新人教版八年级上《画轴对称图形》优秀教学设计3

合集下载

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。

本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。

但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。

因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。

三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。

3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。

四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.难点:如何引导学生通过作图的方法来画出轴对称图形。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。

六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。

2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。

3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。

最新人教版八年级数学上册《画轴对称图形》教案(精品教案)

最新人教版八年级数学上册《画轴对称图形》教案(精品教案)

画轴对称图形【教学目标】1.知识与能力:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.2.过程与方法:在探索问题的过程中体会知识间的关系,感受函数与生活的联系.3.情感、态度与价值观:培养学生的应用意识和探究精神.【教学重点】(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.【教学难点】用轴对称知识解决相应的数学问题.【教学方法】创设情境-主体探究-合作交流-应用提高.【教学过程】1.创设情境,激发学生兴趣,引出本节课要研究的内容活动1观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的形状、大小完全一样;(1) 新图形上一个点,都是原图形上的某一点关于直线l 的对称点;(2) 连接任意一对对应点的线段被对称轴垂直平分. 活动2问题如图(1),已知△ABC 和直线l ,你能作出△ABC 关于直线l 对称的图形吗?l ABCl O C'B'A'ABC图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接AO 并延长到A′,使A′O=AO ,则点A′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.活动3二、观察操作,主动探索,研究坐标系内的轴对称活动4问题在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?已知点A(2,-3) B(-1,2)C(-6,-5)D(0.5,1)E(4,0)关于x轴对称的点关于y轴对称的点学生活动设计:学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.点(x,y)关于x轴对称的点的作标是(x,-y);点(x,y)关于y轴对称的点的作标是(-x,y).教师活动设计:组织学生进行探索,观察猜测,然后进行归纳总结.活动5问题如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形. 53y x -1-2-3-4124-1-2-3-4-5654321D''C''B''A''D'C'B'A'O AB CD学生活动设计:学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.教师活动设计:本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.三、应用提高、拓展创新问题如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.教师和学生活动设计:分组讨论,让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.学生自主探索其中的原因(原因:在直线l上取异于点C的点D,由于l垂直平分AA′,所以得到DA=DA′,所以DA+DB=DA′+DB,根据两点之间线段最短得到DA′+DB >A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)四、归纳小结、布置作业小结:1.作轴对称图形;2.用坐标表示轴对称.。

人教版八年级数学上册教学设计13.2 画轴对称图形

人教版八年级数学上册教学设计13.2  画轴对称图形

人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。

教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。

二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。

但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。

因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。

三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。

2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。

3.培养学生的观察能力、操作能力以及抽象思维能力。

四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。

2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。

五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。

同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。

六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。

2.准备一些练习题,包括基础题和拓展题。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。

引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。

2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。

通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。

新人教版八年级数学上册教案:13.2画轴对称图形

新人教版八年级数学上册教案:13.2画轴对称图形
4.培养学生合作交流能力,通过小组讨论和分享,提高表达自己观点和倾听他人意见的能力;
5.培养学生数学抽象和数学建模素养,使学生能够从实际情境中抽象出数学问题,并运用轴对称知识进行模型构建。
三、教学难点与重点
1.教学重点
-理解轴对称图形的定义:轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。
-掌握轴对称的性质:包括对称轴的识别、对称点、线、面的性质等。
-学会绘制轴对称图形:能够根据给定图形,准确地找到对称轴并绘制出其轴对称图形。
举例:如在教学过程中,通过展示和分析等腰三角形、矩形、正方形等常见轴对称图形,强调对称轴的寻找和图形翻转的规律。
2.教学难点
-识别复杂图形的对称轴:对于形状复杂的图形,学生可能难以迅速准确地找到其对称轴。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称图形的基本概念。轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。它在艺术、建筑、设计等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以等腰三角形为例,分析其对称轴、对称点等性质,并展示如何绘制其轴对称图形。
(3)对于绘制具有挑战性的轴对称图形,可以采取以下措施:
-分步骤指导,将复杂图形分解为简单的部分,逐步引导学生完成绘制;
-提供直观的工具,如透明纸、直尺等,帮助学生准确绘制对称图形;
-创设挑战性的任务,鼓励学生尝试不同的方法,培养他们的创新精神和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
-利用对称轴绘制给定图形的轴对称图形;
-探索轴对称在实际应用中的例子。

八年级上《画轴对称图形》教案(人教版)

八年级上《画轴对称图形》教案(人教版)

八年级上《画轴对称图形》教案(人教版)一、教学目标1.了解轴对称图形的概念和特点;2.能够识别和绘制轴对称图形;3.能够运用轴对称的性质解决问题。

二、教学准备1.课件和投影仪;2.黑板和粉笔;3.图形纸和铅笔;4.直尺和量角器;5.教材《画轴对称图形》的相关课文。

三、教学过程1. 导入新知使用课件或黑板展示几个轴对称图形的例子,引起学生的兴趣,并提问学生对这些图形的特点和共同之处。

2. 学习轴对称图形的定义向学生解释轴对称图形的概念和定义,即对于一个图形,如果存在一条直线,将这个图形分成两个部分,且两个部分关于这条直线完全重合,则称该图形是轴对称图形。

3. 分析轴对称图形的特点让学生观察和比较轴对称图形的特点,例如图形的左右对称、对称轴与图形上的点、线段等的关系,以及图形的对称次数等。

4. 实践绘制轴对称图形让学生借助直尺和图形纸,练习绘制轴对称图形。

先给学生一些简单的图形,如矩形、正方形、三角形等,让他们通过折纸法或画法找出对称轴,然后绘制对称图形。

5. 讨论和总结请几名学生上板展示他们绘制的轴对称图形,并请其他同学分析和评价他们的作品。

通过讨论,总结绘制轴对称图形的方法和技巧。

6. 运用轴对称解决问题将学生分成小组,出示一些实际问题,要求他们利用轴对称的性质解决问题。

例如:一个图形有几条对称轴?如何通过轴对称找到图形的一些特征?7. 拓展练习教师出示一些更复杂的轴对称图形,要求学生找出其中的对称轴,并尝试绘制这些图形。

四、作业布置1.练习册上关于轴对称图形的练习题;2.完成一个实际生活中的问题,运用轴对称的思想解决。

五、教学反思轴对称图形是初中数学中一个重要的概念,通过本节课的教学,学生对轴对称图形有了初步的了解。

在教学过程中,通过让学生观察、练习和讨论,激发了他们的兴趣,并提高了他们的思维能力和创造力。

但是,对于一些迅速掌握知识的学生,可能需要提供更多的挑战和拓展练习。

最新人教版初中八年级数学上册《画轴对称图形》精品教案

最新人教版初中八年级数学上册《画轴对称图形》精品教案

13.2 画轴对称图形第1课时画轴对称图形教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.作者留言:非常感谢!您浏览到此文档。

最新人教版初中八年级上册数学《画轴对称图形》精品教案

最新人教版初中八年级上册数学《画轴对称图形》精品教案

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形 B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.作者留言:非常感谢!您浏览到此文档。

人教版八年级数学上册教案《画轴对称图形》

人教版八年级数学上册教案《画轴对称图形》

《画轴对称图形》◆教材分析本节是轴对称的第二节内容,在学生已掌握轴对称的知识的基础上,通过让学生画每个轴对称图形的另一半的活动,使学生掌握画图技能,进一步使学生加深对轴对称图形的理解。

◆教学目标【知识与能力目标】1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.3.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.4.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.【过程与方法目标】经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.【情感态度价值观目标】1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.【教学重点】1.轴对称变换的定义.2作出简单平面图形经过轴对称后的图形. 【教学难点】1.作出简单平面图形关于直线的轴对称图形2用轴对称进行图案设计.一、探究并归纳轴对称的性质:课件展示:(1)这些图案有什么共同特点? (2)能否根据其中的一部分画出整个图案?【设计意图】探究认识轴对称图形的特点,进而得出其性质。

在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?◆ 教学过程◆ 教学重难点 ◆【设计意图】动手操作,提高动手能力。

请动手在一张纸上画一个你喜欢的图形,将这张纸纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?(1)画出的轴对称图形的形状、大小和原图形有什么关系?(2)画出的轴对称图形的点与原图形上的点有什么关系?(3)对应点所连线段与对称轴有什么关系?【设计意图】总结轴对称的性质,便于理解。

二、轴对称的性质:1.由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;2.新图形上的每一点都是原图形上的某一点关于直线l 的对称点;3.连接任意一对对应点的线段被对称轴垂直平分.【设计意图】归纳总结,形成规律,更易于掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作轴对称图形
【教学目标】
1.知识与能力:
(1)能够作轴对称图形;
(2)能够经过探索利用坐标来表示轴对称;
(3)能够用轴对称的知识解决相应的数学问题.
2.过程与方法:
在探索问题的过程中体会知识间的关系,感受函数与生活的联系.
3.情感、态度与价值观:
培养学生的应用意识和探究精神.
【教学重点】
(1)能够作轴对称图形;
(2)能够经过探索利用坐标来表示轴对称;
(3)能够用轴对称的知识解决相应的数学问题.
【教学难点】
用轴对称知识解决相应的数学问题.
【教学方法】
创设情境-主体探究-合作交流-应用提高.
【教学过程】
一、创设情境,激发学生兴趣,引出本节课要研究的内容
活动1
观察图片
操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?
学生活动设计:
学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:
教师组织活动,引导学生作以下归纳:
(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;
(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;
(3)连接任意一对对应点的线段被对称轴垂直平分.
活动2
问题
如图(1),已知△ABC和直线l,你能作出△ABC关于直线l对称的图形吗?
l
l
图(1) 图(2)
学生活动设计:
学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.
教师活动设计:
在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:
(1)过A 作l 的垂线垂足为O ;
(2)连接A O 并延长到A ′,使A ′O=A O ,则点A ′就是点A 关于直线l 的对称点.最后进行归纳.
几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;
对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
活动3
二、观察操作,主动探索,研究坐标系内的轴对称 活动4 问题
在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你
学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.
点(x ,y )关于x 轴对称的点的作标是(x ,-y ); 点(x ,y )关于y 轴对称的点的作标是(-x ,y ). 教师活动设计:
组织学生进行探索,观察猜测,然后进行归纳总结. 活动5 问题
如图,四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形.
学生活动设计:
学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.
教师活动设计:
本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.
三、应用提高、拓展创新 问题
如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.
教师和学生活动设计:
分组讨论,让学生探索:在街道上找一点C ,使得AC +BC 为最小.通过学生活动,使他们懂得:只有A 、C 、B 在一直线上时,才能使AC +BC 最小,这时作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.
学生自主探索其中的原因(原因:在直线l 上取异于点C 的点D ,由于l 垂直平分AA ′,所以得到DA=DA ′,所以DA+DB =DA ′+DB ,根据两点之间线段最
短得到DA′+DB>A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)
四、归纳小结、布置作业
小结:
1.作轴对称图形;
2.用坐标表示轴对称.。

相关文档
最新文档