2+BE2=BC2=144,(13-CE)2+BE2=AB2=25,联立解得CE=144 13.∵14413÷13=144169≈0。

勾股定理典型解题技巧及练习

勾股定理典型解题技巧及练习

专题复习一 勾股定理常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162= 289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272= 4、已知斜边和一条直角边求另一条直角边由a 2+b 2=c 2可得 a 2= c 2- b 2=(c+b) (c-b) (平方差公式) 例如,已知c=61, b=60, 则a 2= c 2-b 2= (61+60) (61-60) =121, 则 a=11已知c=41, b=40, 则a 2= c 2-b 2= (41+40) (41-40) =81, 则 a=9已知c=17, b=8, 则a 2= c 2-b 2= (17+8) (17-8) =25 x 9=52 x 32= (5 x 3)2 则 a = 5 x 3 =155、直角三角形斜边的中线等于斜边的一半。

如图,CD 为斜边AB 的中线,过D 作D E ⊥AC 于E,DF ⊥BC 于F 在RT ▲ADE 和RT ▲DBF 中,∠DAE=∠BDF , AD=DB ∠ADE=∠DBFRT ▲ADE ≌RT ▲DBF ∴ EA=FD, 有因CEDF 为矩形, ∴FD=CE=EA=1/2 CART ▲ADE ≌RT ▲CDE ∴ CD=AD=DB=1/2 AB6、直角三角形30°角的对边等于斜边的一半7、三角形内角平分线上的点到两边的距离相等8、任意三角形三个内角的角平分线相交于一点。

该点称三角形的内心(内切圆圆心)。

9、任意三角形三个边上的垂线(高)相交于一点。

该点称三角形的垂心 10、任意三角形三个边上的中线相交于一点。

该点称三角形的重心。

11、任意三角形三个边上的垂直平分线(中垂线)相交于一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题技巧专题:勾股定理与面积问题
——全方位求面积,一网搜罗
◆类型一 三角形中利用面积法求高
1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013
cm
2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________.
◆类型二 结合乘法公式巧求面积或长度
3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )
A .48cm 2
B .24cm 2
C .16cm 2
D .11cm 2
4.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )
A .7cm
B .10cm
C .(5+37)cm
D .12cm
5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若(a +b)2=21,大正方形的面积为13,则小正方形的面积为( )
A .3
B .4
C .5
D .6
◆类型三 巧妙利用割补法求面积
6.如图,已知AB =5,BC =12,CD =13,DA =10,AB ⊥BC ,求四边形ABCD 的面积.
7.如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2,求四边形ABCD 的面积.【方
法6】
◆类型四利用“勾股树”或“勾股弦图”求面积
8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.
9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB=3,AC=4,则D,E,F,G,H,I都在长方形KLMJ的边上,那么长方形KLMJ 的面积为________.
参考答案与解析
1.D
2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12
×5h =32,∴h =355.故答案为355
.
3.D 4.D 5.C
6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12
×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12AB ·BC +12AD ·CE =12×5×12+12
×10×12=90. 7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E =30°.∴AE =2AB =8.在Rt △ABE 中,由勾股定理得BE =AE 2-AB 2=82-42=4 3.∵∠ADC =90°,∴∠CDE =90°,∴CE =2CD =4.在Rt △CDE 中,由勾股定理得DE =CE 2-DC 2=42-22=2 3.∴S
四边形ABCD =S △ABE -S △CDE =12AB ·BE -12CD ·DE =12×4×43-12
×2×23=6 3. 8.81
9.110 解析:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,易证四边形AOLP 是矩形,OK =BE =3.∵∠CBF =90°,∴∠ABC +∠OBF =90°.又∵∠ABC +∠ACB =90°,
∴∠OBF =∠ACB .在△ACB 和△OBF 中,⎩⎪⎨⎪⎧∠BAC =∠FOB ,∠ACB =∠OBF ,BC =FB ,
∴△ACB ≌△OBF (AAS).同
理:△ACB ≌△PGC ≌△LFG ≌△OBF ,∴KO =OF =LG =3,FL =PG =PM =4,∴KL =3+3+4=10,LM =3+4+4=11,∴S 矩形KLMJ =KL ·ML =10×11=110.。

相关文档
最新文档